Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Pot Experiment
2.3. Soil Analysis
2.4. Plant Analysis
2.5. Determination of Antioxidant Enzymatic Activities
2.6. Nitrogen Harvest Index
2.7. Nitrogen Use Efficiency
2.8. Nitrogen Yield Efficiency
2.9. Physiological Nitrogen Efficiency
2.10. Photosynthetic Nitrogen Use Efficiency
2.11. Statistical Analysis
3. Results
3.1. Physiological Stress Indicators of Plants
3.2. Leaf Area and Physiological Attributes of Maize Plants
3.3. Antioxidant Enzyme Activities
3.4. Nitrogen Use Efficiencies of Maize Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Availability of Data and Materials
Ethics Approval and Consent to Participate
Conflicts of Interest
References
- Schwabele, K.A.; Iddo, K.; Knap, K.C. Drain water management for salinity mitigation in irrigated agriculture. Am. J. Agric. Econ. 2006, 88, 133–140. [Google Scholar] [CrossRef]
- Bray, E.A.; Bailey-Serres, J.; Weretilnyk, E. Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants; Buchanan, B.B., Gruissem, W., Jones, R.L., Eds.; American Society of Plant Biologists: Rockville, MD, USA, 2000; pp. 1158–1203. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi. J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Li, F.; Yang, P.; Ren, S.; Wang, S.; Wang, Y.; Xu, Z.; Xu, Y.; Wei, R.; Zhang, Y. Effects of irrigation water salinity on soil properties, N2O emission and yield of spring maize under mulched drip irrigation. Water 2019, 11, 1548. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.X.; Zhang, Z.Y.; Wan, C.Y.; Lu, P.R.; Bakour, A. Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agric. Water Manag. 2017, 193, 205–213. [Google Scholar] [CrossRef]
- Abideen, Z.; Ansari, R.; Gul, B.; Khan, M.A. Theplace of halophytes in Pakistan’s biofuel industry. Biofuels 2012, 3, 211–220. [Google Scholar] [CrossRef]
- Rubio, J.S.; Garcia-Sanchez, F.; Rubio, F.; Martinez, V. Yield, blossom-end rot incidence and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Sci. Horti. 2009, 119, 79–87. [Google Scholar] [CrossRef]
- Xiong, L.; Schumaker, K.S.; Zhu, J.K. Cell signaling during cold, drought, and salt stress. Plant Cell 2002, 14, S165–S183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, S.S. Effect of compost and nitrogen fertilization on yield and nutrients uptake of rice crop under saline soil. Mod. Chem. Appl. 2016, 4, 183. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, V.; Syvertsen, J.P.; Nieves, M.; Simón, I.; Martínez, V.; García-Sánchez, F. Additional nitrogen fertilization affects salt tolerance of lemon trees on different rootstocks. Sci. Horti. 2009, 121, 298–305. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Almansa, M.S. Short term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant. 2002, 115, 251–257. [Google Scholar] [CrossRef] [PubMed]
- El-Shintinawy, F.; El-Ansary, A. Differential Effect effect of Cd2+ and Ni2+ on amino acid metabolism in soybean seedlings. Biol. Plant. 2000, 43, 79–84. [Google Scholar] [CrossRef]
- Muradoglu, F.; Gundogdu, M.; Ercisli, S.; Encu, T.; Balta, F.; Jaafar, H.Z.; Zia-Ul-Haq, M. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol. Res. 2015, 48, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nathawat, N.S.; Kuhad, M.S.; Goswami, C.L.; Patel, A.L.; Kumar, R. Nitrogen-metabolizing enzymes: Effect of nitrogen sources and saline irrigation. J. Plant Nutr. 2005, 28, 1089–1101. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J. Plant Physiol. 2004, 161, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Nadian, H.; Nateghzadwh, B.; Jafari, S. Effect of salinity and nitrogen fertilizers on some quantity and quality parameters of sugarcane (Saccharum sp.). J. Food Agric. Environ. 2012, 10, 470–474. [Google Scholar]
- Khan, H.R.; Ashraf, M.; Shahzad, S.M.; Aziz, A.; Piracha, M.A.; Siddiqui, A.R. Adequate regulation of plant nutrients for improving cotton adaptability to salinity stress. J. Appl. Agric. Biotechnol. 2016, 1, 47–56. [Google Scholar]
- Guo, J.S.; Zhou, Q.; Li, X.J.; Yu, B.J.; Luo, Q.Y. Enhancing NO3− supply confers NaCl tolerance by adjusting Cl− uptake and transport in G. max and G. soja. J. Soil Sci. Plant Nutr. 2017, 17, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Heidari, A.; Toorchi, M.; Bandehagh, A.; Shakiba, M. Effect of NaCl stress on growth, water relations, organic and inorganic osmolytes accumulation in sunflower (Helianthus annuus L.) lines. Univ. J. Environ. Res. Technol. 2011, 3, 351–362. [Google Scholar]
- Fayez, K.A.; Bazaid, S.A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci. 2014, 13, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.S.; Ashraf, M. Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of potassium nitrate. J. Appl. Bot. Food Qual. 2009, 83, 19–27. [Google Scholar]
- Bahmanzadegan, M.J.; Aboutalebi, A. Effect of ammonium nitrate on dry weight, sodium and potassium levels of French marigold (Tageta patula) in salinity stress condition. J. Nov. Appl. Sci. 2013, 2S, 835–840. [Google Scholar]
- Iglesias, D.J.; Levy, Y.; Gomez-Cadenas, A.; Tadeo, F.R.; Primo-Millo, E.; Talon, M. Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Tree Physiol. 2004, 24, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Rais, I.; Masood, A.; Inam, A.; Khan, N. Sulfur and nitrogen coordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salt stress. J. Plant Biochem. Physiol. 2013, 1, 101. [Google Scholar] [CrossRef] [Green Version]
- Bybordi, A. Effects of salinity on yield and component characters in canola (Brassica napus L.) cultivars. Not. Sci. Biol. 2010, 2, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Nhung, P.T.H.; Hanh, T.T.; Bertin, P.; Cuong, P.V. Effect of inorganic nitrogen forms and concentrations on growth of rice genotypes under severe saline condition. Viet. J. Agric. Sci. 2017, 15, 189–197. [Google Scholar]
- Kabir, M.E.; Hamid, A.; Haque, M.M.; Nawata, E.; Karim, M.A. Effect of nitrogen fertilizer on salinity tolerance of mungbean (Vigna radiata L. Wilczek). Jap. J. Trop. Agri. 2005, 49, 119–125. [Google Scholar]
- Tabatabaei, S.J. Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Sci. Horti. 2006, 108, 432–438. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1967. [Google Scholar]
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M.; Tabatabai, M.A. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Comm. Soil Sci. Plant Anal. 1972, 3, 159–165. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Banderis, A.D., Barter, D.H., Anderson, K., Eds.; Circular 939; U.S. Department of Agriculture: Washington, DC, USA, 1954; pp. 1–19.
- Hanway, J.J.; Heidel, H. Soil analysis methods as used in Iowa state college, Soil Testing Laboratory. Iowa Agric. 1952, 54, 1–31. [Google Scholar]
- Brady, N.C.; Weil, R.R.; Weil, R.R. The Nature and Properties of Soils, 12th ed.; Prentice Hall Publishers: London, UK, 1990; p. 740. [Google Scholar]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, J.; Kumar, P. Effects of plant growth regulators and sucrose on postharvest physiology, membrane stability and vase life of cut spikes of gladiolus. Plant Growth Reg. 2008, 55, 221. [Google Scholar] [CrossRef]
- Shabala, S.N.; Shabala, S.I.; Martynenko, A.I.; Babourina, O.; Newman, I.A. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: A comparative survey and prospects for screening. Fun. Plant Biol. 1998, 25, 609–616. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Hak, R.; Rinderle, U. The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content. Photosynth. Res. 1990, 25, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Mukherjee, S.P.; Choudhuri, M.A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol. Plant. 1983, 58, 166–170. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Maehly, A.; Chance, B. Catalases and peroxidases. Methods Biochem. Anal. 1954, 1, 357–424. [Google Scholar] [PubMed]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Ye, Q.; Zhang, H.; Wei, H.; Zhang, Y.; Wang, B.; Xia, K.; Huo, Z.; Dai, Q.; Xu, K. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Front. Agric. China 2007, 1, 30–36. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization1. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Dawson, J.C.; Huggins, D.R.; Jones, S.S. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low input and organic agricultural systems. Field Crop. Res. 2008, 107, 89–101. [Google Scholar] [CrossRef]
- Poorter, H.; Evans, J.R. Photosynthetic nitrogen use efficiency of species that differ inherently in specific leaf area. Oecologia 1998, 116, 26–37. [Google Scholar] [CrossRef]
- Smith, B.D.; Srivastava, R. Physical Sciences Data, Thermodynamic Data for Pure Compounds, Part A: Hydrocarbons and Ketones, 25th ed.; Elsevier: New York, NY, USA, 1986. [Google Scholar]
- Steel, R.G.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biological Approach, 3rd ed.; McGraw-Hill. Co., Inc.: New York, NY, USA, 1997. [Google Scholar]
- Ahmad, P.; Azooz, M.M.; Prasad, M.N.V. Ecophysiology and responses of plants under salt stress. Spring. Sci. Busin. Med. 2013, 512. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, M.I.R.; Asgher, M.; Fatma, M.; Masood, A.; Syeed, S. Salinity tolerance in plants: Revisiting the role of sulfur metabolites. J. Plant Biochem. Physiol. 2014, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Kamel, M. Improving the tolerance of Vicia faba against environmental salinity resulted from the irrigation with sea water by using KNO3 and (NH4)2SO4 as chemical osmo-regulators. Acta Biol. Colomb. 2012, 17, 295–308. [Google Scholar]
- Arghavani, M.A.; Zaeimzadeh, A.; Savadkoohi, S.; Samiei, L. Salinity tolerance of Kentucky bluegrass as affected by nitrogen fertilization. J. Agric. Sci. Technol. 2017, 19, 173–183. [Google Scholar]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotech. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef]
- Habib, N.; Ali, Q.; Ali, S.; Javed, M.T.; Haider, M.Z.; Perveen, R.; Shahid, M.R.; Rizwan, M.; Abdel-Daim, M.M.; Elkelish, A. Use of Nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: Growth, osmoregulation, and antioxidative defense mechanism. Plants 2020, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Iqbal, J.; Mohsan, M. Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pak. J. Bot. 2010, 42, 141–154. [Google Scholar]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agron. J. 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Ghalati, R.E.; Shamili, M.; Homaei, A. Effect of putrescine on biochemical and physiological characteristics of guava (Psidium guajava L.) seedlings under salt stress. Sci. Horti. 2020, 261, 108961. [Google Scholar] [CrossRef]
- Singh, M.; Singh, V.P.; Prasad, S.M. Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiol. Biochem. 2019, 141, 466–476. [Google Scholar] [CrossRef]
- Sikder, R.K.; Wang, X.; Zhang, H.; Gui, H.; Dong, Q.; Jin, D.; Song, M. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants 2020, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Fangmeier, A. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Liu, Y.; Chen, X.P. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, H.; Atkinson, A.; Kawaguchi, S.; Krafft, B.A.; Milinevsky, G.; Nicol, S.; Werner, T. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 2012, 458, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hnilickova, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Ma, B.L.; Wu, W.; Ahmad, I.; Zhu, G.L.; Yan, W.Y.; Jiao, X. Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
Soil Properties | Value | References |
---|---|---|
Physical properties | ||
Sand (g kg−1) | 581.0 | Bouyoucos [29] |
Silt (g kg−1) | 293.0 | |
Clay (g kg−1) | 126.0 | |
Textural class | Sandy clay loam | |
Saturation percentage | 34 | |
Chemical properties | ||
pH | 7.85 ± 0.06 | Jackson [30] |
Electrical conductivity (μS cm−1) | 1114 ± 39.23 | |
Organic matter (g kg−1) | 9.97 ± 1.14 | Walkley and Black [31] |
Total organic C (g kg−1) | 5.87 ± 0.31 | |
Dissolved organic C (mg kg−1) | 45.90 ± 4.65 | |
Total N (mg kg−1) | 264.04 ± 9.40 | Bremner and Tabatabai [32] |
Available P (mg kg−1) | 8.94 ± 0.67 | Olsen et al. [33] |
Available K (mg kg−1) | 189.4 ± 9.42 | Hanway and Heidel [34] |
Nitrogen Levels | Relative Water Content (%) | Membrane Stability Index (%) | Electrolyte Leakage (%) | Proline Content (µmol g−1 DW) | Malondialdehyde Content (mg g−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | |
N0: control (untreated) | 74.41 c | 59.68 f | 33.37 d | 17.65 h | 66.63 d | 82.35 a | 4.25 d | 12.11 a | 19.11 e | 37.49 a |
N1: 160 kg ha−1 | 75.53 bc | 62.55 ef | 33.51 cd | 19.41 fg | 66.49 d | 80.59 ab | 4.02 d | 11.39 a | 17.73 ef | 35.81 abc |
N2: 186 kg ha−1 | 77.01 abc | 62.63 ef | 34.28 bcd | 20.27 f | 65.72 d | 79.73 ab | 4.08 d | 11.72 a | 17.64 ef | 35.15 bc |
N3: 220 kg ha−1 | 77.39 abc | 63.61 e | 34.35 abc | 20.29 f | 65.65 d | 79.71 ab | 3.97 d | 11.65 a | 17.40 efg | 35.71 abc |
N4: 267 kg ha−1 | 78.07 ab | 68.66 d | 35.55 ab | 23.44 e | 64.45 d | 76.56 bc | 3.92 d | 10.27 b | 16.05 fg | 34.07 cd |
N5: 293 kg ha −1 | 79.15 a | 70.57 d | 36.81 a | 26.04 e | 63.19 d | 73.96 c | 3.86 d | 8.90 c | 15.44 g | 32.38 d |
N6: 320 kg ha−1 | 74.47 c | 61.14 ef | 33.18 cd | 16.86 gh | 66.82 d | 83.14 a | 4.17 d | 11.83 a | 18.09 ef | 36.53 ab |
Interactions between salinity levels and nitrogen levels | ||||||||||
SL | 342.77 *** | 908.86 *** | 219.37 *** | 1779.17 *** | 1923.38 *** | |||||
NL | 10.24 *** | 16.34 *** | 3.20 * | 8.05 *** | 7.18 *** | |||||
SL × NL | 1.94 * | 2.38 * | 0.73 ns | 5.37 *** | 0.22 ns | |||||
CV | 3.58 | 8.33 | 4.83 | 8.29 | 5.82 |
Nitrogen Levels | Leaf Area (cm2) | Chlorophyll a Content (mg g−1) | Chlorophyll b Content (mg g−1) | Total Chlorophyll Content (mg g−1) | Carotenoid Content (mg g−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | |
N0: control (untreated) | 361.11 f | 286.10 i | 1.95 c | 1.23 g | 1.15 d | 0.73 g | 3.10 c | 1.96 f | 0.605 c | 0.442 e |
N1: 160 kg ha−1 | 375.91 de | 303.91 h | 2.06 bc | 1.34 fg | 1.20 cd | 0.77 fg | 3.26 bc | 2.11 ef | 0.612 bc | 0.448 de |
N2: 186 kg ha−1 | 384.75 cd | 313.75 g | 2.15 ab | 1.35 fg | 1.25 bc | 0.78 fg | 3.40 ab | 2.13 e | 0.615 bc | 0.455 de |
N3: 220 kg ha−1 | 389.75 c | 315.75 g | 2.17 ab | 1.38 ef | 1.26 abc | 0.80 f | 3.43 a | 2.18 e | 0.619 abc | 0.459 de |
N4: 267 kg ha−1 | 423.69 b | 366.96 ef | 2.21 a | 1.51 de | 1.29 ab | 0.88 e | 3.50 a | 2.39 d | 0.636 ab | 0.470 d |
N5: 293 kg ha −1 | 436.42 a | 374.86 e | 2.24 a | 1.59 d | 1.33 a | 0.92 e | 3.56 a | 2.51 d | 0.646 a | 0.474 d |
N6: 320 kg ha−1 | 359.75 f | 289.84 i | 2.00 c | 1.31 fg | 1.16 d | 0.76 fg | 3.15 c | 2.07 ef | 0.601 c | 0.443 e |
Interactions between salinity levels and nitrogen levels | ||||||||||
SL | 1547.38 *** | 827.81 *** | 1192.67 *** | 1267.08 *** | 1026.30 *** | |||||
NL | 198.80 *** | 11.31 *** | 16.70 *** | 17.43 *** | 4.63 ** | |||||
SL × NL | 2.19 * | 0.82 ns | 0.83 ns | 1.05 ns | 0.11 ns | |||||
CV | 1.83 | 5.42 | 4.53 | 4.38 | 3.55 |
Nitrogen Levels | Catalase Activity (U mg−1 Protein) | Peroxidase Activity (U mg−1 Protein) | Superoxide Dismutase activity (U mg−1 Protein) | |||
---|---|---|---|---|---|---|
Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | |
N0: control (untreated) | 30.11 e | 48.45 a | 32.91 e | 51.74 a | 35.93 d | 54.76 a |
N1: 160 kg ha−1 | 28.65 efg | 47.09 ab | 30.50 efg | 48.94 ab | 33.03 ef | 52.24 ab |
N2: 186 kg ha−1 | 28.03 efg | 45.39 abc | 29.67 fg | 47.83 bc | 32.88 ef | 51.91 b |
N3: 220 kg ha−1 | 26.43 fgh | 44.84 bc | 28.32 fgh | 47.23 bc | 31.18 fg | 50.08 b |
N4: 267 kg ha−1 | 25.35 gh | 42.76 cd | 27.63 gh | 44.78 cd | 29.53 gh | 46.61 c |
N5: 293 kg ha −1 | 23.36 h | 40.50 d | 25.46 h | 42.49 d | 27.22 h | 43.90 c |
N6: 320 kg ha−1 | 28.86 ef | 46.04 abc | 31.28 ef | 49.44 ab | 33.98 de | 52.70 ab |
Interactions between salinity levels and nitrogen levels | ||||||
SL | 768.89 *** | 939.66 *** | 1281.69 *** | |||
NL | 8.65 *** | 12.55 *** | 24.33 *** | |||
SL × NL | 0.13 ns | 0.23 ns | 0.58 ns | |||
CV | 6.63 | 5.75 | 4.66 |
Nitrogen Levels | N Harvest Index (%) | NUE (g DM g−1 N) | NYE (g DM g−1 N) | PNE (g DM g−1 N) | PNUE (g DM g−1 N) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | Control | 10 dS m−1 | |
N0: control (untreated) | 13.92 e | 10.03 f | - | - | - | - | - | - | 6.10 ef | 4.49 g |
N1: 160 kg ha−1 | 27.49 c | 22.51 d | 1.71 e | 1.37 f | 8.78 d | 5.20 g | 9.11 cd | 5.61 e | 8.35 cd | 5.60 f |
N2: 186 kg ha−1 | 29.28 bc | 22.53 d | 1.85 cd | 1.44 f | 9.49 cd | 5.71 fg | 9.50 c | 5.80 e | 8.98 bc | 6.56 e |
N3: 220 kg ha−1 | 31.39 b | 24.21 d | 1.91 bc | 1.48 f | 10.34 b | 6.01 f | 9.61 bc | 5.90 e | 9.49 b | 6.78 e |
N4: 267 kg ha−1 | 36.02 a | 29.63 bc | 2.03 ab | 1.74 de | 11.79 a | 7.36 e | 10.21 b | 6.07 e | 11.73 a | 8.06 d |
N5: 293 kg ha −1 | 37.55 a | 31.28 b | 2.10 a | 1.81 cde | 12.16 a | 7.74 e | 11.83 a | 8.66 d | 11.96 a | 8.52 cd |
N6: 320 kg ha−1 | 29.78 bc | 22.57 d | 1.85 cd | 1.46 f | 9.63 bc | 5.79 bc | 9.23 cd | 5.66 e | 8.40 cd | 6.58 e |
Interactions between salinity levels and nitrogen levels | ||||||||||
SL | 168.83 *** | 183.54 *** | 771.59 *** | 661.64 *** | 396.58 *** | |||||
NL | 137.41 *** | 24.07 *** | 43.08 *** | 39.58 *** | 92.34 *** | |||||
SL × NL | 0.99 ns | 0.84 ns | 1.10 ns | 0.85 ns | 6.43 *** | |||||
CV | 6.68 | 5.29 | 6.08 | 6.03 | 6.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, S.A.; Arif, M.S.; Shahzad, S.M.; Ashraf, M.; Kausar, R.; Farooq, T.H.; Hussain, M.I.; Shakoor, A. Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply? Sustainability 2021, 13, 8022. https://doi.org/10.3390/su13148022
Javed SA, Arif MS, Shahzad SM, Ashraf M, Kausar R, Farooq TH, Hussain MI, Shakoor A. Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply? Sustainability. 2021; 13(14):8022. https://doi.org/10.3390/su13148022
Chicago/Turabian StyleJaved, Syed Ayyaz, Muhammad Saleem Arif, Sher Muhammad Shahzad, Muhammad Ashraf, Rizwana Kausar, Taimoor Hassan Farooq, M. Iftikhar Hussain, and Awais Shakoor. 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?" Sustainability 13, no. 14: 8022. https://doi.org/10.3390/su13148022
APA StyleJaved, S. A., Arif, M. S., Shahzad, S. M., Ashraf, M., Kausar, R., Farooq, T. H., Hussain, M. I., & Shakoor, A. (2021). Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply? Sustainability, 13(14), 8022. https://doi.org/10.3390/su13148022