Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace
Abstract
:1. Introduction
2. Research Methods and Data Collection
2.1. Research Methods
2.2. Data Collection
3. Visualization Results
4. Reference Visualization
- (1)
- Specific machine learning approaches, especially the random forest, deep learning, and extreme learning. These new approaches are now leading a hot research trend in agricultural applications.
- (2)
- Sustainable agricultural development. How to address food shortages and how to solve intensive agricultural problems are becoming increasingly more significant for humans to survive well with limited resources.
- (3)
- Remote sensing. Remote sensing technology is now widely used in agricultural management, especially in the agricultural Internet of Things and precise agriculture.
- (4)
- Water resources. As the fundamental factor of agricultural operations, water resources are very important for crop yields and plant quality. Further research on water could greatly improve and push the progress.
5. Contributing Authors Analysis
6. Country and Institution Distribution
7. Cited Journals
8. Popular Topics and Emerging Trends
9. Category Network Visualization
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision Agriculture using IoT Data Analytics and Machine Learning. J. King Saud Univ. Comput. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Priya, R.; Ramesh, D. ML based sustainable precision agriculture: A future generation perspective. Sustain. Comput. Inform. Syst. 2020, 28, 100439. [Google Scholar]
- Khanal, S.; Klopfenstein, A.; Kushal, K.C.; Ramarao, V.; Fulton, J.; Douridas, N.; Shearer, S.A. Assessing the impact of agricultural field traffic on corn grain yield using remote sensing and machine learning. Soil Tillage Res. 2021, 208, 104880. [Google Scholar] [CrossRef]
- Cunha, R.L.; Silva, B.; Netto, M.A. A scalable machine learning system for pre-season agriculture yield forecast. In Proceedings of the 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands, 29 October–1 November 2018; pp. 423–430. [Google Scholar]
- Duarte-Carvajalino, J.M.; Alzate, D.F.; Ramirez, A.A.; Santa-Sepulveda, J.D.; Fajardo-Rojas, A.E.; Soto-Suárez, M. Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sens. 2018, 10, 1513. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Sun, L.; Zhou, Y.; Ruan, J. Review of operational management in intelligent agriculture based on the Internet of Things. Front. Eng. Manag. 2020, 7, 309–322. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A Systematic Literature Review on Machine Learning Applications for Sustainable Agriculture Supply Chain Performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef] [PubMed]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.C.; Chen, C.; Tsai, X.T. Visualizing the knowledge domain of nanoparticle drug delivery technologies: A scientometric review. Appl. Sci. 2016, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu. Symp. Proc. AMIA Symp. 2005, 2005, 724–728. [Google Scholar]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.M.; Liu, Z.Y.; Hu, Z.G.; Wang, X.W. The methodology function of Cite Space mapping knowledge domains. Stud. Sci. Sci. 2015, 33, 242–253. [Google Scholar]
- Berner, L.T.; Beck, P.S.A.; Loranty, M.M.; Alexander, H.D.; Mack, M.C.; Goetz, S.J. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences 2012, 9, 3943–3959. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.; Jiang, H.; Zhu, C.; Hu, X.; Shi, Y.; Liu, T.; Rao, W.; Chan, F.T.S. Agriculture IoT: Emerging Trends, Cooperation Networks, and Outlook. IEEE Wirel. Commun. 2019, 26, 56–63. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote. Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Tabari, H.; Kisi, O.; Ezani, A.; Talaee, P.H. SVM, ANFIS, regression and climate based models for reference evapo-transpiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol. 2012, 444, 78–89. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Malek, M.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme Learning Machines: A new approach for prediction of reference evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition. Geoderma 2018, 330, 136–161. [Google Scholar] [CrossRef]
- Ali, M.; Deo, R.C.; Downs, N.J.; Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 2018, 213, 450–464. [Google Scholar] [CrossRef]
- Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M. Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: Wavelet extreme learning machine vs wavelet neural networks. Agric. For. Meteorol. 2018, 263, 41–48. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Parameter tuning in the support vector machine and random forest and their performances in cross-and same-year crop classification using TerraSAR-X. Int. J. Remote Sens. 2014, 35, 7898–7909. [Google Scholar] [CrossRef] [Green Version]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.-I. Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GISci. Remote Sens. 2017, 54, 918–938. [Google Scholar] [CrossRef]
- Biro, K.; Pradhan, B.; Buchroithner, M.; Makeschin, F. Land Use/Land Cover Change Analysis and Its Impact on Soil Properties in the Northern Part of Gadarif Region, Sudan. Land Degrad. Dev. 2011, 24, 90–102. [Google Scholar] [CrossRef]
- Neshat, A.; Pradhan, B.; Pirasteh, S.; Shafri, H.Z.M. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ. Earth Sci. 2013, 71, 3119–3131. [Google Scholar] [CrossRef]
- Pradhan, B.; Chaudhari, A.; Adinarayana, J.; Buchroithner, M.F. Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia. Environ. Monit. Assess. 2011, 184, 715–727. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Cui, N.; Du, T.; Kang, S.; Li, F.; Zhang, J.; Wang, M.; Li, Z. Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees. Agric. Water Manag. 2008, 95, 489–497. [Google Scholar] [CrossRef]
- Tang, D.; Feng, Y.; Gong, D.; Hao, W.; Cui, N. Evaluation of artificial intelligence models for actual crop evapo-transpiration modeling in mulched and non-mulched maize croplands. Comput. Electron. Agric. 2018, 152, 375–384. [Google Scholar] [CrossRef]
- Bhavsar, H.; Ganatra, A. A comparative study of training algorithms for supervised machine learning. Int. J. Soft Comput. Eng. (IJSCE) 2012, 2, 2231–2307. [Google Scholar]
Source | Web of Science Core Collection |
---|---|
Citation | SCI-EXPANDED, SSCI, CCR-EXPANDED, IC |
Search steps | #1 = (TS = ((machine learning AND agricultur* manag*) OR (neural network AND agricultur* manag*) OR (bayes AND agricultur* manag*))) AND language: (English) #2 = (TS = ((machine learning AND agricultur* manag* AND IOT) OR (machine learning AND agricultur* manag* AND Internet of Things) OR (neural network AND agricultur* manag* AND IOT) OR (neural network AND agricultur* manag* AND Internet of Things) OR (bayes AND agricultur* manag* AND IOT) OR (bayes AND agricultur* manag* AND Internet of Things))) AND language: (English) #3 = (TS = ((supervis* learn* AND agricultur* manag*) OR (reinforc* AND agricultur* manag*) OR (decision tree AND agricultur* manag*) OR (algorith* AND agricultur* manag*) OR (boost* AND agricultur* manag*) OR (deep learning AND agricultur* manag*))) AND language: (English) #4 = #3 OR #2 OR #1 |
Time span | 2000–2020 |
Qualified Records | 1950 |
References | 88,984 |
Country | Frequency | Country | Frequency |
---|---|---|---|
USA | 467 | Iran | 131 |
China | 274 | Germany | 119 |
Australia | 187 | Italy | 102 |
Spain | 144 | France | 100 |
England | 133 | India | 100 |
Abbreviated Institution Name | Full Name of Institutions | Number of Publications | Affiliated Country |
---|---|---|---|
Chinese Acad Sci | Chinese Academy of Sciences | 50 | China |
Univ Tehran | University of Tehran | 27 | Iran |
Wageningen Univ | Wageningen University and Research | 24 | The Netherlands |
China Agr Univ | China Agricultural University | 23 | China |
INRA | Inland Northwest Research Alliance | 22 | France |
Univ Tabriz | University of Tabriz | 22 | Iran |
Univ Calif Davis | University of California, Davis | 21 | America |
USDA ARS | United States Department of Agriculture Research Institute | 20 | America |
Northwest A&F Univ | Northwest Agriculture and Forest University | 20 | China |
Univ Wisconsin | University of Wisconsin | 19 | America |
Univ Southern Queensland | University of Southern Queensland | 17 | Australia |
SCIC | Saskatchewan Crop Insurance Corporation | 16 | Canada |
Agr & Agri Food Canada | Agriculture and Agri-Food Canada | 16 | Australia |
Ton Duc Thang Univ | Ton Duc Thang University | 15 | Vietnam |
McGill Univ | McGill University | 15 | Canada |
Univ Nebraska | University of Nebraska | 14 | America |
CSIRO | Commonwealth Scientific and Industrial Research Organization | 14 | Australia |
Abbreviated Journal Name | Full Journal Name | Frequency |
---|---|---|
AGR ECOSYST ENVIRON | Agriculture Ecosystems & Environment | 508 |
SCIENCE | Science | 463 |
NATURE | Nature | 426 |
J HYDROL | Journal of Hydrology | 413 |
COMPUT ELECTRON AGR | Computers and Electronics in Agriculture | 391 |
P NATL ACAD SCI USA | Proceedings of the National Academy | 354 |
PLOS ONE | Plos One | 350 |
REMOTE SENS ENVIRON | Remote Sensing of Environment | 348 |
J ENVIRON MANAGE | Journal of Environmental Management | 310 |
SCI TOTAL ENVIRON | Science of The Total Environment | 305 |
INT J REMOTE SENS | International Journal of Remote Sensing | 302 |
AGR SYST | Agricultural System | 301 |
AGR WATER MANAGE | Agricultural Water Management | 300 |
ECOL MODEL | Ecological Modelling | 284 |
WATER RESOUR RES | Water Resources Research | 281 |
Keyword | Year | Frequency |
---|---|---|
Management | 2000 | 367 |
Agriculture | 2000 | 224 |
Model | 2004 | 190 |
Artificial neural network | 2000 | 185 |
System | 2007 | 160 |
Neural network | 2000 | 156 |
Classification | 2000 | 148 |
Prediction | 2006 | 140 |
Biodiversity | 2003 | 135 |
Climate change | 2004 | 135 |
Impact | 2005 | 128 |
Land use | 2001 | 126 |
Conservation | 2003 | 117 |
Machine learning | 2013 | 104 |
Water | 2009 | 85 |
Random forest | 2014 | 72 |
Ecosystem service | 2012 | 69 |
Precision agriculture | 2009 | 68 |
Yield | 2008 | 66 |
Forest | 2005 | 65 |
Vegetation | 2008 | 65 |
Remote sensing | 2008 | 64 |
Performance | 2008 | 63 |
Diversity | 2005 | 60 |
Nitrogen | 2005 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, J.; Chen, Y.; Feng, X.; Sun, Z. Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace. Sustainability 2021, 13, 7662. https://doi.org/10.3390/su13147662
Zhang J, Liu J, Chen Y, Feng X, Sun Z. Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace. Sustainability. 2021; 13(14):7662. https://doi.org/10.3390/su13147662
Chicago/Turabian StyleZhang, Jingyi, Jiaxin Liu, Yaqi Chen, Xiaochun Feng, and Zilai Sun. 2021. "Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace" Sustainability 13, no. 14: 7662. https://doi.org/10.3390/su13147662
APA StyleZhang, J., Liu, J., Chen, Y., Feng, X., & Sun, Z. (2021). Knowledge Mapping of Machine Learning Approaches Applied in Agricultural Management—A Scientometric Review with CiteSpace. Sustainability, 13(14), 7662. https://doi.org/10.3390/su13147662