Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Pretreatment of Castor Biomass
2.2. Preparation of Biochar
2.3. Characterization of CBCs
2.4. Preparation of the Dye Solution
2.5. Experimental Setup Design
2.6. Point of Zero Charge
3. Results and Discussion
3.1. Characterization of CBM and CBCs
3.1.1. BET and Microscopic Analysis
3.1.2. XRD Analysis
3.1.3. FTIR Spectrum
3.2. Effect of pH
3.3. Effect of Contact Time
3.4. Effect of Initial Dye Concentration
3.5. Effect of Adsorbent Dose
3.6. Adsorption Isotherms
3.7. Adsorption Kinetics
3.8. Adsorbent Regeneration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moogi, S.; Nakka, L.; Potharaju, S.S.P.; Ahmed, A.; Farooq, A.; Jung, S.C.; Rhee, G.H.; Park, Y.K. Copper promoted Co/MgO: A stable and efficient catalyst for glycerol steam reforming. Int. J. Hydrogen Energy 2020, 46, 18073–18084. [Google Scholar] [CrossRef]
- Abu Bakar, M.S.; Ahmed, A.; Jeffery, D.M.; Hidayat, S.; Sukri, R.S.; Mahlia, T.M.I.; Jamil, F.; Khurrum, M.S.; Inayat, A.; Moogi, S.; et al. Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production. Bioresour. Technol. 2020, 123913. [Google Scholar] [CrossRef]
- Bordoloi, N.; Dey, M.D.; Mukhopadhyay, R.; Kataki, R. Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover. Water Sci. Technol. 2018, 77, 638–646. [Google Scholar] [CrossRef]
- Khataee, A.; Gholami, P.; Kalderis, D.; Pachatouridou, E.; Konsolakis, M. Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye. Ultrason. Sonochem. 2018, 41, 503–513. [Google Scholar] [CrossRef]
- Yaseen, D.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Attallah, O.; Mamdouh, W. Development and optimization of pectin/chitosan magnetic sponge for efficient cationic dyes removal using Box–Behnken design. Int. J. Environ. Sci. Technol. 2020, 18, 131–140. [Google Scholar] [CrossRef]
- Abdullah, A.; Ahmed, A.; Akhter, P.; Razzaq, A.; Hussain, M.; Hossain, N.; Abu Bakar, M.S.; Khurram, S.; Majeed, K.; Park, Y.K. Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. J. Clean. Prod. 2020, 125047. [Google Scholar] [CrossRef]
- Amin, M.; Alazba, A.; Shafiq, M. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fazal, T.; Mushtaq, A.; Rehman, F.; Khan, A.U.; Rashid, N.; Farooq, W.; Rehman, M.S.U.; Xu, J. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew. Sustain. Rev. 2018, 82, 3107–3126. [Google Scholar] [CrossRef]
- Vijayakumar, G.; Tamilarasan, R.; Dharmendirakumar, M. Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J. Mater. Environ. Sci 2012, 3, 157–170. [Google Scholar]
- Mullerova, S.; Baldikova, E.; Prochazkova, J.; Pospiskova, K.; Safarik, I. Magnetically modified macroalgae Cymopolia barbata biomass as an adsorbent for safranin O removal. Mater. Chem. Phys. 2019, 225, 174–180. [Google Scholar] [CrossRef]
- Berez, A.; Schäfer, G.; Ayari, F.; Trabelsi-Ayadi, M. Adsorptive removal of azo dyes from aqueous solutions by natural bentonite under static and dynamic flow conditions. Int. J. Environ. Sci. Technol. 2016, 13, 1625–1640. [Google Scholar] [CrossRef] [Green Version]
- Namasivayam, C.; Radhika, R.; Suba, S. Uptake of dyes by a promising locally available agricultural solid waste: Coir pith. Waste Manag. 2001, 21, 381–387. [Google Scholar] [CrossRef]
- Namasivayam, C.; Arasi, D. Removal of congo red from wastewater by adsorption onto waste red mud. Chemosphere 1997, 34, 401–417. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Sarma, A. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes Pigments 2003, 57, 211–222. [Google Scholar] [CrossRef]
- Lorenc-Grabowska, E.; Gryglewicz, G. Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigments 2007, 74, 34–40. [Google Scholar] [CrossRef]
- Özcan, A.S.; Özcan, A. Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J. Colloid Interface Sci. 2004, 276, 39–46. [Google Scholar] [CrossRef]
- Ho, Y.-S.; Chiang, T.-H.; Hsueh, Y.-M. Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochem. 2005, 40, 119–124. [Google Scholar] [CrossRef]
- Ho, Y.-S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Ayati, A.; Shahrak, M.N.; Tanhaei, B.; Sillanpää, M. Emerging adsorptive removal of azo dye by metal–organic frameworks. Chemosphere 2016, 160, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Kalinke, C.; Mangrich, A.S.; Marcolino-Junior, L.H.; Bergamini, M.F. Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J. Hazard. Mater. 2016, 318, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Nsami, J.N.; Mbadcam, J.K. The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by ZnCl 2 on Methylene Blue. J. Chem. 2013, 2013, 469170. [Google Scholar]
- Fazal, T.; Faisal, A.; Mushtaq, A.; Hafeez, A.; Javed, F.; Din, A.A.; Rashid, N.; Aslam, M.; Rehman, M.S.U.; Rehman, F. Macroalgae and coal-based biochar as a sustainable bioresource reuse for treatment of textile wastewater. Biomass Convers. Biorefinery 2019, 1–16. [Google Scholar] [CrossRef]
- Huang, Q.; Song, S.; Chen, Z.; Hu, B.; Chen, J.; Wang, X. Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of-the-art review. Biochar 2019, 1, 45–73. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Abu Bakar, M.S.; Hamdani, R.; Park, Y.K.; Lam, S.S.; Sukri, R.S.; Hussain, M.; Majeed, K.; Phusunti, N.; Jamil, F.; et al. Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications. Environ. Res. 2020, 186, 109596. [Google Scholar] [CrossRef] [PubMed]
- Srivatsav, P.; Bhargav, B.S.; Shanmugasundaram, V.; Arun, J.; Gopinath, K.P.; Bhatnagar, A. Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review. Water 2020, 12, 3561. [Google Scholar] [CrossRef]
- Hilioti, Z.; Michailof, C.; Valasiadis, D.; Iliopoulou, E.; Koidou, V.; Lappas, A. Characterization of castor plant-derived biochars and their effects as soil amendments on seedlings. Biomass Bioenergy 2017, 105, 96–106. [Google Scholar] [CrossRef]
- Makeswari, M.; Santhi, T. Use of Ricinus communis leaves as a low-cost adsorbent for removal of Cu(II) ions from aqueous solution. Res. Chem. Intermed. 2014, 40, 1157–1177. [Google Scholar] [CrossRef]
- Boakye, P.; Tran, H.N.; Lee, D.S.; Woo, S.H. Effect of water washing pretreatment on property and adsorption capacity of macroalgae-derived biochar. J. Environ. Manag. 2019, 233, 165–174. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Munir, M.; Ashfaq, M.; Rashid, N.; Nazar, M.F.; Danish, M.; Han, J.-I. Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 2013, 228, 54–62. [Google Scholar] [CrossRef]
- Molla Mahmoudi, M.; Nadali, A.; Soheil Arezoomand, H.R.; Mahvi, A.H. Adsorption of cationic dye textile wastewater using Clinoptilolite: Isotherm and kinetic study. J. Text. Inst. 2019, 110, 74–80. [Google Scholar] [CrossRef]
- Zazycki, M.A.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 2018, 171, 57–65. [Google Scholar] [CrossRef]
- Geethakarthi, A.; Phanikumar, B. Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies. Int. J. Environ. Sci. Technol. 2011, 8, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, H.; Wang, X.; Zhang, S.; Chen, H. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresour. Technol. 2012, 107, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Kaal, J.; Cortizas, A.M.; Reyes, O.; Soliño, M. Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments–A pyrolysis–GC/MS study. J. Anal. Appl. Pyrolysis 2012, 95, 205–212. [Google Scholar] [CrossRef]
- Oudemans, T.; Boon, J.; Botto, R. FTIR and solid-state 13C CP/MAS NMR spectroscopy of charred and non-charred solid organic residues preserved in Roman Iron Age vessels from the Netherlands. Archaeometry 2007, 49, 294–571. [Google Scholar] [CrossRef]
- Nandi, B.K.; Goswami, A.; Purkait, M.K. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 2009, 161, 387–395. [Google Scholar] [CrossRef]
- Thitame, P.; Shukla, S. Adsorptive removal of reactive dyes from aqueous solution using activated carbon synthesized from waste biomass materials. Int. J. Environ. Sci. Technol. 2016, 13, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Basaleh, A.A.; Al-Malack, M.H.; Saleh, T.A. Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. J. Environ. Chem. Eng. 2019, 7, 103107. [Google Scholar] [CrossRef]
- Darwish, A.; Rashad, M.; AL-Aoh, H.A. Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes Pigments 2019, 160, 563–571. [Google Scholar] [CrossRef]
- Mane, V.S.; Babu, P.V. Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination 2011, 273, 321–329. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B. Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue. J. Ind. Eng. Chem. 2013, 19, 1153–1161. [Google Scholar] [CrossRef]
- Aroguz, A.Z.; Gulen, J.; Evers, R. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresour. Technol. 2008, 99, 1503–1508. [Google Scholar] [CrossRef]
- Nethaji, S.; Sivasamy, A.; Mandal, A. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int. J. Environ. Sci. Technol. 2013, 10, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Shojaei, N.; Aminsharei, F.; Ahangar, H.A. Application of hydrophobic polymers as solidifiers for oil spill cleanup. Int. J. Environ. Sci. Technol. 2020, 18, 1419–1424. [Google Scholar] [CrossRef]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.-H.; Indraswati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, X.; Wu, Y.; Liu, T. Kinetic mechanism of competitive adsorption of disperse dye and anionic dye on fly ash. Int. J. Environ. Sci. Technol. 2013, 10, 799–808. [Google Scholar] [CrossRef] [Green Version]
Adsorbent | Pore Size | Pore Volume | Surface Area |
---|---|---|---|
Unit | nm | cc/g | m²/g |
CBM | 1.12 | 0.021 | 11.51 |
CBC400 | 2.56 | 0.024 | 31.65 |
CBC500 | 3.49 | 0.049 | 46.32 |
CBC600 | 8.26 | 0.111 | 58.94 |
Model | Parameters | CBM | CBC400 | CBC500 | CBC600 |
---|---|---|---|---|---|
Langmuir | qmax(mg/g) | 5.38 | 9.57 | 13.4 | 17.1 |
KL (L/mg) | 0.0454 | 0.025 | 0.018 | 0.0143 | |
RL | 0.18 | 0.28 | 0.354 | 0.411 | |
R2 | 0.998 | 0.9902 | 0.9903 | 0.9905 | |
Freundlich | KF(mg/g) | 4.71 | 3.81 | 3.46 | 4.95 |
n | 2.363 | 3.1787 | 4.0289 | 6.9351 | |
R2 | 0.9265 | 0.9625 | 0.9642 | 0.8844 |
Model | Parameters | CBM | CBC400 | CBC500 | CBC600 |
---|---|---|---|---|---|
Pseudo-first-order model | k1 | 0.022 | 0.025 | 0.012 | 0.022 |
qe | 4.21 | 4.98 | 1.8 | 1.98 | |
R2 | 0.936 | 0.9621 | 0.9861 | 0.9708 | |
Pseudo-second-order model | k2 | 1.19 | 4.35 | 9.69 | 23.1 |
qe | 3.79 | 4.57 | 4.66 | 5.08 | |
R2 | 0.9624 | 0.9902 | 0.9972 | 0.9991 | |
Intra-particle diffusion model | kPi | 0.23 | 2.14 | 1.90 | 1.7 |
C | 0.011 | 0.439 | 1.132 | 1.768 | |
R2 | 0.9839 | 0.9436 | 0.8508 | 0.7394 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleman, M.; Zafar, M.; Ahmed, A.; Rashid, M.U.; Hussain, S.; Razzaq, A.; Mohidem, N.A.; Fazal, T.; Haider, B.; Park, Y.-K. Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater. Sustainability 2021, 13, 6926. https://doi.org/10.3390/su13126926
Suleman M, Zafar M, Ahmed A, Rashid MU, Hussain S, Razzaq A, Mohidem NA, Fazal T, Haider B, Park Y-K. Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater. Sustainability. 2021; 13(12):6926. https://doi.org/10.3390/su13126926
Chicago/Turabian StyleSuleman, Muhammad, Muhammad Zafar, Ashfaq Ahmed, Muhammad Usman Rashid, Sadiq Hussain, Abdul Razzaq, Nur Atikah Mohidem, Tahir Fazal, Bilal Haider, and Young-Kwon Park. 2021. "Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater" Sustainability 13, no. 12: 6926. https://doi.org/10.3390/su13126926
APA StyleSuleman, M., Zafar, M., Ahmed, A., Rashid, M. U., Hussain, S., Razzaq, A., Mohidem, N. A., Fazal, T., Haider, B., & Park, Y. -K. (2021). Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater. Sustainability, 13(12), 6926. https://doi.org/10.3390/su13126926