Is Agriculture Always a GHG Emitter? A Combination of Eddy Covariance and Life Cycle Assessment Approaches to Calculate C Intake and Uptake in a Kiwifruit Orchard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orchard Description
2.2. The Vegetation CO2 Fluxes: Eddy Covariance
2.3. CO2-Eq Emissions by Orchard Management: Life Cycle Assessment
3. Results
3.1. CO2 Uptake from Eddy Covariance Measurements
3.2. CO2-Eq Emissions from the Orchard Management
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pretty, J.; Sutherland, W.J.; Ashby, J.; Auburn, J.; Baulcombe, D.; Bell, M.; Bentley, J.; Bickersteth, S.; Brown, K.; Burke, J.; et al. The top 100 questions of importance to the future of global agriculture. Int. J. Agric. Sustain. 2010, 8, 219–236. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Agriculture and greenhouse gases, a common tragedy. A review. Agron. Sustain. Dev. 2013, 33, 275–289. [Google Scholar] [CrossRef]
- Page, G.; Kelly, T.; Minor, M.; Cameron, E. Modeling Carbon Footprints of Organic Orchard Production Systems to Address Carbon Trading: An Approach Based on Life Cycle Assessment. HortScience 2011, 46, 324–327. [Google Scholar] [CrossRef]
- Van Wijk, M.T.; Merbold, L.; Hammond, J.; Butterbach-Bahl, K. Improving Assessments of the Three Pillars of Climate Smart Agriculture: Current Achievements and Ideas for the Future. Front. Sustain. Food Syst. 2020. [Google Scholar] [CrossRef]
- FAO. Climate Smart Agriculture for Development. 2013. Available online: http://www.fao.org/climate-smart-agriculture/en/ (accessed on 10 May 2021).
- Holden, E.; Linnerud, K.; Bannister, D. The imperative of Sustainable Development Goals. Sustain. Dev. 2017, 25, 213–226. [Google Scholar] [CrossRef]
- Grunberg, J.; Nieberg, H.; Schmidt, T.G. Carbon footprints of food: A critical reflection. Landbauforsch. Volkenrode 2010, 60, 53–72. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgle, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 33–115. [Google Scholar]
- Vergé, X.P.C.; Maxime, D.; Dyer, J.A.; Desjardins, R.L.; Arcand, Y.; Vanderzaag, A. Carbon footprint of Canadian dairy products: Calculations and issues. J. Dairy Sci. 2013, 96, 6091–6104. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Mbow, C.G.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapilla, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach A food system framework breaks down entrenched sectoral categories and existing adaptation and mitigation silos, presenting novel ways of assessing and enabling integrated climate change solutions from production to consumption. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef]
- Rossi, F.; Facini, O.; Georgiadis, T.; Nardino, M. Seasonal CO2 fluxes and energy balance in a kiwifruit orchard. Ital. J. Agrometeorol. 2007, 56, 44–56. [Google Scholar]
- Nardino, M.; Pernice, F.; Rossi, F.; Georgiadis, T.; Facini, O.; Motisi, A.; Drago, A. Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 2012, 51, 63–74. [Google Scholar] [CrossRef]
- Marras, S.; Masia, S.; Duce, P.; Spano, D.; Sirca, C. Carbon footprint assessment on a mature vineyeard. Agric. For. Meteorol. 2015, 214–215, 350–356. [Google Scholar] [CrossRef]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef] [Green Version]
- Sanz, V.; Lopez-Hortas, L.; Torres, M.D.; Dominguez, H. Trends in kiwifruit and byproducts valorization. Trends Food Sci. Technol. 2021, 107, 401–414. [Google Scholar] [CrossRef]
- Schuepp, P.H.; Leclerc, M.Y.; Macpherson, J.I.; Desjardins, R.L. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound. Layer Meteorol. 1990, 50, 355–373. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, Ü.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. Adv. Ecol. Res. 1999, 30, 113–175. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows, Their Structure and Measurement; Oxford University Press: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Foken, T.; Wichura, B. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 1996, 78, 83–105. [Google Scholar] [CrossRef]
- Greco, S.; Baldocchi, D.D. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Glob. Chang. Biol. 1996, 2, 183–197. [Google Scholar] [CrossRef]
- Moncrieff, J.B.; Malhi, Y.; Leuning, R. The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Glob. Chang. Biol. 1996, 2, 231–240. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Tenhunen, J.; Aubinet, M.; Bakwin, P.; Berbigier, P.; Bernhofer, C.; Burba, G.; Clement, R.; Davis, K.J.; et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. For. Meteorol. 2002, 113, 53–74. [Google Scholar] [CrossRef] [Green Version]
- Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Banza, J.; Bernhofer, C.; Bonnefond, J.M.; Brunet, Y.; Carrara, A.; Clement, R.; et al. Quality control of CarboEurope flux data—Part I: Footprint analyses to evaluate sites in forest ecosystems. Biogeosci. Discuss. 2007, 4, 4025–4066. [Google Scholar] [CrossRef] [Green Version]
- Mauder, M.; Oncley, S.P.; Vogt, R.; Weidinger, T.; Ribeiro, L.; Bernhofer, C.; Foken, T.; Kohsiek, W.; De Bruin, H.A.R.; Liu, H. The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Bound. Layer Meteorol. 2006, 123, 29–54. [Google Scholar] [CrossRef]
- IPCC. Fourth Assessment Report: Climate Change 2007: Working Group III: Mitigation of Climate Change. 2007. Available online: https://www.ipcc.ch/report/ar4/wg3/ (accessed on 10 May 2021).
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 10 May 2021).
- Foster, C.; Matthew, R. Assessing the energy yield and carbon reduction potential of short rotation coppice fuelwood. In Biomass for Energy, Environment, Agriculture and Industry, Proceedings of the 8th European Biomass Conference, Vienna, Austria, 3–5 October 1994; Pergamon: Vienna, Austria, 1995. [Google Scholar]
- Buwalda, J.G.; Green, T.G.A.; Curtis, J.P. Canopy photosynthesis and respiration of kiwifruit (Actinidia deliciosa var. deliciosa) vines growing in the field. Tree Physiol. 1992, 10, 327–341. [Google Scholar] [CrossRef] [Green Version]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Medici, M.; Canavari, M.; Toselli, M. Interpreting environmental impacts resulting from fruit cultivation in a business innovation perspective. Sustainability 2020, 12, 9793. [Google Scholar] [CrossRef]
- Laing, W.A. Temperature and light response curves for photosynthesis in kiwifruit (Actinidia chinensis) cv. Hayward. N. Z. J. Hortic. Res. 1985, 28, 117–124. [Google Scholar] [CrossRef]
- Morgan, D.C.; Warrington, I.J.; Halligan, E.A. Effect of temperature and photosynthetic photon flux density on vegetative growth of kiwifruit (Actinidia chinensis). N. Z. J. Hortic. Res. 1985, 28, 109–116. [Google Scholar] [CrossRef] [Green Version]
June | July | August | September | October | Total | |
---|---|---|---|---|---|---|
Evapotranspiration (mm3 ha−1) | 1088 | 1247 | 1204 | 892 | 538 | 4969 |
Irrigation (mm3 ha−1) | 657 | 1081 | 1038 | 514 | 201 | 3491 |
Precipitation (mm3 ha−1) | 624 | 144 | 289 | 296 | 318 | 1671 |
Irrigation + Precipitation (mm3 ha−1) | 1281 | 1225 | 1327 | 810 | 519 | 5162 |
NEE (kg CO2 ha−1 Month−1) | GPP (kg CO2 ha−1 Month−1) | ER (kg CO2 ha−1 Month−1) | |
---|---|---|---|
January | 707 | −741 | 1448 |
February | 713 | −1345 | 2058 |
March | 720 | −1950 | 2670 |
April | −80 | −4010 | 3930 |
May | −3330 | −9435 | 6105 |
June | −3740 | −7394 | 3654 |
July | −3628 | −10,875 | 7248 |
August | −3292 | −9182 | 5890 |
September | −2374 | −6919 | 4544 |
October | −1644 | −6026 | 4382 |
November | 870 | −1450 | 2320 |
December | 640 | −830 | 1470 |
Total | −14,438 | −60,157 | 45,719 |
Operation | Unit | Input | kg CO2-Eq Emission |
---|---|---|---|
Orchard establishment | Emission yr−1 | - | 603.76 |
Organic fertilization | Pellet (kg) | 800 | 648.00 |
Mineral fertilization | N (kg) | 67.5 | 633.81 |
Foliar fertilization | Leamix (kg) | 16 | 20.79 |
Weed control | Glyphosate (kg) | 1.08 | 54.73 |
Fertirrigation | Bioenergy (kg) | 10 | 6.38 |
Fertirrigation | Iron Chelate (kg) | 25 | 2.08 |
Fertirrigation | MAP (kg) | 25 | 8.43 |
Fertirrigation | Ammonium Nitrate (kg) | 150 | 433.50 |
Fertirrigation | K Nitrate (kg) | 250 | 119.56 |
Fertilization | N2O emission from soil | - | 722.51 |
Tillage | Mowing (Number) | 4 | 145.67 |
Tillage | Chopping/mulching (N) | 3 | 98.34 |
Transport | Transporting of bins (N) | 80 | 78.59 |
Transport | Moving of materials (N) | 9 | 129.70 |
Total (kg CO2-eq) | 3705.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, F.; Chieco, C.; Virgilio, N.D.; Georgiadis, T.; Nardino, M. Is Agriculture Always a GHG Emitter? A Combination of Eddy Covariance and Life Cycle Assessment Approaches to Calculate C Intake and Uptake in a Kiwifruit Orchard. Sustainability 2021, 13, 6906. https://doi.org/10.3390/su13126906
Rossi F, Chieco C, Virgilio ND, Georgiadis T, Nardino M. Is Agriculture Always a GHG Emitter? A Combination of Eddy Covariance and Life Cycle Assessment Approaches to Calculate C Intake and Uptake in a Kiwifruit Orchard. Sustainability. 2021; 13(12):6906. https://doi.org/10.3390/su13126906
Chicago/Turabian StyleRossi, Federica, Camilla Chieco, Nicola Di Virgilio, Teodoro Georgiadis, and Marianna Nardino. 2021. "Is Agriculture Always a GHG Emitter? A Combination of Eddy Covariance and Life Cycle Assessment Approaches to Calculate C Intake and Uptake in a Kiwifruit Orchard" Sustainability 13, no. 12: 6906. https://doi.org/10.3390/su13126906
APA StyleRossi, F., Chieco, C., Virgilio, N. D., Georgiadis, T., & Nardino, M. (2021). Is Agriculture Always a GHG Emitter? A Combination of Eddy Covariance and Life Cycle Assessment Approaches to Calculate C Intake and Uptake in a Kiwifruit Orchard. Sustainability, 13(12), 6906. https://doi.org/10.3390/su13126906