Statistical Assessment of the Effects of Grain-Structure Representation and Micro-Properties on the Behavior of Bonded Block Models for Brittle Rock Damage Prediction
Abstract
:1. Introduction
2. The Wausau Granite
3. Modeling Strategy and Methods
3.1. BBM Generation Approach
3.2. BBM Configuration
3.3. Constitutive Behavior of Intact Rock and Micro-Property Assignment
4. Numerical Simulation
4.1. Numerical Test Setup
4.2. Evaluation of Micro-Properties for Predictive Modeling Purposes
Discussion on the Capabilities of Published Micro-Properties for Prediction Purposes
4.3. Effect of Mineral Arrangement and Voronoi Grain-Structures
4.4. Effect of Grain Shape
4.5. Effect of Grain Size
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieniawski, Z.T. Mechanism of Brittle Fracture of Rock: Part I—Theory of the Fracture Process. Int. J. Rock Mech. Min. Sci. 1967, 4, 395–404. [Google Scholar] [CrossRef]
- Wawersik, W.R.; Fairhurst, C. A Study of Brittle Rock Fracture in Laboratory Compression Experiments. Int. J. Rock Mech. Min. Sci. Geomech. 1970, 7, 561–575. [Google Scholar] [CrossRef]
- Martin, C.D.; Chandler, N.A. The Progressive Fracture of Lac Du Bonnet Granite. Int. J. Rock Mech. Min. Sci. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S. Identifying Crack Initiation and Propagation Thresholds in Brittle Rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef]
- Martin, C.D. The Strength of Massive Lac Du Bonnet Granite around Underground Openings. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 1993. [Google Scholar]
- Staub, I.; Andersson, J.C.; Magnor, B. Äspö Pillar Stability Experiment: Geology and Mechanical Properties of the Rock in TASQ; Svensk Kar: Stockholm, Sweden, 2004. [Google Scholar]
- Eberhardt, E. Brittle Rock Fracture and Progressive Damage in Uniaxial Compression. Ph.D. Thesis, University of Saskatchewan, Saskatoon, Saskatchewan, 1998. [Google Scholar]
- Lan, H.; Martin, C.D.; Hu, B. Effect of Heterogeneity of Brittle Rock on Micromechanical Extensile Behavior during Compression Loading. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Gao, F.; Stead, D.; Elmo, D. Numerical Simulation of Microstructure of Brittle Rock Using a Grain-Breakable Distinct Element Grain-Based Model. Comput. Geotech. 2016, 78, 203–217. [Google Scholar] [CrossRef]
- Liu, G.; Cai, M.; Huang, M. Mechanical Properties of Brittle Rock Governed by Micro-Geometric Heterogeneity. Comput. Geotech. 2018, 104, 358–372. [Google Scholar] [CrossRef]
- Wang, X.; Cai, M. Modeling of Brittle Rock Failure Considering Inter- and Intra-Grain Contact Failures. Comput. Geotech. 2018, 101, 224–244. [Google Scholar] [CrossRef]
- Mahabadi, O.K. Investigating the Influence of Micro-Scale Heterogeneity and Microstructure on the Failure and Mechanical Behaviour of Geomaterials. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2012. [Google Scholar]
- Olsson, W.A. Grain Size Dependence of Yield Stress in Marble. J. Geophys. Res. 1974, 79, 4859–4862. [Google Scholar] [CrossRef]
- Singh, S.K. Relationship among Fatigue Strength, Mean Grain Size and Compressive Strength of a Rock. Rock Mech. Rock Eng. 1988, 21, 271–276. [Google Scholar] [CrossRef]
- Wong, R.H.C.; Chau, K.T.; Wang, P. Microcracking and Grain Size Effect in Yuen Long Marbles. Int. J. Rock Mech. Min. Sci. Geomech. 1996, 33, 479–485. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stimpson, B.; Stead, D. Effects of Grain Size on the Initiation and Propagation Thresholds of Stress-Induced Brittle Fractures. Rock Mech. Rock Eng. 1999, 32, 81–99. [Google Scholar] [CrossRef]
- Fredrich, J.T.; Evans, B. Teng-Fong Wong Effect of Grain Size on Brittle and Semibrittle Strength: Implications for Micromechanical Modelling of Failure in Compression. J. Geophys. Res. 1990, 95, 10907–10920. [Google Scholar] [CrossRef]
- Přikryl, R. Some Microstructural Aspects of Strength Variation in Rocks. Int. J. Rock Mech. Min. Sci. 2001, 38, 671–682. [Google Scholar] [CrossRef]
- Sajid, M.; Coggan, J.; Arif, M.; Andersen, J.; Rollinson, G. Petrographic Features as an Effective Indicator for the Variation in Strength of Granites. Eng. Geol. 2016, 202, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Tuǧrul, A.; Zarif, I.H. Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Selected Granitic Rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar] [CrossRef]
- Güneş Yilmaz, N.; Mete Goktan, R.; Kibici, Y. Relations between Some Quantitative Petrographic Characteristics and Mechanical Strength Properties of Granitic Building Stones. Int. J. Rock Mech. Min. Sci. 2011, 48, 506–513. [Google Scholar] [CrossRef]
- Shea, W.T.; Kronenberg, A.K. Strength and Anisotropy of Foliated Rocks with Varied Mica Contents. J. Struct. Geol. 1993, 15, 1097–1121. [Google Scholar] [CrossRef]
- Lajtai, E.Z. Microscopic Fracture Processes in a Granite. Rock Mech. Rock Eng. 1998, 31, 237–250. [Google Scholar] [CrossRef]
- Yesiloglu-Gultekin, N.; Sezer, E.A.; Gokceoglu, C.; Bayhan, H. An Application of Adaptive Neuro Fuzzy Inference System for Estimating the Uniaxial Compressive Strength of Certain Granitic Rocks from Their Mineral Contents. Expert Syst. Appl. 2013, 40, 921–928. [Google Scholar] [CrossRef]
- Keikha, T.; Keykha, H.A. Correlation between Mineralogical Characteristics and Engineering Properties of Granitic Rocks. Electron. J. Geotech. Eng. 2013, 18, 4055–4065. [Google Scholar]
- Cowie, S.; Walton, G. The Effect of Mineralogical Parameters on the Mechanical Properties of Granitic Rocks. Eng. Geol. 2018, 240, 204–225. [Google Scholar] [CrossRef]
- Li, X.F.; Li, H.B.; Zhao, J. 3D Polycrystalline Discrete Element Method (3PDEM) for Simulation of Crack Initiation and Propagation in Granular Rock. Comput. Geotech. 2017, 90, 96–112. [Google Scholar] [CrossRef]
- Li, X.F.; Li, H.B.; Zhao, J. The Role of Transgranular Capability in Grain-Based Modelling of Crystalline Rocks. Comput. Geotech. 2019, 110, 161–183. [Google Scholar] [CrossRef]
- Jing, L. A Review of Techniques, Advances and Outstanding Issues in Numerical Modelling for Rock Mechanics and Rock Engineering. Int. J. Rock Mech. Min. Sci. 2003, 40, 283–353. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A Bonded-Particle Model for Rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Sinha, S.; Walton, G. Application of Micromechanical Modeling to Prediction of In-Situ Rock Behavior. In Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018. [Google Scholar]
- Lisjak, A.; Grasselli, G. A Review of Discrete Modeling Techniques for Fracturing Processes in Discontinuous Rock Masses. J. Rock Mech. Geotech. Eng. 2014, 6, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wong, L.N.Y. A Review of Numerical Techniques Approaching Microstructures of Crystalline Rocks. Comput. Geosci. 2018, 115, 167–187. [Google Scholar] [CrossRef]
- Wang, X.; Cai, M. A Comprehensive Parametric Study of Grain-Based Models for Rock Failure Process Simulation. Int. J. Rock Mech. Min. Sci. 2019, 115, 60–76. [Google Scholar] [CrossRef]
- Jing, L.; Stephansson, O. Fundamentals of discrete element methods for rock engineering—Theory and applications. In Developments in Geotechnical Engineering; Elsevier: Amsterdam, The Netherlands, 2007; pp. 365–398. [Google Scholar]
- Jing, L.; Hudson, J.A. Numerical Methods in Rock Mechanics. Int. J. Rock Mech. Min. Sci. 2002, 39, 409–427. [Google Scholar] [CrossRef]
- Ghazvinian, E.; Diederichs, M.S.; Quey, R. 3D Random Voronoi Grain-Based Models for Simulation of Brittle Rock Damage and Fabric-Guided Micro-Fracturing. J. Rock Mech. Geotech. Eng. 2014, 6, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Bahrani, N.; Kaiser, P.K.; Valley, B. Distinct Element Method Simulation of an Analogue for a Highly Interlocked, Non-Persistently Jointed Rockmass. Int. J. Rock Mech. Min. Sci. 2014, 71, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Mahabadi, O.K.; Lisjak, A.; Munjiza, A.; Grasselli, G. Y-Geo: New Combined Finite-Discrete Element Numerical Code for Geomechanical Applications. Int. J. Geomech. 2012, 12, 676–688. [Google Scholar] [CrossRef]
- Munjiza, A. The Combined Finite-Discrete Element Method; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Abdelaziz, A.; Zhao, Q.; Grasselli, G. Grain Based Modelling of Rocks Using the Combined Finite-Discrete Element Method. Comput. Geotech. 2018, 103, 73–81. [Google Scholar] [CrossRef]
- Li, X.F.; Li, H.B.; Zhao, J. Transgranular Fracturing of Crystalline Rocks and Its Influence on Rock Strengths: Insights from a Grain-Scale Continuum–Discontinuum Approach. Comput. Methods Appl. Mech. Eng. 2021, 373, 113462. [Google Scholar] [CrossRef]
- Sinha, S.; Walton, G. A Study on Bonded Block Model (BBM) Complexity for Simulation of Laboratory-Scale Stress-Strain Behavior in Granitic Rocks. Comput. Geotech. 2020, 118, 103363. [Google Scholar] [CrossRef]
- Fabjan, T.; Ivars, D.M.; Vukadin, V. Numerical Simulation of Intact Rock Behaviour via the Continuum and Voronoi Tessellation Models: A Sensitivity Analysis. Acta Geotech. Slov. 2015, 12, 5–23. [Google Scholar]
- Farahmand, K.; Diederichs, M.S. A Calibrated Synthetic Rock Mass (SRM) Model for Simulating Crack Growth in Granitic Rock Considering Grain Scale Heterogeneity of Polycrystalline Rock. In Proceedings of the 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 29 June–1 July 2015; Volume 1. [Google Scholar]
- Mayer, J.M.; Stead, D. Exploration into the Causes of Uncertainty in UDEC Grain Boundary Models. Comput. Geotech. 2017, 82, 110–123. [Google Scholar] [CrossRef]
- Gao, F.Q.; Stead, D. The Application of a Modified Voronoi Logic to Brittle Fracture Modelling at the Laboratory and Field Scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Potyondy, D.O. A Flat-Jointed Bonded-Particle Material for Hard Rock. In Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium 2012, Chicago, IL, USA, 24–27 June 2012; Volume 3, pp. 1510–1519. [Google Scholar]
- Nicksiar, M.; Martin, C.D. Factors Affecting Crack Initiation in Low Porosity Crystalline Rocks. Rock Mech. Rock Eng. 2014, 47, 1165–1181. [Google Scholar] [CrossRef]
- Azocar, K. Investigating the Mesh Dependency and Upscaling of 3D Grain-Based Models for the Simulation of Brittle Fracture Processes in Low-Porosity Crystalline Rock. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2016. [Google Scholar]
- Gui, Y.L.; Zhao, Z.Y.; Ji, J.; Wang, X.M.; Zhou, K.P.; Ma, S.Q. The Grain Effect of Intact Rock Modelling Using Discrete Element Method with Voronoi Grains. Geotech. Lett. 2016, 6, 136–143. [Google Scholar] [CrossRef]
- Xu, T.; Fu, T.F.; Heap, M.J.; Meredith, P.G.; Mitchell, T.M.; Baud, P. Mesoscopic Damage and Fracturing of Heterogeneous Brittle Rocks Based on Three-Dimensional Polycrystalline Discrete Element Method. Rock Mech. Rock Eng. 2020, 53, 5389–5409. [Google Scholar] [CrossRef]
- Kazerani, T.; Zhao, J. Micromechanical Parameters in Bonded Particle Method for Modeling of Brittle Material Failure. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 1877–1895. [Google Scholar] [CrossRef]
- Peng, J.; Yuen Wong, L.N.; Teh, C.I. Influence of Grain Size on Strength of Polymineralic Crystalline Rock: New Insights from DEM Grain-Based Modeling. J. Rock Mech. Geotech. Eng. 2021, 1–12. [Google Scholar] [CrossRef]
- Peng, J.; Wong, L.N.Y.; Teh, C.I. Influence of Grain Size Heterogeneity on Strength and Microcracking Behavior of Crystalline Rocks. J. Geophys. Res. Solid Earth 2017, 122, 1054–1073. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Wong, L.N.Y.; Teh, C.I. Effects of Grain Size-to-Particle Size Ratio on Micro-Cracking Behavior Using a Bonded-Particle Grain-Based Model. Int. J. Rock Mech. Min. Sci. 2017, 100, 207–217. [Google Scholar] [CrossRef]
- Li, H.; Ma, H.; Shi, X.; Zhou, J.; Zhang, H.; Daemen, J.J.K. A 3D Grain-Based Model for Simulating the Micromechanical Behavior of Salt Rock. Rock Mech. Rock Eng. 2020, 53, 2819–2837. [Google Scholar] [CrossRef]
- Zhu, D.-F.; Tu, S.-H.; Ma, H.; Zhang, X. A 3D Voronoi and Subdivision Model for Calibration of Rock Properties. Model. Simul. Mater. Sci. Eng. 2017, 25, 085005. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Lan, H.; Zhang, L.; Yang, D.; Song, J.; Wang, S. Novel Grain-Based Model for Simulation of Brittle Failure of Alxa Porphyritic Granite. Eng. Geol. 2019, 251, 100–114. [Google Scholar] [CrossRef]
- Sims, P.K.; Schulz, K.J.; Dewitt, E.; Brasaemle, B. Petrography and Geochemistry of Early Proterozoic Granitoid Rocks in Wisconsin Magmatic Terranes of Penokean Orogen, Northern Wisconsin; US Government Printing Office: Washington, DC, USA, 1993; pp. 1–31.
- LaBerge, G.L.; Myers, P.E. Precambrian Geology of Marathon County, Wisconsin. Wis. Geol. Nat. Hist. Surv. Inf. Circ. 1983, 45, 88. [Google Scholar]
- Ghazvinian, E. Fracture Initiation and Propagation in Low Porosity Crystalline Rocks: Implications for Excavation Damage Zone (EDZ) Mechanics. Ph.D. Thesis, Queen’s University, Kingston, ON, USA, 2015. [Google Scholar]
- Nicksiar, M.; Martin, C.D. Evaluation of Methods for Determining Crack Initiation in Compression Tests on Low-Porosity Rocks. Rock Mech. Rock Eng. 2012, 45, 607–617. [Google Scholar] [CrossRef]
- Chen, W.; Konietzky, H. Simulation of Heterogeneity, Creep, Damage and Lifetime for Loaded Brittle Rocks. Tectonophysics 2014, 633, 164–175. [Google Scholar] [CrossRef]
- Chen, W.; Konietzky, H.; Tan, X.; Frühwirt, T. Pre-Failure Damage Analysis for Brittle Rocks under Triaxial Compression. Comput. Geotech. 2016, 74, 45–55. [Google Scholar] [CrossRef]
- Quey, R.; Dawson, P.R.; Barbe, F. Large-Scale 3D Random Polycrystals for the Finite Element Method: Generation, Meshing and Remeshing. Comput. Methods Appl. Mech. Eng. 2011, 200, 1729–1745. [Google Scholar] [CrossRef] [Green Version]
- Quey, R. Neper Reference Manual: The Documentation for Neper 3.5.1. 2019, pp. 1–106. Available online: https://neper.info/docs/neper.pdf (accessed on 27 November 2019).
- Quey, R.; Renversade, L. Optimal Polyhedral Description of 3D Polycrystals: Method and Application to Statistical and Synchrotron X-Ray Diffraction Data. Comput. Methods Appl. Mech. Eng. 2018, 330, 308–333. [Google Scholar] [CrossRef] [Green Version]
- Wadell, H. Volume, Shape, and Roundness of Quartz Particles. J. Geol. 1935, 43, 250–280. [Google Scholar] [CrossRef]
- Bullard, J.W.; Garboczi, E.J. Defining Shape Measures for 3D Star-Shaped Particles: Sphericity, Roundness, and Dimensions. Powder Technol. 2013, 249, 241–252. [Google Scholar] [CrossRef]
- Wadell, H. Sphericity and Roundness of Rock Particles. J. Geol. 1933, 41, 310–331. [Google Scholar] [CrossRef]
- Itasca Consulting Group Inc. 3DEC Version 5.2: 3 Dimensional Distinct Element Code, User’s Guide, 4th ed.; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2016. [Google Scholar]
- Itasca Consulting Group Inc. UDEC Version 6.0: Universal Disctinct Element Code, User’s Guide, 4th ed.; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2014. [Google Scholar]
- Cai, J.G.; Zhao, J. Effects of Multiple Parallel Fractures on Apparent Attenuation of Stress Waves in Rock Masses. Int. J. Rock Mech. Min. Sci. 2000, 37, 661–682. [Google Scholar] [CrossRef]
- Chen, S.G.; Cai, J.G.; Zhao, J.; Zhou, Y.X. Discrete Element Modelling of an Underground Explosion in a Jointed Rock Mass. Geotech. Geol. Eng. 2000, 18, 59–78. [Google Scholar] [CrossRef]
- Kazerani, T.; Yang, Z.Y.; Zhao, J. A Discrete Element Model for Predicting Shear Strength and Degradation of Rock Joint by Using Compressive and Tensile Test Data. Rock Mech. Rock Eng. 2012, 45, 695–709. [Google Scholar] [CrossRef] [Green Version]
Mineral | Modal Abundance (%) | Grain Diameter (mm) | |
---|---|---|---|
Mean (μ) | S.D. (σ) | ||
Biotite | 3 | 0.9 | 0.4 |
Quartz | 32 | 2.5 | 1.0 |
Plagioclase | 41 | 2.0 | 0.6 |
K-feldspar | 24 | 2.0 | 0.6 |
All grains | 100 | 2.0 | 0.8 |
Property | Number of Tests | Mean (μ) | S.D. (σ) | Median | Minimum | Maximum |
---|---|---|---|---|---|---|
Density, ρm (kg/m3) | 11 | 2605 | 8 | 2602 | 2594 | 2619 |
Uniaxial Compressive Strength, UCS (MPa) | 11 | 226 | 21 | 221 | 203 | 260 |
Crack damage stress, CD (MPa) | 11 | 220 | 19 | 219 | 198 | 246 |
Crack initiation stress, CI (MPa) | 4 | 107 | 9 | 109 | 95 | 115 |
Young’s Modulus, Em (GPa) | 4 | 70 | 2 | 70 | 66 | 72 |
Poisson’s Ratio, νm | 4 | 0.24 | 0.02 | 0.24 | 0.22 | 0.27 |
Bonded Block Model | Grain Diameter (mm) | Grain Sphericity, s | Number of Grains | Description | ||
---|---|---|---|---|---|---|
μ | σ | μ | σ | |||
BBM-1 | 2.0 | 0.8 | 0.80 | 0.02 | 40,700 | Baseline (BL) model with moderate average sphericity (s = 0.80) and average grain diameter of 2.0 mm |
BBM-2 | 2.0 | 0.8 | 0.85 | 0.02 | 40,700 | Model with high average sphericity (s = 0.85) and average grain diameter of 2.0 mm |
BBM-3 | 2.0 | 0.8 | 0.75 | 0.02 | 40,700 | Model with low average sphericity (s = 0.75) and average grain diameter of 2.0 mm |
BBM-4 | 1.7 | 0.8 | 0.80 | 0.02 | 56,800 | Model with moderate average sphericity (s = 0.80) and average grain size of 1.7 mm |
BBM-5 | 2.3 | 0.8 | 0.80 | 0.02 | 29,700 | Model with moderate average sphericity (s = 0.80) and average grain size of 2.3 mm |
BBM-6 | 2.9 | 0.8 | 0.80 | 0.02 | 16,700 | Model with moderate average sphericity (s = 0.80) and average grain size of 2.9 mm |
Mineral Type | Bulk Modulus K (GPa) | Shear Modulus G (GPa) | Young’s Modulus E (GPa) | Poisson’s Ratio ν | Density ρ (g/cc) |
---|---|---|---|---|---|
K-Feldspar | 53.7 | 27.2 | 69.8 | 0.28 | 2.56 |
Plagioclase | 50.8 | 29.3 | 88.1 | 0.26 | 2.63 |
Quartz | 37.0 | 44.0 | 94.5 | 0.08 | 2.65 |
Biotite | 41.1 | 12.4 | 33.8 | 0.36 | 3.05 |
Contact Type | kn (GPa/m) | ks/kn | C (MPa) | φ (°) | σt (MPa) |
---|---|---|---|---|---|
KF/KF | 9.20 × 104 | 0.67 | 40.0 | 27.0 | 14.4 |
KF/PL | 8.56 × 104 | 0.67 | 40.0 | 27.0 | 14.4 |
KF/QZ | 1.29 × 105 | 0.67 | 40.0 | 27.0 | 14.4 |
KF/BT | 1.51 × 105 | 0.67 | 40.0 | 27.0 | 14.4 |
PL/PL | 9.28 × 104 | 0.67 | 40.0 | 27.0 | 14.4 |
PL/QZ | 1.24 × 105 | 0.67 | 40.0 | 27.0 | 14.4 |
PL/BT | 1.49 × 105 | 0.67 | 40.0 | 27.0 | 14.4 |
QZ/QZ | 2.55 × 105 | 0.67 | 40.0 | 27.0 | 14.4 |
QZ/BT | 3.13 × 105 | 0.67 | 40.0 | 27.0 | 14.4 |
BT/BT | 4.70 × 105 | 0.67 | 40.0 | 27.0 | 14.4 |
Mineral Type | Young’s Modulus E (GPa) | Poisson’s Ratio ν |
---|---|---|
K-Feldspar | 62 | 0.27 |
Plagioclase | 69 | 0.23 |
Quartz | 91 | 0.20 |
Biotite | 35 | 0.25 |
Contact Type | kn (GPa/m) | ks/kn | C (MPa) | φ, φr (°) | σt (MPa) |
---|---|---|---|---|---|
KF/KF | 7.75 × 105 | 1.00 | 52.0 | 55.0, 27.5 | 23.0 |
KF/PL | 7.87 × 105 | 1.00 | 54.5 | 57.0, 28.5 | 23.5 |
KF/QZ | 8.93 × 105 | 1.00 | 57.0 | 58.5, 29.3 | 24.5 |
KF/BT | 5.97 × 105 | 1.00 | 44.5 | 51.5, 25.8 | 21.0 |
PL/PL | 8.00 × 105 | 1.00 | 57.0 | 59.0, 29.5 | 24.0 |
PL/QZ | 9.06 × 105 | 1.00 | 59.5 | 60.5, 30.3 | 25.0 |
PL/BT | 6.10 × 105 | 1.00 | 47.0 | 53.5, 26.8 | 21.5 |
QZ/QZ | 1.01 × 106 | 1.00 | 62.0 | 62.0, 31.0 | 26.0 |
QZ/BT | 7.16 × 105 | 1.00 | 49.5 | 55.0, 27.5 | 22.5 |
BT/BT | 4.20 × 105 | 1.00 | 37.0 | 48.0, 24.0 | 19.0 |
Mineral Type | Young’s Modulus E (GPa) | Poisson’s Ratio ν | Density ρ (g/cc) |
---|---|---|---|
K-Feldspar | 96.8 | 0.28 | 2.56 |
Plagioclase | 88.1 | 0.26 | 2.63 |
Quartz | 94.5 | 0.08 | 2.65 |
Biotite | 33.8 | 0.36 | 3.05 |
Contact Type | kn (GPa/m) | ks/kn | C (MPa) | φ, φr (°) | σt (MPa) |
---|---|---|---|---|---|
KF/KF | 2.3 × 105 | 0.65 | 110.0 | 62.0, 5.0 | 35.0 |
KF/PL | 2.1 × 105 | 0.65 | 108.0 | 61.0, 5.0 | 32.0 |
KF/QZ | 2.7 × 105 | 0.65 | 76.0 | 53.0, 5.0 | 28.2 |
KF/BT | 2.3 × 105 | 0.65 | 60.0 | 48.0, 5.0 | 11.4 |
PL/PL | 2.5 × 105 | 0.65 | 112.0 | 63.0, 5.0 | 37.0 |
PL/QZ | 2.3 × 105 | 0.65 | 80.0 | 49.0, 5.0 | 28.2 |
PL/BT | 2.3 × 105 | 0.65 | 54.0 | 45.0, 5.0 | 22.4 |
QZ/QZ | 2.8 × 105 | 0.65 | 130.0 | 65.0, 5.0 | 35.0 |
QZ/BT | 2.3 × 105 | 0.65 | 57.0 | 52.0, 5.0 | 23.4 |
BT/BT | 1.3 × 105 | 0.65 | 88.0 | 55.0, 5.0 | 25.3 |
Mineral Type | Young’s Modulus E (GPa) | Poisson’s Ratio ν |
---|---|---|
Feldspar | 52 | 0.19 |
Quartz | 81 | 0.16 |
Biotite | 25 | 0.22 |
Contact Type | kn (GPa/m) | ks/kn | C (MPa) | φ, φr (°) | σt (MPa) |
---|---|---|---|---|---|
FL/FL | 5.71 × 105 | 1.00 | 52.0 | 48.0, 0.48 | 23.0 |
FL/QZ | 7.17 × 105 | 1.00 | 57.0 | 53.0, 0.53 | 24.5 |
FL/BT | 4.28 × 105 | 1.00 | 44.5 | 43.0, 0.43 | 21.0 |
QZ/QZ | 8.63 × 105 | 1.00 | 62.0 | 58.0, 0.58 | 26.0 |
QZ/BT | 5.74 × 105 | 1.00 | 49.5 | 48.0, 0.48 | 22.5 |
BT/BT | 2.85 × 105 | 1.00 | 37.0 | 38.0, 0.38 | 19.0 |
Micro- Properties | Lab | 2010 | 2014 | 2015 | 2016 | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Dif. 1 | Mean | Dif. 1 | Mean | Dif. 1 | Mean | Dif. 1 | |
UCS (MPa) | 225.9 | 83.2 | −63 | 289.5 | 28 | 215.5 | −5 | 139.3 | −38 |
CD (MPa) | 220.0 | 77.3 | −65 | 179.4 | −18 | 197.9 | −10 | 126.8 | −42 |
CI (MPa) | 107.0 | 37.7 | −65 | 112.5 | 5 | 96.6 | −10 | 68.4 | −36 |
E (GPa) | 69.5 | 57.5 | −17 | 72.5 | 4 | 67.5 | −3 | 57.5 | −17 |
ν | 0.243 | 0.233 | −4 | 0.289 | 9 | 0.261 | 7 | 0.213 | −12 |
Mineral Arrangement | Lab | 1 (BL 1) | 2 | 3 | 4 | 5 | Global Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Dif. 2 | Mean | Dif. 2 | Mean | Dif. 2 | Mean | Dif. 2 | Mean | Dif. 2 | Mean | Dif. 2 | |
UCS (MPa) | 225.9 | 215.5 | −5 | 211.6 | −6 | 217.6 | −4 | 216.6 | −4 | 213.1 | −6 | 214.9 | −5 |
CD (MPa) | 220.0 | 197.9 | −10 | 188.2 | −14 | 194.5 | −12 | 193.3 | −12 | 194.8 | −11 | 193.7 | −12 |
CI (MPa) | 107.0 | 96.6 | −10 | 96.4 | −10 | 99.7 | −7 | 99.3 | −7 | 90.4 | −16 | 96.5 | −10 |
E (GPa) | 69.5 | 67.5 | −3 | 67.5 | −3 | 67.4 | −3 | 67.4 | −3 | 67.6 | −3 | 67.6 | −3 |
ν | 0.243 | 0.261 | 7 | 0.260 | 7 | 0.262 | 8 | 0.262 | 8 | 0.259 | 7 | 0.259 | 7 |
Mineral Arrangement | Lab | 1 (BL 1) | 2 | 3 | 4 | 5 | Global Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.D. 2 | S.D. 2 | Dif. 3 | S.D. 2 | Dif. 3 | S.D. 2 | Dif. 3 | S.D. 2 | Dif. 3 | S.D. 2 | Dif. 3 | S.D. 2 | Dif. 3 | |
UCS (MPa) | 20.6 | 8.4 | −59 | 6.4 | −69 | 4.5 | −78 | 9.8 | −53 | 8.4 | −59 | 7.9 | −62 |
CD (MPa) | 18.6 | 11.2 | −40 | 15.1 | −19 | 10.7 | −43 | 10.3 | −45 | 11.7 | −37 | 12.1 | −35 |
CI (MPa) | 9.2 | 10.2 | 12 | 9.0 | −2 | 13.8 | 51 | 10.5 | 14 | 9.7 | 6 | 11.1 | 21 |
E (GPa) | 2.4 | 0.2 | −91 | 0.2 | −91 | 0.3 | −89 | 0.2 | −91 | 0.3 | −86 | 0.3 | −89 |
ν | 0.023 | 0.004 | −82 | 0.004 | −84 | 0.003 | −85 | 0.003 | −86 | 0.004 | −84 | 0.004 | −84 |
Grain Shape | Lab | s = 0.75 | s = 0.80 | s = 0.85 | |||
---|---|---|---|---|---|---|---|
Mean | Mean | Dif. 1 | Mean | Dif. 1 | Mean | Dif. 1 | |
UCS (MPa) | 225.9 | 208.6 | −8 | 214.9 | −5 | 242.2 | 7 |
CD (MPa) | 220.0 | 192.1 | −13 | 193.7 | −12 | 213.3 | −3 |
CI (MPa) | 107.0 | 91.1 | −15 | 96.5 | −10 | 99.3 | −7 |
E (GPa) | 69.5 | 66.7 | −4 | 67.5 | −3 | 68.1 | −2 |
ν | 0.243 | 0.260 | 7 | 0.261 | 7 | 0.265 | 9 |
Micro- Properties | Lab | d = 1.7 mm | d = 2.0 mm | d = 2.3 mm | d = 2.9 mm | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Dif. 1 | Mean | Dif. 1 | Mean | Dif. 1 | Mean | Dif. 1 | |
UCS (MPa) | 225.9 | 224.9 | 0 | 214.9 | −5 | 221.4 | −2 | 216.7 | −4 |
CD (MPa) | 220.0 | 202.2 | −8 | 193.7 | −12 | 200.9 | −9 | 198.5 | −10 |
CI (MPa) | 107.0 | 93.5 | −13 | 96.5 | −10 | 94.0 | −12 | 93.7 | −12 |
E (GPa) | 69.5 | 66.9 | −4 | 67.5 | −3 | 68.3 | −2 | 69.7 | 0 |
ν | 0.243 | 0.259 | 7 | 0.261 | 7 | 0.264 | 9 | 0.272 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras Inga, C.E.; Walton, G.; Holley, E. Statistical Assessment of the Effects of Grain-Structure Representation and Micro-Properties on the Behavior of Bonded Block Models for Brittle Rock Damage Prediction. Sustainability 2021, 13, 7889. https://doi.org/10.3390/su13147889
Contreras Inga CE, Walton G, Holley E. Statistical Assessment of the Effects of Grain-Structure Representation and Micro-Properties on the Behavior of Bonded Block Models for Brittle Rock Damage Prediction. Sustainability. 2021; 13(14):7889. https://doi.org/10.3390/su13147889
Chicago/Turabian StyleContreras Inga, Carlos Efrain, Gabriel Walton, and Elizabeth Holley. 2021. "Statistical Assessment of the Effects of Grain-Structure Representation and Micro-Properties on the Behavior of Bonded Block Models for Brittle Rock Damage Prediction" Sustainability 13, no. 14: 7889. https://doi.org/10.3390/su13147889
APA StyleContreras Inga, C. E., Walton, G., & Holley, E. (2021). Statistical Assessment of the Effects of Grain-Structure Representation and Micro-Properties on the Behavior of Bonded Block Models for Brittle Rock Damage Prediction. Sustainability, 13(14), 7889. https://doi.org/10.3390/su13147889