Solar Thermochemical Hydrogen Production in the USA
Abstract
:1. Introduction
2. The Solar Thermochemical Pathway
3. Methodology
3.1. Techno-Economic Assessment
3.2. Life Cycle Assessment
3.3. Geographical Potential
4. Results
4.1. Techno-Economic Assessment
4.1.1. Investment Costs of the Baseline Case Plant
4.1.2. Operation and Maintenance Costs of the Baseline Case Plant
4.1.3. Production Costs
4.1.4. Sensitivity of Production Costs with Respect to Solar Radiation, Reactor Efficiency and Distance to the Sea
4.2. Life Cycle Emissions
4.3. Geographical Potential
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNFCCC. Adoption of the Paris Agreement; UNFCCC: Geneva, Switzerland, 2015. [Google Scholar]
- European Commission. A Clean Planet for All. A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Ministry of Economy, Trade and Industry, Basic Hydrogen Strategy Determined. 2017. Available online: https://www.meti.go.jp/english/press/2017/1226_003.html (accessed on 11 July 2021).
- German Government. The National Hydrogen Strategy Germany. 2020. Available online: https://www.cleanenergywire.org/factsheets/germanys-national-hydrogen-strategy (accessed on 11 July 2021).
- IEA. The Future of Hydrogen; IEA: Paris, France, 2019. [Google Scholar]
- Shell, and Wuppertal Institute. Shell Hydrogen Study: Energy of the Future? 2016. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/6786/file/6786_Hydrogen_Study.pdf (accessed on 11 July 2021).
- Fletcher, E.A.; Moen, R.L. Hydrogen- and Oxygen from Water. Science 1977, 197, 1050–1056. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Steinfeld, A. Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production. Energy Fuels 2012, 26, 1928–1936. [Google Scholar] [CrossRef]
- Hinkley, J.; Hayward, J.; Mcnaughton, R.; Gillespie, R.; Watt, M.; Lovegrove, K. Cost Assessment of Hydrogen Production from PV and Electrolysis, CSIRO ENERGY, Project A-3018. 2016. Available online: https://arena.gov.au/assets/2016/05/Assessment-of-the-cost-of-hydrogen-from-PV.pdf (accessed on 11 July 2021).
- Eichman, J.; Koleva, M.; Guerra, O.J.; Mclaughlin, B.; Eichman, J.; Koleva, M.; Guerra, O.J. Optimizing an Integrated Renewable-Electrolysis System Optimizing an Integrated Renewable—Electrolysis System. 2020. Available online: https://www.nrel.gov/docs/fy20osti/75635.pdf (accessed on 11 July 2021).
- Wasserstoff, Hydrogen Study 2020—Umlaut. 2020. Available online: https://www.umlaut.com/de/stories/wasserstoff-studie-2020 (accessed on 11 July 2021).
- Hydrogen Council. Path to Hydrogen Competitiveness: A Cost Perspective. 2020. Available online: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf (accessed on 11 July 2021).
- Chapman, A.J.; Fraser, T.; Itaoka, K. Hydrogen Import Pathway Comparison Framework Incorporating Cost and Social Preference: Case Studies from Australia to Japan. Int. J. Energy Res. 2017, 41, 2374–2391. [Google Scholar] [CrossRef]
- Parkinson, B.; Balcombe, P.; Speirs, J.F.; Hawkes, A.D.; Hellgardt, K. Levelized Cost of CO2 Mitigation from Hydrogen Production Routes. Energy Environ. Sci. 2019, 12, 19–40. [Google Scholar] [CrossRef]
- Shaner, M.R.; Atwater, H.A.; Lewis, N.S.; McFarland, E.W. A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy. Energy Environ. Sci. 2016, 9, 2354–2371. [Google Scholar] [CrossRef] [Green Version]
- Stokes, J.; Horvath, A. Life Cycle Energy Assessment of Alternative Water Supply Systems (9 pp). Int. J. Life Cycle Assess. 2005, 11, 335–343. [Google Scholar] [CrossRef]
- Wulf, C.; Reuß, M.; Grube, T.; Zapp, P.; Robinius, M.; Hake, J.F.; Stolten, D. Life Cycle Assessment of Hydrogen Transport and Distribution Options. J. Clean. Prod. 2018, 199, 431–443. [Google Scholar] [CrossRef]
- Bareiß, K.; de la Rua, C.; Möckl, M.; Hamacher, T. Life Cycle Assessment of Hydrogen from Proton Exchange Membrane Water Electrolysis in Future Energy Systems. Appl. Energy 2019, 237, 862–872. [Google Scholar] [CrossRef]
- Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T.A. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios; NREL/TP-6A10-60528. 2013. Available online: https://www.nrel.gov/docs/fy14osti/60528.pdf (accessed on 11 July 2021).
- Nexant. Final Report—Hydrogen Delivery Infrastructure Options Analysis Models; Office of Energy Efficiency & Renewable Energy: Washington, DC, USA, 2008.
- Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D. Seasonal Storage and Alternative Carriers: A Flexible Hydrogen Supply Chain Model. Appl. Energy 2017, 200, 290–302. [Google Scholar] [CrossRef]
- Graf, D.; Monnerie, N.; Roeb, M.; Schmitz, M.; Sattler, C. Economic Comparison of Solar Hydrogen Generation by Means of Thermochemical Cycles and Electrolysis. Int. J. Hydrogen Energy 2008, 33, 4511–4519. [Google Scholar] [CrossRef]
- Nicodemus, J.H. Technological Learning and the Future of Solar H2: A Component Learning Comparison of Solar Thermochemical Cycles and Electrolysis with Solar PV. Energy Policy 2018, 120, 100–109. [Google Scholar] [CrossRef]
- Falter, C.; Batteiger, V.; Sizmann, A. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production. Environ. Sci. Technol. 2016, 50, 470–477. [Google Scholar] [CrossRef]
- Falter, C.; Valente, A.; Habersetzer, A.; Iribarren, D.; Dufour, J. An Integrated Techno-Economic, Environmental and Social Assessment of the Solar Thermochemical Fuel Pathway. Sustain. Energy Fuels 2020, 4, 3992–4002. [Google Scholar] [CrossRef]
- Falter, C.; Scharfenberg, N.; Habersetzer, A. Geographical Potential of Solar Thermochemical Jet Fuel Production. Energies 2020, 13, 802. [Google Scholar] [CrossRef] [Green Version]
- Chueh, W.C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S.M.; Steinfeld, A. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science 2010, 330, 1797–1801. [Google Scholar] [CrossRef] [Green Version]
- Furler, P.; Scheffe, J.; Gorbar, M.; Moes, L.; Vogt, U.; Steinfeld, A. Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System. Energy Fuels 2012, 26, 7051–7059. [Google Scholar] [CrossRef]
- Marxer, D.; Furler, P.; Takacs, M.; Steinfeld, A. Solar Thermochemical Splitting of CO2 into Separate Streams of CO and O2 with High Selectivity, Stability, Conversion, and Efficiency. Energy Environ. Sci. 2017, 10, 1142–1149. [Google Scholar] [CrossRef] [Green Version]
- Stechel, E.B.; Miller, J.E. Re-Energizing CO2 to Fuels with the Sun: Issues of Efficiency, Scale, and Economics. J. CO2 Util. 2013, 1, 28–36. [Google Scholar] [CrossRef]
- Hoes, M.; Ackermann, S.; Theiler, D.; Furler, P.; Steinfeld, A. Additive-Manufactured Ordered Porous Structures Made of Ceria for Concentrating Solar Applications. Energy Technol. 2019, 1900484, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Scheffe, J.R.; Steinfeld, A. Oxygen Exchange Materials for Solar Thermochemical Splitting of H2O and CO2: A Review. Mater. Today 2014, 17, 341–348. [Google Scholar] [CrossRef]
- Geissbühler, L. Thermocline Thermal Energy Storage: Advances and Applications to CSP, Compressed Air Energy Storage, and Solar Fuels. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2019. [Google Scholar]
- Chueh, W.C.; Haile, S.M. A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 3269–3294. [Google Scholar] [CrossRef] [Green Version]
- Ezbiri, M.; Allen, K.M.; Gàlvez, M.E.; Michalsky, R.; Steinfeld, A. Design Principles of Perovskites for Thermochemical Oxygen Separation. ChemSusChem 2015, 8, 1966–1971. [Google Scholar] [CrossRef] [Green Version]
- Demont, A.; Abanades, S.; Beche, E. Investigation of Perovskite Structures as Oxygen-Exchange Redox Materials for Hydrogen Production from Thermochemical Two-Step Water-Splitting Cycles. J. Phys. Chem. C 2014, 118, 12682–12692. [Google Scholar] [CrossRef]
- McDaniel, A.H.; Miller, E.C.; Arifin, D.; Ambrosini, A.; Coker, E.N.; O’Hayre, R.; Chueh, W.C.; Tong, J. Sr- and Mn-Doped LaAlO3−δ for Solar Thermochemical H2 and CO Production. Energy Environ. Sci. 2013, 6, 2424. [Google Scholar] [CrossRef]
- Ezbiri, M.; Becattini, V.; Hoes, M.; Michalsky, R.; Steinfeld, A. High Redox Capacity of Al-Doped La1−xSrxMnO3−δ Perovskites for Splitting CO2 and H2O at Mn-Enriched Surfaces. ChemSusChem 2017, 10, 1517–1525. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Weibel, D.; Steinfeld, A. Lanthanum-Strontium-Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2. Energy Fuels 2013, 27, 4250–4257. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Caldera, U.; Bogdanov, D.; Breyer, C. Local Cost of Seawater RO Desalination Based on Solar PV and Wind Energy: A Global Estimate. Desalination 2016, 385, 207–216. [Google Scholar] [CrossRef]
- Whitaker, M.B.; Heath, G.A.; Burkhardt, J.J.; Turchi, C.S. Life Cycle Assessment of a Power Tower Concentrating Solar Plant and the Impacts of Key Design Alternatives. Environ. Sci. Technol. 2013, 47, 5896–5903. [Google Scholar] [CrossRef]
- Sargent&Lundy. Assessment of Parabolic Trough and Power Tower Solar Technology; SL-5641; Sargent&Lundy: Chicago, IL, USA, 2003. [Google Scholar]
- LAZARD. Levelized Cost of Energy and Levelized Cost of Storage. 2020. Available online: https://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-of-storage-2020/ (accessed on 1 March 2021).
- IRENA. Renewable Energy Generation Costs in 2019; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Short, W.; Packey, D.J.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; NREL/TP-462-5173. 1995. Available online: https://www.nrel.gov/docs/legosti/old/5173.pdf (accessed on 11 July 2021).
- SunShot U.S. Department of Energy. SunShot Vision Study; National Renewable Energy Lab (NREL): Golden, CO, USA, 2012.
- International Monetary Fund. Lending Rates, Percent per Annum. 2018. Available online: https://data.imf.org/regular.aspx?key=61545867 (accessed on 3 July 2019).
- Trading Economics. Government Bond Yields. 2018. Available online: https://tradingeconomics.com/bonds (accessed on 2 August 2019).
- World Government Bonds. 10 Year Bond Yields. 2018. Available online: http://www.worldgovernmentbonds.com/ (accessed on 8 October 2019).
- Damodoran, A. Estimated Country Risk Premiums. 2018. Available online: http://pages.stern.nyu.edu/~adamodar/ (accessed on 3 July 2019).
- Worldbank. Inflation, Consumer Prices (Annual %). Available online: https://datacatalog.worldbank.org/inflation-consumer-prices-annual-0 (accessed on 25 February 2021).
- Thinkstep, A.G. GaBi Software-System and Database for Life Cycle Engineering. Available online: https://www.researchgate.net/figure/2-Software-for-LCA-The-thinkstep-GaBi-software-System-and-Database-for-Life-Cycle_fig4_331564116 (accessed on 25 February 2021).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 2, 1218–1230. [Google Scholar] [CrossRef]
- Horizon 2020-Project SUN-to-LIQUID. Grant Agreement Number 654408. Available online: https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-energy/alternative-fuels/sun-to-liquid (accessed on 11 July 2021).
- Macrotrends. Euro Dollar Exchange Rate (EUR USD)—Historical Chart. Available online: https://www.macrotrends.net/2548/euro-dollar-exchange-rate-historical-chart (accessed on 25 February 2021).
- U.S. DOE. The SunShot 2030 Goals. 2017. Available online: https://www.energy.gov/sites/prod/files/2020/09/f79/SunShot%202030%20White%20Paper.pdf (accessed on 11 July 2021).
- Mancini, T.R.; Gary, J.A.; Kolb, G.J.; Ho, C.K. Power Tower Technology Roadmap and Cost Reduction Plan; OSTI.GOV: Oak Ridge, TN, USA, 2011.
- Costs of Ceria. 2019. Available online: https://www.statista.com/statistics/450146/global-reo-cerium-oxide-price-forecast/ (accessed on 1 March 2021).
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers. 2003. Available online: http://repository.um-palembang.ac.id/id/eprint/9024/1/Plant%20Design%20and%20Economics%20for%20Chemical%20Engineers%20%28%20PDFDrive.com%20%29.pdf (accessed on 11 July 2021).
- Smith, C.E. Crude Oil Pipeline Growth, Revenues Surge; Construction Costs Mount. Oil Gas J. 2014, 112, 114–125. [Google Scholar]
- Brendelberger, S.; von Storch, H.; Bulfin, B.; Sattler, C. Vacuum Pumping Options for Application in Solar Thermochemical Redox Cycles—Assessment of Mechanical-, Jet- and Thermochemical Pumping Systems. Sol. Energy 2017, 141, 91–102. [Google Scholar] [CrossRef]
- James, B.D.; Houchins, C.; Huya-Kouadio, J.M.; Desantis, D.A. Final Report: Hydrogen Storage System Cost Analysis 2016. Available online: https://www.osti.gov/servlets/purl/1343975 (accessed on 11 July 2021).
- Fichtner. Assessment of Technology Options for Development of Concentrating Solar Power in South Africa. Presentation. 2010. Available online: https://www.climateinvestmentfunds.org/sites/cif_enc/files/Presentation%20-%20WB%20(Eskom)%20Project%20-%202010_12_07%20.pdf (accessed on 11 July 2021).
- IRENA; Wallasch, A.-K.; Lüers, S.; Vidican, G.; Breitschopf, B.; Richter, A.; Kuntze, J.-C.; Noll, J. The Socio-Economic Benefits of Solar and Wind Energy; IRENA: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- Sooriyaarachchi, T.M.; Tsai, I.T.; El Khatib, S.; Farid, A.M.; Mezher, T. Job Creation Potentials and Skill Requirements in, PV, CSP, Wind, Water-to-Energy and Energy Efficiency Value Chains. Renew. Sustain. Energy Rev. 2015, 52, 653–668. [Google Scholar] [CrossRef]
- IRENA. IRENA Worling Paper Renewable Energy Jobs: Status, Prospects & Policies. 2011. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/Renewable_Energy_Jobs_abstract.pdf?la=en&hash=11362A41C4805408223A4556FDA29E0235C7264C (accessed on 11 July 2021).
- Applied Analysis. Large-Scale Solar Industry; Economic and Fiscal Impact Analysis: Las Vegas, NV, USA, 2009. [Google Scholar]
- Gazzo, A.; Gousseland, P.; Verdier, J.; Kost, C.; Morin, G.; Engelken, M.; Schrof, J.; Nitz, P.; Selt, J.; Platzer, W.; et al. Middle East and North Africa Region Assessment of the Local Manufacturing Potential for Concentrated Solar Power (CSP) Projects; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Valente, A.; Iribarren, D.; Dufour, J. Harmonised Life-Cycle Global Warming Impact of Renewable Hydrogen. J. Clean. Prod. 2017, 149, 762–772. [Google Scholar] [CrossRef]
- Royal Society of Chemistry. Hydrogen. Available online: https://www.rsc.org/periodic-table/element/1/hydrogen (accessed on 1 October 2020).
- IRENA. Hydrogen: A Renewable Energy Perspective; IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Hydrogen Council. Hydrogen Scaling up. 2017. Available online: https://hydrogencouncil.com/en/study-hydrogen-scaling-up/ (accessed on 11 July 2021).
- Yang, C.; Ogden, J. Determining the Lowest-Cost Hydrogen Delivery Mode. Int. J. Hydrogen Energy 2007, 32, 268–286. [Google Scholar] [CrossRef] [Green Version]
- Connelly, E.; Penev, M.; Elgowainy, A.; Hunter, C. Current Status of Hydrogen Liquefaction Costs. 2019. Available online: https://www.hydrogen.energy.gov/pdfs/19001_hydrogen_liquefaction_costs.pdf (accessed on 11 July 2021).
- Baronas, J.; Achtelik, G. Joint Agency Staff Report on Assembly Bill 8: Assessment of Time and Cost Needed to Attain 100 Hydrogen Refueling Stations in California; California Energy Commission: Sacramento, CA, USA, 2015.
Subsystem | Investment Costs [106 €] | O&M Costs [106 €/y] |
---|---|---|
Heliostats | 308 | 12.3 |
Thermochemical reactors | 117 | 0.729 |
H2 storage | 98.1 | 2.94 |
Solar tower | 63.5 | - |
Water pipeline | 59.8 | 2.99 |
Vacuum pumps | 52.6 | 1.58 |
Buildings | 10.0 | - |
Seawater desalination | 1.58 | 0.148 |
Water pump and storage | 0.766 | 0.015 |
Labor | - | 18.4 |
Electricity | - | 2.51 |
Total | 710 | 41.6 |
GHG Emissions of Subsystem | [kgCO2-eq. kg−1 H2] |
---|---|
Solar concentration | 0.85 |
Thermochemical conversion | 0.25 |
Electricity | 0.12 |
Seawater desalination | 0.11 |
Other | 0.06 |
Pipeline transport water | 0.05 |
Total GHG emissions | 1.44 |
GHG emissions of H2 from NG reforming | 12.95 a |
GHG emissions relative to conventional fuel | 11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falter, C.; Sizmann, A. Solar Thermochemical Hydrogen Production in the USA. Sustainability 2021, 13, 7804. https://doi.org/10.3390/su13147804
Falter C, Sizmann A. Solar Thermochemical Hydrogen Production in the USA. Sustainability. 2021; 13(14):7804. https://doi.org/10.3390/su13147804
Chicago/Turabian StyleFalter, Christoph, and Andreas Sizmann. 2021. "Solar Thermochemical Hydrogen Production in the USA" Sustainability 13, no. 14: 7804. https://doi.org/10.3390/su13147804
APA StyleFalter, C., & Sizmann, A. (2021). Solar Thermochemical Hydrogen Production in the USA. Sustainability, 13(14), 7804. https://doi.org/10.3390/su13147804