Monitoring the Spatiotemporal Evolution of the Green Dam in Djelfa Province, Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Image Preprocessing and Classification
2.4. Accuracy Assessment
2.5. LULC Changes Analysis and Prediction of the Future Scenario for the Year 2029
2.6. Temporal Changes in Human Population and Livestock Numbers
3. Results
3.1. Accuracy Assessment and LULC Changes
3.2. Green Dam Evolution during the Last 47 Years and Its Future Projection by the Year 2029
3.3. Evolution of Human Population and Livestock Numbers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hishe, H.; Giday, K.; Van Orshoven, J.; Muys, B.; Taheri, F.; Azadi, H.; Feng, L.; Zamani, O.; Mirzaei, M.; Witlox, F. Analysis of land use land cover dynamics and driving factors in Desa’a forest in Northern Ethiopia. Land Use Policy 2021, 101, 105039. [Google Scholar] [CrossRef]
- Amiraslani, F. Multi-stakeholder and multi-level interventions to tackle climate change and land degradation: The case of Iran. Sustainability 2018, 10, 2000. [Google Scholar] [CrossRef] [Green Version]
- Mirzabaev, A.; Wu, J. Chapter 3: Desertification. Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2020/05/Chapter-3_FINAL.pdf (accessed on 17 May 2021).
- Du, L.; Zeng, Y.; Ma, L.; Qiao, C.; Wu, H.; Su, Z.; Bao, G. Effects of anthropogenic revegetation on the water and carbon cycles of a desert steppe ecosystem. Agric. For. Meteorol. 2021, 300, 108339. [Google Scholar] [CrossRef]
- Zhang, Z.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Mirzabaev, A.; Wu, J.; Evans, J.; Garcia-Oliva, F.; Hussein, I.A.G.; Iqbal, M.H.; Kimutai, J.; Knowles, T.; Meza, F.; Nedjroaoui, D.; et al. Desertification—PhilPapers. Available online: https://philpapers.org/rec/NGCD (accessed on 6 May 2021).
- Goffner, D.; Sinare, H.; Gordon, L.J. The great green wall for the Sahara and the Sahel initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. Reg. Environ. Chang. 2019, 19, 1417–1428. [Google Scholar] [CrossRef] [Green Version]
- Romano, N.; Lignola, G.P.; Brigante, M.; Bosso, L.; Chirico, G.B. Residual life and degradation assessment of wood elements used in soil bioengineering structures for slope protection. Ecol. Eng. 2016, 90, 498–509. [Google Scholar] [CrossRef]
- Wang, F.; Pan, X.; Wang, D.; Shen, C.; Lu, Q. Combating desertification in China: Past, present and future. Land Use Policy 2013, 31, 311–313. [Google Scholar] [CrossRef]
- Benjaminsen, T.A.; Hiernaux, P. From desiccation to global climate change: A history of the desertification narrative in the west african sahel, 1900–2018. Glob. Environ. 2019, 12, 206–236. [Google Scholar] [CrossRef]
- Mourad, M.B. Le Barrage Vert en Tant Que Patrimoine Naturel National et Moyen de Lutte Contre la Désertification. Available online: http://www.fao.org/3/xii/0301-b3.htm (accessed on 19 April 2021).
- Hirche, A.; Salamani, M.; Abdellaoui, A.; Benhouhou, S.; Valderrama, J.M. Landscape changes of desertification in arid areas: The case of south-west Algeria. Environ. Monit. Assess. 2011, 179, 403–420. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Del Barrio, G.; Alcalá, F.J.; Sanjuán, M.E.; Ruiz, A.; Hirche, A.; Puigdefábregas, J. Doomed to collapse: Why Algerian steppe rangelands are overgrazed and some lessons to help land-use transitions. Sci. Total Environ. 2018, 613–614, 1489–1497. [Google Scholar] [CrossRef]
- Des, D.; Du, C. Etude diachronique des conditions du milieu et de la végétation d’une zone steppique (2001–2015): Cas de la Wilaya de Djelfa (Algérie). Egypt. J. Environ. Chang. 2020, 12, 33–47. [Google Scholar] [CrossRef]
- Zegrar, A.; Mahi, H.; Hassani, S.A.; Karoui, S. Impact of climate and analysis of desertification processes in semi arid land in Algeria: Using data of Alsat and LANDSAT. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Nedjraoui, D.; Bedrani, S. Desertification in the Algerian steppe: Causes, impacts and actions in the fight. Vertigo Rev. Électron. Sci. Environ. 2002, 8, 1–15. [Google Scholar]
- Le Houérou, H.N. Agroforestry and sylvopastoralism to combat land degradation in the Mediterranean Basin: Old approaches to new problems. Agric. Ecosyst. Environ. 1990, 33, 99–109. [Google Scholar] [CrossRef]
- Aidoud, A.; Touffet, J. La régression de l’alfa (Stipa tenacissima L.), graminée pérenne, un indicateur de désertification des steppes algériennes. Sci. Chang. Planétaires Sécheresse 1996, 7, 187–193. [Google Scholar]
- Adair, P. Rétrospective de la réforme agraire en Algérie (1972–1982). Tiers. Monde. 1983, 24, 153–168. [Google Scholar] [CrossRef]
- Bourbouze, A. Systèmes d’élevage et production animale dans les steppes du nord de l’Afrique: Une relecture de la société pastorale du Maghreb. Sécheresse 2006, 17, 31–39. [Google Scholar]
- Aïdoud, A.; Le Floch, E.; Le Houérou, H.N. Les steppes arides du nord de l’Afrique. Sécheresse 2006, 17, 19–30. [Google Scholar]
- Dalila, N.; Slimane, B. La désertification dans les steppes algériennes: Causes, impacts et actions de lutte. VertigO 2008, 8. [Google Scholar] [CrossRef]
- Bensaïd, S. Bilan critique du barrage vert en Algérie. Sécheresse 1995, 6, 247–255. [Google Scholar]
- Merdas, S.; Boulghobra, N.; Lakhdari, F. The green dam in Algeria as a tool to combat desertification. Planet@Risk 2015, 3, 68–71. [Google Scholar]
- Bensouiah, R. Politique forestière et lutte contre la désertification en Algérie: Du barrage vert au PNDA. Forêt Méditerranéenne 2004, 25, 191–198. [Google Scholar]
- Benalia, S. The green barrier in Algeria: Actual situation and development prospect. In Proceedings of the XXXVII CIOSTA & CIGR Section V Conference, Palermo, Italy, 13–15 June 2009; pp. 2163–2166. [Google Scholar]
- Phinzi, K.; Ngetar, N.S. Land use/land cover dynamics and soil erosion in the Umzintlava catchment (T32E), Eastern Cape, South Africa. Trans. R. Soc. S. Afr. 2019, 74, 223–237. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.; Bailly, J.S.; Arnaud, M.; Puech, C. Boosting: A classification method for remote sensing. Int. J. Remote Sens. 2007, 28, 37–41. [Google Scholar] [CrossRef]
- Richards, J.; Richards, J. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Alipbeki, O.; Alipbekova, C.; Sterenharz, A.; Toleubekova, Z.; Aliyev, M.; Mineyev, N.; Amangaliyev, K. A spatiotemporal assessment of land use and land cover changes in peri-urban areas: A case study of Arshaly district, Kazakhstan. Sustainability 2020, 12, 1556. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Skidmore, A.K.; Oosten, H. Van Integration of classification methods for improvement of land-cover map accuracy. ISPRS J. Photogramm. Remote Sens. 2002, 56, 257–268. [Google Scholar] [CrossRef]
- Eastman, J. IDRISI Taiga: Guide to GIS and Image Processing Volume—Manual Version 16.02; Clark Labs Clark University: Worcester, MA, USA, 2009; p. 325. [Google Scholar]
- Exavier, R.; Zeilhofer, P. OpenLand: Software for quantitative analysis and visualization of land use and cover change. R J. 2020, 12, 372–387. [Google Scholar] [CrossRef]
- Khaouani, B.; Hirche, A.; Salamani, M. Ecological dynamics of the green dam by remote sensing: The case of moudjbara (Djelfa, Central Algeria). PONTE Int. J. Sci. Res. 2019, 75, 116–132. [Google Scholar] [CrossRef]
- You, Y.; Zhou, J.; Wang, Y. “Chinese Mode” of combating desertification. IOP Conf. Ser. Earth Environ. Sci. 2020, 435, 012033. [Google Scholar] [CrossRef]
- Benabdeli, K. Premiers résultats dendrométriques des plantations de pin d’Alep (Pinus halepensis mill.) dans le barrage vert (zone d’Aflou, Algérie). Ecol. Mediterr. 1998, 24, 43–51. [Google Scholar] [CrossRef]
- Kouba, Y.; Merdas, S.; Mostephaoui, T.; Saadali, B.; Chenchouni, H. Plant community composition and structure under short-term grazing exclusion in steppic arid rangelands. Ecol. Indic. 2021, 120, 106910. [Google Scholar] [CrossRef]
- Merdas, S.; Kouba, Y.; Mostephaoui, T.; Farhi, Y.; Chenchouni, H. Livestock grazing-induced large-scale biotic homogenization in arid Mediterranean steppe rangelands. Land Degradat. Dev. 2021. [Google Scholar] [CrossRef]
- Rammal, M.M.; Jubair, A.A. Sand dunes stabilization using silica gel and cement kiln dust. Al-Nahrain J. Eng. Sci. 2015, 18, 179–191. [Google Scholar]
- Sun, X.; Miao, L.; Wang, H.; Yin, W.; Wu, L. Mineralization crust field experiment for desert sand solidification based on enzymatic calcification. J. Environ. Manag. 2021, 287, 112315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Fan, D.; Qin, S.; Jia, X.; Wu, B.; Chen, N.; Gao, H.; Zhu, L. Effects of sand dune stabilization on the spatial pattern of artemisia ordosica population in Mu Us desert, northwest China. PLoS ONE 2015, 10, e0129728. [Google Scholar] [CrossRef] [PubMed]
Satellite | Sensor | Resolution | Path/Row | Spectral Bands | Wavelength (nm) | Acquisition Date |
---|---|---|---|---|---|---|
Landsat | MSS | 60 m | 195/36 | Green | 500–600 | 13 September 1972 |
Red | 600–700 | |||||
Infrared 1 | 700–800 | |||||
Infrared 2 | 800–1100 | |||||
Landsat | TM | 30 m | 195/36 | Blue | 450–520 | 5 July 1989 |
Green | 520–600 | |||||
Red | 630–690 | |||||
Near-infrared 1 | 760–900 | |||||
Near-infrared 2 | 1550–1750 | |||||
Mid-infrared | 2080–2350 | |||||
Landsat | ETM+ | 30 m | 195/36 | Blue | 450–520 | 9 July 1999 |
Green | 520–600 | |||||
Red | 630–690 | |||||
Near-infrared 1 | 760–900 | |||||
Near-infrared 2 | 1550–1750 | |||||
Mid-infrared | 2080–2350 | |||||
Landsat | TM | 30 m | 195/36 | Blue | 450–520 | 28 July 2009 |
Green | 520–600 | |||||
Red | 630–690 | |||||
Near-infrared 1 | 760–900 | |||||
Near-infrared2 | 1550–1750 | |||||
Mid-infrared | 2080–2350 | |||||
Landsat | OLI-TIRS | 30 m | 195/36 | Coastal aerosol | 430–450 | 24 July 2019 |
Blue | 450–510 | |||||
Green | 530–590 | |||||
Red | 640–670 | |||||
Near-infrared | 850–880 | |||||
Short-wave infrared 1 | 1570–1650 | |||||
Short-wave infrared 2 | 2210–2290 | |||||
Cirrus | 1360–1380 |
Classes | 1972 | 1989 | 1999 | 2009 | 2019 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PA | UC | PA | UC | PA | UC | PA | UC | PA | UC | |
Dense plantations and natural forest | 80 | 88.8 | 10 | 100 | 80 | 100 | 80 | 100 | 100 | 100 |
Open plantations | 78.3 | 74.6 | 91.6 | 89.7 | 80.4 | 94.2 | 100 | 100 | ||
Degraded steppes | 90 | 96.7 | 70 | 43.7 | 91.1 | 92 | 90.6 | 89.8 | 100 | |
Urban | 76.8 | 100 | 80 | 66.6 | 80 | 33.3 | 100 | 98.9 | ||
Crops | 70 | 41 | 60 | 26 | 80 | 80 | 100 | 83.3 | 100 | 100 |
Overall accuracy | 0.88 | 0.75 | 0.89 | 0.87 | 0.94 | |||||
Overall Kappa | 0.64 | 0.64 | 0.82 | 0.80 | 0.89 |
LULC Class | 1972 | 1989 | 1999 | 2009 | 2019 | ||||
---|---|---|---|---|---|---|---|---|---|
Area (ha) | Area (ha) | C (%) | Area (ha) | C (%) | Area (ha) | C (%) | Area (ha) | C (%) | |
Crops | 157.01 | 132.91 | −15.35 | 174.17 | +31.05 | 236.36 | +35.71 | 235.55 | −0.34 |
Degraded steppes | 24,626.62 | 13,770.76 | −44.08 | 15,139.31 | +9.94 | 12,640.89 | −16.5 | 17,293.83 | +36.81 |
Dense plantations and natural forests | 585.48 | 1003.26 | +71.36 | 1615.65 | +61.04 | 641.35 | −60.3 | 626.62 | −2.3 |
Open plantations | 0 | 10,344.99 | +10,344.99 | 8288.23 | −19.88 | 11,073.97 | +33.61 | 6302.66 | −43.09 |
Urban | 0 | 117.2 | +117.20 | 151.75 | +29.48 | 776.54 | +411.73 | 910.46 | +17.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benhizia, R.; Kouba, Y.; Szabó, G.; Négyesi, G.; Ata, B. Monitoring the Spatiotemporal Evolution of the Green Dam in Djelfa Province, Algeria. Sustainability 2021, 13, 7953. https://doi.org/10.3390/su13147953
Benhizia R, Kouba Y, Szabó G, Négyesi G, Ata B. Monitoring the Spatiotemporal Evolution of the Green Dam in Djelfa Province, Algeria. Sustainability. 2021; 13(14):7953. https://doi.org/10.3390/su13147953
Chicago/Turabian StyleBenhizia, Ramzi, Yacine Kouba, György Szabó, Gábor Négyesi, and Behnam Ata. 2021. "Monitoring the Spatiotemporal Evolution of the Green Dam in Djelfa Province, Algeria" Sustainability 13, no. 14: 7953. https://doi.org/10.3390/su13147953
APA StyleBenhizia, R., Kouba, Y., Szabó, G., Négyesi, G., & Ata, B. (2021). Monitoring the Spatiotemporal Evolution of the Green Dam in Djelfa Province, Algeria. Sustainability, 13(14), 7953. https://doi.org/10.3390/su13147953