Non-Traditional Systemic Risk Contagion within the Chinese Banking Industry
Abstract
:1. Introduction
2. Data and Sample
2.1. Distance to Default
2.2. Distance to Insolvency
2.3. Distance to Capital
3. Methodology
Model Specifications
4. Results
4.1. Distance-to-Default Contagion
4.2. Distance-to-Insolvency Contagion
4.3. Distance-to-Capital Contagion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Q.; De Haan, J.; Scholtens, B. Analysing Systemic Risk in the Chinese Banking System. Pac. Econ. Rev. 2017, 24, 348–372. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.-Y.; Shi, Y.; Zhang, Z. News and return volatility of Chinese bank stocks. Int. Rev. Econ. Financ. 2020, 69, 1095–1105. [Google Scholar] [CrossRef]
- World Bank. China Overview. 2019. Available online: https://www.worldbank.org/en/country/china/overview (accessed on 13 July 2021).
- Huang, Y. Understanding China’s Belt & Road initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar]
- Rolland, N. China’s “Belt and Road Initiative”: Underwhelming or game-changer? Wash. Q. 2017, 40, 127–142. [Google Scholar] [CrossRef]
- Liu, Y.; Brahma, S.; Boateng, A. Impact of ownership structure and ownership concentration on credit risk of Chinese com-mercial banks. Int. J. Manag. Financ. 2019, 16, 253–272. [Google Scholar]
- Zhu, N.; Wang, B.; Yu, Z.; Wu, Y. Technical Efficiency Measurement Incorporating Risk Preferences: An Empirical Analysis of Chinese Commercial Banks. Emerg. Mark. Financ. Trade 2015, 52, 610–624. [Google Scholar] [CrossRef]
- Daly, K.; Batten, J.A.; Mishra, A.V.; Choudhury, T. Contagion risk in global banking sector. J. Int. Financ. Mark. Inst. Money 2019, 63, 101136. [Google Scholar] [CrossRef]
- Weber, O. Corporate sustainability and financial performance of Chinese banks. Sustain. Account. Manag. Policy J. 2017, 8, 358–385. [Google Scholar] [CrossRef] [Green Version]
- Witt, M.A. China’s Challenge: Geopolitics, De-Globalization, and the Future of Chinese Business. Manag. Organ. Rev. 2019, 15, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-J.; Jiang, Z.-Q.; Lin, M.; Xie, C.; Stanley, H.E. Interconnectedness and systemic risk of China’s financial institutions. Emerg. Mark. Rev. 2018, 35, 1–18. [Google Scholar] [CrossRef]
- Tobias, A.; Brunnermeier, M.K. CoVaR. Am. Econ. Rev. 2016, 106, 1705. [Google Scholar]
- Acharya, V.V.; Pedersen, L.H.; Philippon, T.; Richardson, M. Measuring Systemic Risk. Rev. Financ. Stud. 2017, 30, 2–47. [Google Scholar] [CrossRef]
- Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J. Financ. Econ. 2012, 104, 535–559. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, X.; Wang, J.; Lu, Y. Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network. N. Am. J. Econ. Financ. 2020, 54, 101248. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, L.; Jiang, C.; Yuan, J. Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t approach. Pac. Basin Financ. J. 2018, 51, 13–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Wu, F.; Ji, Q. Systemic risk in the Chinese financial system: A copula-based network approach. Int. J. Financ. Econ. 2021, 26, 2044–2063. [Google Scholar] [CrossRef]
- Blundell-Wignall, A.; Roulet, C. Business models of banks, leverage and the distance-to-default. OECD J. Financ. Mark. Trends 2013, 2012, 7–34. [Google Scholar] [CrossRef]
- Chan-Lau, J.A.; Sy, A.N.R. Distance-to-default in banking: A bridge too far? J. Bank. Regul. 2007, 9, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Nagel, S.; Purnanandam, A. Bank Risk Dynamics and Distance to Default. Available online: https://www.nber.org/system/files/working_papers/w25807/w25807.pdf (accessed on 13 July 2021).
- Merton, R.C. An Intertemporal Capital Asset Pricing Model. Econometrica 1973, 41, 867. [Google Scholar] [CrossRef]
- Saldías, M. Systemic risk analysis using forward-looking Distance-to-Default series. J. Financ. Stab. 2013, 9, 498–517. [Google Scholar] [CrossRef] [Green Version]
- Chan-Lau, M.J.A.; Mitra, M.S.; Ong, M.L.L. Contagion Risk in the International Banking System and Implications for London as a Global Financial Center. IMF Working Paper No. 07/74. 2007. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=979028 (accessed on 13 July 2021).
- Merton, R.C. On the pricing of corporate debt: The risk structure of interest rates. J. Financ. 1974, 29, 449–470. [Google Scholar]
- Akhter, S.; Daly, K. Contagion risk for Australian banks from global systemically important banks: Evidence from extreme events. Econ. Model. 2017, 63, 191–205. [Google Scholar] [CrossRef]
- Wang, G.-J.; Yi, S.; Xie, C.; Stanley, H.E. Multilayer information spillover networks: Measuring interconnectedness of financial institutions. Quant. Financ. 2020, 1–23. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Ho, K.-C.; Hamori, S. Dependence structures and risk spillover in China’s credit bond market: A copula and CoVaR approach. J. Asian Econ. 2020, 68, 101200. [Google Scholar] [CrossRef]
- Correia, M.; Kang, J.; Richardson, S. Asset volatility. Rev. Account. Stud. 2017, 23, 37–94. [Google Scholar] [CrossRef] [Green Version]
- Leland, H.E. Corporate debt value, bond covenants, and optimal capital structure. J. Financ. 1994, 49, 1213–1252. [Google Scholar] [CrossRef]
- Atkeson, A.G.; Eisfeldt, A.L.; Weill, P.-O. Measuring the financial soundness of U.S. firms, 1926–2012. Res. Econ. 2017, 71, 613–635. [Google Scholar] [CrossRef] [Green Version]
- Salike, N.; Ao, B. Determinants of bank’s profitability: Role of poor asset quality in Asia. China Financ. Rev. Int. 2018, 8, 216–231. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, J.; Dickinson, D.G.; Kutan, A.M. Non-performing loans, moral hazard and regulation of the Chinese commercial banking system. J. Bank. Financ. 2016, 63, 48–60. [Google Scholar] [CrossRef]
- Yao, J.Y.; Chan-Lau, J.A.; Mathieson, D.J. Extreme Contagion in Equity Markets. IMF Work. Pap. 2002, 2, 1. [Google Scholar] [CrossRef]
- Gropp, R.; Gruendl, C.; Guettler, A. The impact of public guarantees on bank risk-taking: Evidence from a natural experiment. Rev. Financ. 2013, 18, 457–488. [Google Scholar] [CrossRef]
- Kocherlakota, N.; Shim, I. Forbearance and Prompt Corrective Action. J. Money Credit. Bank. 2007, 39, 1107–1129. [Google Scholar] [CrossRef]
- Mayes, D.G.; Nieto, M.J.; Wall, L. Multiple safety net regulators and agency problems in the EU: Is Prompt Corrective Action partly the solution? J. Financ. Stab. 2008, 4, 232–257. [Google Scholar] [CrossRef] [Green Version]
- Basel III: A Global Regulatory Framework for More Resilient Banks and Banking Systems; Basel Committee on Banking Supervision: Basel, Switzerland, 2010.
- Black, F.; Scholes, M. The effects of dividend yield and dividend policy on common stock prices and returns. J. Financ. Econ. 1974, 1, 1–22. [Google Scholar] [CrossRef]
- Aggarwal, R.; Jacques, K.T. The impact of FDICIA and prompt corrective action on bank capital and risk: Estimates using a simultaneous equations model. J. Bank. Financ. 2001, 25, 1139–1160. [Google Scholar] [CrossRef]
- Harada, K.; Ito, T. Did mergers help Japanese mega-banks avoid failure? Analysis of the distance to default of banks. J. Jpn. Int. Econ. 2011, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.; Sheppard, K. Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH. Theor. Empir. Prop. Dyn. Cond. Correl. Multivar. GARCH 2001. [Google Scholar] [CrossRef]
- Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroske-dasticity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- Chang, C.-L.; McAleer, M.; Wang, Y.-A. Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices. Renew. Sustain. Energy Rev. 2018, 81, 1002–1018. [Google Scholar] [CrossRef] [Green Version]
- McAleer, M.; Hafner, C.M. A One Line Derivation of EGARCH. Econometrics 2014, 2, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Theissen, E. Price discovery in spot and futures markets: A reconsideration. High Freq. Trading Limit Order Book Dyn. 2016, 18, 249–268. [Google Scholar] [CrossRef]
- Zhang, K.; Chan, L. Efficient factor GARCH models and factor-DCC models. Quant. Financ. 2009, 9, 71–91. [Google Scholar] [CrossRef]
- Basher, S.A.; Sadorsky, P. Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Econ. 2016, 54, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Sun, B.; Li, H.; Yu, H. Systemic risk network of Chinese financial institutions. Emerg. Mark. Rev. 2018, 35, 190–206. [Google Scholar] [CrossRef]
- Hassan, M.K.; Djajadikerta, H.G.; Choudhury, T.; Kamran, M. Safe havens in Islamic financial markets: COVID-19 versus GFC. Glob. Financ. J. 2021, 21, 100643. [Google Scholar] [CrossRef]
- Kinateder, H.; Campbell, R.; Choudhury, T. Safe haven in GFC versus COVID-19: 100 turbulent days in the financial markets. Finance Res. Lett. 2021, 101951. [Google Scholar] [CrossRef]
- Choudhury, T.T.; Paul, S.K.; Rahman, H.F.; Jia, Z.; Shukla, N. A systematic literature review on the service supply chain: Research agenda and future research directions. Prod. Plan. Control 2020, 31, 1363–1384. [Google Scholar] [CrossRef]
- Choudhury, T.; Daly, K. Systemic risk contagi on within US states. Stud. Econ. Financ. 2021. [Google Scholar] [CrossRef]
S. No. | Banks | Short Name | Net Asset Value—Actual | Beta Up 5-Yr Mthly | Sharpe Ratio 5-Yr Mthly | Stock Reports + Risk Score by Data Stream |
---|---|---|---|---|---|---|
1. | Agricultural Bank of China Ltd. | ABC | 249,551,048,992.73 | 0.87 | 0.04 | 10 |
2. | Bank of China Ltd. | BOC | 257,092,174,275.84 | 0.86 | 0.02 | 10 |
3. | China Construction Bank Corp. | CCB | 296,094,971,900.93 | 1.02 | 0.12 | 10 |
4. | China Merchants Bank Co, Ltd. | CMB | 80,063,183,940.38 | 0.99 | 0.30 | 9 |
5. | China Minsheng Banking Corp, Ltd. | CMS | 64,218,282,053.19 | 1.18 | −0.01 | 10 |
6. | Hua Xia Bank Co, Ltd. | HUX | 32,312,167,973.69 | 1.22 | 0.03 | 10 |
7. | Industrial and Commercial Bank of China Ltd. | ICC | 348,003,591,516.90 | 0.62 | 0.08 | 10 |
8. | Shanghai Pudong Development Bank Co, Ltd. | SGP | 69,625,080,048.90 | 0.89 | 0.10 | 10 |
ABC | BOC | CCB | CMB | CMS | HUX | ICC | SGP | |
---|---|---|---|---|---|---|---|---|
Mean | −0.01 | −0.01 | −0.01 | 0.01 | 0.01 | 0.01 | −0.01 | 0.01 |
Standard Error | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Dickey-Fuller p-Value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Standard Deviation | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.17 |
Sample Variance | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 |
Kurtosis | 29.53 | 9.64 | 22.30 | 6.52 | 8.38 | 21.50 | 9.55 | 730.30 |
Skewness | −0.89 | −0.46 | 0.94 | 0.25 | 0.63 | −0.17 | −0.44 | −2.85 |
Minimum | −0.21 | −0.16 | −0.17 | −0.15 | −0.15 | −0.37 | −0.16 | −5.34 |
Maximum | 0.14 | 0.13 | 0.32 | 0.19 | 0.27 | 0.33 | 0.12 | 5.35 |
Count | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 |
ABC | BOC | CCB | CMB | CMS | HUX | ICC | SGP | |
---|---|---|---|---|---|---|---|---|
Mean | −0.01 | −0.01 | −0.01 | 0.01 | 0.01 | −0.01 | −0.01 | 0.01 |
Standard Error | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Dickey-Fuller p-Value | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 |
Standard Deviation | 0.04 | 0.11 | 0.03 | 0.04 | 0.07 | 0.10 | 0.04 | 0.13 |
Sample Variance | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
Kurtosis | 21.40 | 129.12 | 39.52 | 19.67 | 208.47 | 251.10 | 10.89 | 408.52 |
Skewness | −0.46 | −0.71 | 1.61 | 0.26 | −1.96 | −7.15 | −0.40 | 3.33 |
Minimum | −0.40 | −1.66 | −0.29 | −0.49 | −1.79 | −2.73 | −0.32 | −2.95 |
Maximum | 0.32 | 2.02 | 0.50 | 0.41 | 1.41 | 1.39 | 0.27 | 3.58 |
Count | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 |
ABC | BOC | CCB | CMB | CMS | HUX | ICC | SGP | |
---|---|---|---|---|---|---|---|---|
Mean | −0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Standard Error | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Dickey-Fuller p-Value | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | −0.01 | 0.01 |
Standard Deviation | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Sample Variance | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Kurtosis | 367.97 | 351.15 | 247.76 | 253.10 | 218.59 | 257.42 | 392.18 | 199.94 |
Skewness | −6.59 | −7.68 | −2.00 | −6.55 | −5.65 | −6.64 | −7.40 | −3.86 |
Minimum | −0.82 | −0.82 | −0.59 | −0.69 | −0.58 | −0.74 | −0.88 | −0.63 |
Maximum | 0.57 | 0.54 | 0.53 | 0.44 | 0.44 | 0.42 | 0.54 | 0.50 |
Count | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 | 3129.00 |
Panel A: Mean Equation | ||||||||
ABC | BOC | CCB | CMB | CMS | HUX | ICC | SGP | |
ABC | ||||||||
BOC | −0.01 | |||||||
CCB | 0.01 | 0.01 * | ||||||
CMB | 0.01 * | 0.01 ** | 0.01 *** | |||||
CMS | 0.01 ** | 0.01 ** | 0.01*** | 0.01 *** | ||||
HUX | 0.01 | 0.01 ** | 0.01 ** | 0.01 *** | 0.01* | |||
ICC | −0.01 *** | 0.01 ** | 0.01 *** | 0.01 *** | 0.01 *** | 0.01 *** | ||
SGP | 0.01 | 0.01 | 0.01 *** | 0.01 * | 0.01 | 0.01 ** | 0.01 ** | |
Panel B: Variance Equation | ||||||||
ABC | ||||||||
BOC | 0.01 *** | |||||||
CCB | 0.01 ** | 0.01 * | ||||||
CMB | 0.01 * | 0.01 | 0.01 | |||||
CMS | 0.01 *** | 0.01 *** | 0.01 ** | 0.01 * | ||||
HUX | 0.01 ** | 0.01 ** | 0.01 ** | 0.01 ** | 0.01 ** | |||
ICC | 0.01 *** | 0.01 *** | 0.01 ** | 0.01 ** | 0.01 *** | 0.01 *** | ||
SGP | 0.01 ** | 0.01 *** | 0.01 ** | 0.01 *** | 0.01 *** | 0.01 *** | 0.01 *** | |
Panel C: Correlation Equation | ||||||||
ABC | ||||||||
BOC | 0.73 *** | |||||||
CCB | 0.26 *** | 0.36 *** | ||||||
CMB | 0.39 *** | 0.63 *** | 0.42 *** | |||||
CMS | 0.42 *** | 0.66 *** | 0.37 *** | 0.73 *** | ||||
HUX | 0.21 | 0.49 ** | 0.33 *** | 0.56 *** | 0.67 *** | |||
ICC | 0.59 *** | 0.82 *** | 0.38 *** | 0.63 *** | 0.63 *** | 0.47 *** | ||
SGP | 0.31 * | 0.60 *** | 0.38 *** | 0.70 *** | 0.70 *** | 0.57 *** | 0.58 *** |
Panel A: Mean Equation | ||||||||
ABC | BOC | CCB | CMB | CMS | HUX | ICC | SGP | |
ABC | ||||||||
BOC | −0.01 | |||||||
CCB | 0.01 | 0.01 * | ||||||
CMB | 0.01 * | 0.01 | 0.01 * | |||||
CMS | 0.01 | −0.01 | 0.01 * | 0.01 | ||||
HUX | 0.01 * | 0.01 | 0.01 | 0.01 ** | 0.01 ** | |||
ICC | 0.01 | 0.01 | 0.01 * | 0.01 ** | 0.01 ** | 0.01 *** | ||
SGP | 0.01 | 0.01* | 0.01 *** | 0.01 | 0.01 | 0.01 | 0.01 | |
Panel B: Variance Equation | ||||||||
ABC | ||||||||
BOC | 0.01 *** | |||||||
CCB | 0.01 *** | 0.01 *** | ||||||
CMB | 0.01 | 0.01 | 0.01 * | |||||
CMS | 0.01 *** | 0.01 ** | 0.01 ** | 0.01 *** | ||||
HUX | 0.01 ** | 0.01 ** | 0.01 | 0.01 ** | 0.01 ** | |||
ICC | 0.01 ** | 0.01 * | 0.01 ** | 0.01 | 0.01 | 0.01 | ||
SGP | 0.01 ** | 0.01 ** | 0.01 * | 0.01 * | 0.01 *** | 0.01 ** | 0.01 ** | |
Panel C: Correlation Equation | ||||||||
ABC | ||||||||
BOC | 0.52 *** | |||||||
CCB | 0.30 *** | 0.39 *** | ||||||
CMB | 0.37 *** | 0.65 *** | 0.40 *** | |||||
CMS | 0.42 ** | 0.67 *** | 0.48 *** | 0.79 *** | ||||
HUX | 0.44 *** | 0.58 *** | 0.33 *** | 0.66 *** | 0.73 *** | |||
ICC | 0.61 *** | 0.81 *** | 0.46 *** | 0.73 *** | 0.73 *** | 0.63 *** | ||
SGP | 0.40 ** | 0.65 *** | 0.42 *** | 0.77 *** | 0.77 *** | 0.69 *** | 0.70 *** |
Panel A: Mean Equation | ||||||||
ABC | BOC | CCB | CMB | CMS | HUX | ICC | SGP | |
ABC | ||||||||
BOC | −0.01 | |||||||
CCB | −0.01 | 0.01 * | ||||||
CMB | 0.01 | 0.01 | 0.01 *** | |||||
CMS | 0.01 | 0.01 | 0.01 *** | 0.01 ** | ||||
HUX | −0.01 | 0.01 | 0.01 * | 0.01 * | 0.01 ** | |||
ICC | −0.01 ** | 0.01 * | 0.01 * | 0.01 ** | −0.01 | 0.01 ** | ||
SGP | −0.01 | 0.01 | 0.01 | 0.01 *** | 0.01 * | 0.01 | 0.01 | |
Panel B: Variance Equation | ||||||||
ABC | ||||||||
BOC | 0.01 | |||||||
CCB | 0.01 | 0.01 * | ||||||
CMB | 0.01 | 0.01 ** | 0.01 | |||||
CMS | 0.01 | 0.01 | 0.01 | 0.01 | ||||
HUX | 0.01 | 0.01 *** | 0.01 * | 0.01 ** | 0.01 * | |||
ICC | 0.01 | 0.01 *** | 0.01 *** | 0.01 *** | 0.01 | 0.01 *** | ||
SGP | 0.01 | 0.01 | 0.01 | 0.01 *** | 0.01 | 0.01 | 0.01 | |
Panel C: Correlation Equation | ||||||||
ABC | ||||||||
BOC | 0.84 *** | |||||||
CCB | 0.58 *** | 0.63 *** | ||||||
CMB | 0.72 *** | 0.79 *** | 0.65 *** | |||||
CMS | 0.66 *** | 0.76 *** | 0.62 *** | 0.80 *** | ||||
HUX | 0.73 *** | 0.81 *** | 0.66 *** | 0.83 *** | 0.79 *** | |||
ICC | 0.82 *** | 0.87 *** | 0.64 *** | 0.80 *** | 0.77 *** | 0.79 *** | ||
SGP | 0.65 *** | 0.78 *** | 0.68 *** | 0.83 *** | 0.82 *** | 0.83 *** | 0.74 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, T.; Scagnelli, S.; Yong, J.; Zhang, Z. Non-Traditional Systemic Risk Contagion within the Chinese Banking Industry. Sustainability 2021, 13, 7954. https://doi.org/10.3390/su13147954
Choudhury T, Scagnelli S, Yong J, Zhang Z. Non-Traditional Systemic Risk Contagion within the Chinese Banking Industry. Sustainability. 2021; 13(14):7954. https://doi.org/10.3390/su13147954
Chicago/Turabian StyleChoudhury, Tonmoy, Simone Scagnelli, Jaime Yong, and Zhaoyong Zhang. 2021. "Non-Traditional Systemic Risk Contagion within the Chinese Banking Industry" Sustainability 13, no. 14: 7954. https://doi.org/10.3390/su13147954
APA StyleChoudhury, T., Scagnelli, S., Yong, J., & Zhang, Z. (2021). Non-Traditional Systemic Risk Contagion within the Chinese Banking Industry. Sustainability, 13(14), 7954. https://doi.org/10.3390/su13147954