Field Monitoring the Effects of Overnight Shift Work on Specialist Tactical Police Training with Heart Rate Variability Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lockie, R.G.; Dawes, J.J.; Balfany, K.; Gonzales, C.E.; Beitzel, M.M.; Dulla, J.M.; Orr, R.M. Physical fitness characteristics that relate to Work Sample Test Battery performance in law enforcement recruits. Int. J. Environ. Res. Public Health 2018, 15, 2477. [Google Scholar] [CrossRef] [Green Version]
- Carbone, P.D.; Carlton, S.D.; Stierli, M.; Orr, R.M. The Impact of Load Carriage on the Marksmanship of the Tactical Police Officer: A Pilot Study. J. Aust. Strength Cond. 2014, 22, 50–57. [Google Scholar]
- Maupin, D.; Wills, T.; Orr, R.; Schram, B. Fitness Profiles in Elite Tactical Units: A Critical Review. Int. J. Exerc. Sci. 2018, 11, 1041–1062. [Google Scholar] [PubMed]
- Irving, S.; Orr, R.; Pope, R. Profiling the Occupational Tasks and Physical Conditioning of Specialist Police. Int. J. Exerc. Sci. 2019, 12, 173–186. [Google Scholar] [PubMed]
- Koepp, D.W. An Analysis of Swat Team Personnel Selection. 2000, pp. 1–23. Available online: https://shsu-ir.tdl.org/bitstream/handle/20.500.11875/1086/0707.pdf?sequence=1 (accessed on 14 July 2021).
- Green, D. Leading a Swat team. Law Order 2001, 49, 97–100. [Google Scholar]
- Van Der Walt, L. The Lindt Café Siege: A forensic reconstruction. Pathology 2020, 52, S24. [Google Scholar] [CrossRef] [Green Version]
- Grier, T.; Dinkeloo, E.; Reynolds, M.; Jones, B.H. Sleep duration and musculoskeletal injury incidence in physically active men and women: A study of US Army Special Operation Forces soldiers. Sleep Health 2020, 6, 344–349. [Google Scholar] [CrossRef] [PubMed]
- LyytikÄInen, K.; Toivonen, L.; Hynynen, E.S.A.; Lindholm, H.; KyrÖLÄInen, H.; Lyytikäinen, K.; Kyröläinen, H. Recovery of rescuers from a 24-h shift and its association with aerobic fitness. Int. J. Occup. Med. Environ. Health 2017, 30, 433–444. [Google Scholar] [CrossRef]
- Mancia, G.; Bousquet, P.; Elghozi, J.L.; Esler, M.; Grassi, G.; Julius, S.; Reid, J.; Van Zwieten, P.A. The sympathetic nervous system and the metabolic syndrome. J. Hypertens. 2007, 25, 909–920. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef]
- McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Lindholm, H.; Lusa, S. Physiological Load and Psychological Stress During a 24-hour Work Shift Among Finnish Firefighters. J. Occup. Environ. Med. 2017, 59, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Tomes, C.; Schram, B.; Orr, R. Relationships Between Heart Rate Variability, Occupational Performance, and Fitness for Tactical Personnel: A Systematic Review. Front. Public Health 2020, 8, 729. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, F.H. Cardiovascular disease and risk factors in law enforcement personnel: A comprehensive review. Cardiol. Rev. 2012, 20, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Palmieri, T.; Greenhalgh, D. Cardiac fatalities in firefighters: An analysis of the US Fire Administration Database. J. Burn Care Res. 2016, 37, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., 3rd; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Cunha, J.P.S. Stress among on-duty firefighters: An ambulatory assessment study. PeerJ 2018, 6, e5967. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.E.; Violanti, J.M.; Gu, J.K.; Fekedulegn, D.; Li, S.; Hartley, T.A.; Charles, L.E.; Mnatsakanova, A.; Miller, D.B.; Burchfiel, C.M. Police work stressors and cardiac vagal control. Am. J. Hum. Biol. 2017, 29, e22996. [Google Scholar] [CrossRef] [PubMed]
- Gamble, K.R.; Vettel, J.M.; Patton, D.J.; Eddy, M.D.; Caroline Davis, F.; Garcia, J.O.; Spangler, D.P.; Thayer, J.F.; Brooks, J.R. Different profiles of decision making and physiology under varying levels of stress in trained military personnel. Int. J. Psychophysiol. 2018, 131, 73–80. [Google Scholar] [CrossRef]
- Andrew, M.; Miller, D.; Gu, J.; Li, S.; Charles, L.; Violanti, J.; Mnatsakanova, A.; Burchfiel, C. Exposure to police work stressors and dysregulation of the stress response system: The buffalo cardio-metabolic occupational police stress study. Epidemiology 2012, 23, S202. [Google Scholar] [CrossRef]
- Shin, J.H.; Lee, J.Y.; Yang, S.H.; Lee, M.Y.; Chung, I.S. Factors related to heart rate variability among firefighters. Ann. Occup. Environ. Med. 2016, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Javaloyes, A.; Sarabia, J.M.; Lamberts, R.P.; Moya-Ramon, M. Training Prescription Guided by Heart-Rate Variability in Cycling. Int. J. Sports Physiol. Perform. 2019, 14, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.; Booton, T.; Watson, M.; Rowland, D.; Altini, M. Heart Rate Variability is a Moderating Factor in the Workload-Injury Relationship of Competitive CrossFit™ Athletes. J. Sports Sci. Med. 2017, 16, 443–449. [Google Scholar]
- Gisselman, A.S.; Baxter, G.D.; Wright, A.; Hegedus, E.; Tumilty, S. Musculoskeletal overuse injuries and heart rate variability: Is there a link? Med. Hypotheses 2016, 87, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.C.; Mongwe, L.; Janse van Rensburg, D.C.; Fletcher, L.; Wood, P.S.; Terblanche, E.; du Toit, P.J. The Difference Between Exercise-Induced Autonomic and Fitness Changes Measured After 12 and 20 Weeks of Medium-to-High Intensity Military Training. J. Strength Cond. Res. 2016, 30, 2453–2459. [Google Scholar] [CrossRef]
- Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sports Med. 2003, 33, 889–919. [Google Scholar] [CrossRef]
- Mellman, T.A. Reduced heart rate variability during sleep: A candidate PTSD biomarker with implications for health risk: Commentary on Ulmer et al., “Posttraumatic stress disorder diagnosis is associated with reduced parasympathetic activity during sleep in US veterans and military service members of the Iraq and Afghanistan wars”. Sleep 2018, 41. [Google Scholar] [CrossRef]
- Kraska, P.B.; Kappeler, V.E. Militarizing American police: The rise and normalization of paramilitary units. Soc. Probl. 1997, 44, 1–18. [Google Scholar] [CrossRef]
- Orr, R.M.; Robinson, J.; Hasanki, K.; Talaber, K.A.; Schram, B.; Roberts, A. The Relationship Between Strength Measures and Task Performance in Specialist Tactical Police. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Mietus, J.; Peng, C.; Henry, I.; Goldsmith, R.; Goldberger, A. The pNNx files: Re-examining a widely used heart rate variability measure. Heart 2002, 88, 378–380. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Pimentel, G.; Kaiseler, M.; Cunha, J.P.S. Wearable biomonitoring platform for the assessment of stress and its impact on cognitive performance of firefighters: An experimental study. Clin. Pract. Epidemiol. Ment. Health 2018, 14, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Lecca, L.I.; Setzu, D.; Del Rio, A.; Campagna, M.; Cocco, P.; Meloni, M. Indexes of cardiac autonomic profile detected with short term Holter ECG in health care shift workers: A cross sectional study. Med. Lav. 2019, 110, 437–445. [Google Scholar]
- Bambra, C.L.; Whitehead, M.M.; Sowden, A.J.; Akers, J.; Petticrew, M.P. Shifting schedules: The health effects of reorganizing shift work. Am. J. Prev. Med. 2008, 34, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Tewksbury, R.; Copenhaver, A. State police officer sleep patterns and fast food consumption. Int. J. Police Sci. Manag. 2015, 17, 230–236. [Google Scholar] [CrossRef]
Off-Duty Operators (n = 6) | On-Duty Operators(n = 5) | |
---|---|---|
Mean pRR50 at baseline | 16.71 ± 21.60 | 4.99 ± 4.61 |
Mean pRR50 post-qualification | 18.00 ± 21.94 | 2.52 ± 2.37 |
Mean change in pRR50 | 1.27 ± 2.03 * | −2.47 ± 3.01 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomes, C.; Schram, B.; Orr, R. Field Monitoring the Effects of Overnight Shift Work on Specialist Tactical Police Training with Heart Rate Variability Analysis. Sustainability 2021, 13, 7895. https://doi.org/10.3390/su13147895
Tomes C, Schram B, Orr R. Field Monitoring the Effects of Overnight Shift Work on Specialist Tactical Police Training with Heart Rate Variability Analysis. Sustainability. 2021; 13(14):7895. https://doi.org/10.3390/su13147895
Chicago/Turabian StyleTomes, Colin, Ben Schram, and Robin Orr. 2021. "Field Monitoring the Effects of Overnight Shift Work on Specialist Tactical Police Training with Heart Rate Variability Analysis" Sustainability 13, no. 14: 7895. https://doi.org/10.3390/su13147895
APA StyleTomes, C., Schram, B., & Orr, R. (2021). Field Monitoring the Effects of Overnight Shift Work on Specialist Tactical Police Training with Heart Rate Variability Analysis. Sustainability, 13(14), 7895. https://doi.org/10.3390/su13147895