Area-Based Policies and Potential Health Benefits: A Quasi-Experimental Cohort Study in Vulnerable Urban Areas of Andalusia (Spain)
Abstract
:1. Introduction
Theory and Hypotheses
2. Materials and Methods
2.1. Area Based Interventions Analyzed
2.2. Quasi-Experimental Cohort Design: “Targeted” vs. “Control” Areas
2.3. Preventable and Less Preventable Mortality
2.4. Analyses
3. Results
4. Discussion
- (1)
- The selection of outcome variables and the specification of our main hypotheses were guided by the propositions of the fundamental cause theory, with the aim of addressing some of the shortcomings in the theoretical formulation of this type of research.
- (2)
- We have tried to consider a sufficiently extended temporal space, using a longitudinal follow-up of the whole population for 14 years. The potential effects of the interventions can thus be observed for the whole population, rather than on limited samples of it.
- (3)
- Through implementing a quasi-experimental cohort design, we have tried to deal with the problems introduced by the change in the composition of the population of the targeted areas, evaluating the trends in the changes that have occurred in these areas in relation to those produced in a group of comparison areas during the same period. In this way, we aimed to enhance the causal inference of the evaluation.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Urban Vulnerability Atlas Data
References
- WHO, UN-Habitat. Hidden Cities: Unmasking and Overcoming Health Inequities in Urban Settings; World Health Organization: Kobe, Japan, 2010. [Google Scholar]
- Galea, S.; Vlahov, D. Urban health: Evidence, challenges, and directions. Annu. Rev. Public Health 2005, 26, 341–365. [Google Scholar] [CrossRef] [Green Version]
- CSDH. Closing the Gap in a Generation: Health Equity through Action on the Social Determinants of Health. Final Report of the Commission on Social Determinants of Health; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Pearce, J. An Environmental Justice Framework for Understanding Neighbourhood Inequalities in Health and Well-Being. In Neighbourhood Effects or Neighbourhood Based Problems? Manley, D., van Ham, M., Bailey, N., Simpsom, L., Mclennan, D., Eds.; Springer: London, UK, 2013; pp. 89–112. [Google Scholar]
- MacGregor, C. Urban regeneration as a public health intervention. J. Soc. Interv. Theory Pract. 2010, 19, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Macintyre, S.; Ellaway, A.; Cummins, S. Place effects on health: How can we conceptualise, operationalise and measure them? Soc. Sci. Med. 2002, 55, 125–139. [Google Scholar] [CrossRef]
- Burton, P.; Goodlad, R.; Croft, J. How would we know what works? Context and complexity in the evaluation of community involvement. Evaluation 2006, 12, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Bernard, P.; Charafeddine, R.; Frohlich, K.L.; Daniel, M.; Kestens, Y.; Potvin, L. Health inequalities and place: A theoretical conception of neighbourhood. Soc. Sci. Med. 2007, 65, 1839–1852. [Google Scholar] [CrossRef] [PubMed]
- Mehdipanah, R.; Manzano, A.; Borrell, C.; Malmusi, D.; Rodriguez-Sanz, M.; Greenhalgh, J.; Muntaner, C.; Pawson, R. Exploring complex causal pathways between urban renewal, health and health inequality using a theory-driven realist approach. Soc. Sci. Med. 2015, 124, 266–274. [Google Scholar] [CrossRef]
- Thomson, H. A dose of realism for healthy urban policy: Lessons from area-based initiatives in the UK. J. Epidemiol. Community Health 2008, 62, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Thomson, H.; Atkinson, R.; Petticrew, M.; Kearns, A. Do urban regeneration programmes improve public health and reduce health inequalities? A synthesis of the evidence from UK policy and practice (1980–2004). J. Epidemiol. Community Health 2006, 60, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdipanah, R.; Rodríguez-Sanz, M.; Malmusi, D.; Muntaner, C.; Díez, E.; Bartoll, X.; Borrell, C. The effects of an urban renewal project on health and health inequalities: A quasi-experimental study in Barcelona. J. Epidemiol. Community Health 2014, 68, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Abel, T.; Frohlich, K.L. Capitals and capabilities: Linking structure and agency to reduce health inequalities. Soc. Sci. Med. 2012, 74, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Musterd, S. Area-based policies: A critical appraisal. Tijdschr. Voor Econ. Soc. Geogr. 2005, 96, 377–389. [Google Scholar] [CrossRef]
- Van Gent, W.P.; Musterd, S.; Ostendorf, W. Disentangling neighbourhood problems: Area-based interventions in Western European cities. Urban Res. Pract. 2009, 2, 53–67. [Google Scholar] [CrossRef]
- Stafford, M.; Badland, H.; Nazroo, J.; Halliday, E.; Walthery, P.; Povall, S.; Dibben, C.; Whitehead, M.; Popay, J. Evaluating the health inequalities impact of area-based initiatives across the socioeconomic spectrum: A controlled intervention study of the New Deal for Communities, 2002–2008. J. Epidemiol. Community Health 2014, 68, 979–986. [Google Scholar] [CrossRef]
- Zapata-Moya, A.R.; Navarro-Yáñez, C.J. Impact of area regeneration policies: Performing integral interventions, changing opportunity structures and reducing health inequalities. J. Epidemiol. Community Health 2017, 71, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapata-Moya, A.R.; Navaro-Yáñez, C.J. Urban regeneration policies and mental health in a context of economic crisis in Andalusia (Spain). J. Hous. Built Environ. 2021, 36, 393–405. [Google Scholar] [CrossRef]
- Rossi, P.H. Evaluating community development programs: Problems and prospects. In Urban Problems and Community Development; Fergusson, R.F., Dickens, W.T., Eds.; The Brookings Institution: Washington, DC, USA, 1999; pp. 521–569. [Google Scholar]
- Link, B.G.; Phelan, J. Social conditions as fundamental causes of disease. J. Health Soc. Behav. 1995, 35, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Phelan, J.C.; Link, B.G.; Diez-Roux, A.; Kawachi, I.; Levin, B. “Fundamental causes” of social inequalities in mortality: A test of the theory. J. Health Soc. Behav. 2004, 45, 265–285. [Google Scholar] [CrossRef]
- Phelan, J.C.; Link, B.G.; Tehranifar, P. Social conditions as fundamental causes of health inequalities: Theory, evidence, and policy implications. J. Health Soc. Behav. 2010, 51 (Suppl. 1), S28–S40. [Google Scholar] [CrossRef] [Green Version]
- Phelan, J.C.; Link, B.G. Controlling disease and creating disparities: A fundamental cause perspective. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2005, 60, S27–S33. [Google Scholar] [CrossRef]
- Polonijo, A.N.; Carpiano, R.M. Social inequalities in adolescent human papillomavirus (HPV) vaccination: A test of fundamental cause theory. Soc. Sci. Med. 2013, 82, 115–125. [Google Scholar] [CrossRef]
- Rubin, M.S.; Clouston, S.; Link, B.G. A fundamental cause approach to the study of disparities in lung cancer and pancreatic cancer mortality in the United States. Soc. Sci. Med. 2014, 100, 54–61. [Google Scholar] [CrossRef]
- Masters, R.K.; Link, B.G.; Phelan, J.C. Trends in education gradients of ‘preventable’ mortality: A test of fundamental cause theory. Soc. Sci. Med. 2015, 127, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanthomme, K.; Vandenheede, H.; Hagedoorn, P.; Gadeyne, S. Evolution of educational inequalities in site-specific cancer mortality among Belgian men between the 1990s and 2000s using a “fundamental cause” perspective. BMC Cancer 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenbach, J.P.; Looman, C.W.; Artnik, B.; Bopp, M.; Deboosere, P.; Dibben, C.; Kalediene, R.; Kovács, K.; Leinsalu, M.; Martikainen, P.; et al. ‘Fundamental causes’ of inequalities in mortality: An empirical test of the theory in 20 European populations. Sociol. Health Illn. 2017, 39, 1117–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapata-Moya, Á.R.; Willems, B.; Bracke, P. The (re)production of health inequalities through the process of disseminating preventive innovations: The dynamic influence of socioeconomic status. Health Sociol. Rev. 2019, 28, 177–193. [Google Scholar] [CrossRef]
- Rydland, H.T.; Solheim, E.F.; Eikemo, T.A. Educational inequalities in high-vs. low-preventable health conditions: Exploring the fundamental cause theory. Soc. Sci. Med. 2020, 267, 113145. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Yáñez, C.J.; Echaves-García, A.; Moya Alfonso, R. Las condiciones de partida: Programas, proyectos y contextos de intervención. In Mejorar la Ciudad Transformando sus Barrios. Regeneración Urbana en Andalucía (1990–2015); Navarro, C.J., Ed.; CSPL-Universidad Pablo de Olavide: Seville, Spain, 2016; pp. 23–34. [Google Scholar]
- Ministry of Transport, Mobility and Urban Agenda. (1 April 2021) Observatorio de la Vulnerabilidad Urbana Gobierno de España. Available online: https://www.mitma.gob.es/arquitectura-vivienda-y-suelo/urbanismo-y-politica-de-suelo/observatorio-de-la-vulnerabilidad-urbana (accessed on 15 March 2021).
- Ministry of Public Works. Atlas de la Vulnerabilidad Urbana en España [Atlas of Urban Vulnerability in Spain] Madrid: Ministry of Public Works. 2011. Available online: https://www.mitma.gob.es/arquitectura-vivienda-y-suelo/urbanismo-y-politica-de-suelo/observatorio-de-la-vulnerabilidad-urbana (accessed on 15 March 2021).
- Mackenbach, J.P.; Kulhánová, I.; Bopp, M.; Deboosere, P.; Eikemo, T.A.; Hoffmann, R.; Kulik, M.C.; Leinsalu, M.; Martikainen, P.; Menvielle, G.; et al. Variations in the relation between education and cause-specific mortality in 19 European populations: A test of the “fundamental causes” theory of social inequalities in health. Soc. Sci. Med. 2015, 127, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Clouston, S.A.; Rubin, M.S.; Phelan, J.C.; Link, B.G. A social history of disease: Contextualizing the rise and fall of social inequalities in cause-specific mortality. Demography 2016, 53, 1631–1656. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Moya, Á.R.; Mateos-Mora, C.; Navarro-Yáñez, C.J. Urban Scenes, Cultural Context Exposure and Contemporary Health Lifestyles: A Multilevel Analysis of Spanish Sub-municipal Areas. In Inequality and Uncertainty; Smagacz-Poziemska, M., Gómez, M.V., Pereira, P., Guarino, L., Kurtenbach, S., Villalón, J.J., Eds.; Springer Nature: Singapore, 2020; pp. 273–296. [Google Scholar]
- Centola, D. An experimental study of homophily in the adoption of health behavior. Science 2011, 334, 1269–1272. [Google Scholar] [CrossRef]
- Elstad, J.I. The hierarchical diffusion model and the changing patterns in health-related habits in Norway since the 1970s. In Research Review of Social Inequalities in Health in Norway; Norwegian Social Research (NOVA): Oslo, Norway, 2013; pp. 1–25. [Google Scholar]
Areas | N | Mean | Std. Deviation | 95% Confidence Interval for Mean | Anova | ||
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | F | p-Value | ||||
ARB | 59 | 0.78 | 0.08 | 0.76 | 0.81 | 0.563 | 0.454 |
Control group | 189 | 0.77 | 0.09 | 0.76 | 0.79 | ||
ARB+URBAN | 37 | 0.76 | 0.11 | 0.73 | 0.80 | 0.368 | 0.545 |
Control group | 186 | 0.77 | 0.08 | 0.76 | 0.79 | ||
ARB+ZNTS | 37 | 0.89 | 0.08 | 0.87 | 0.92 | 1.698 | 0.195 |
Control group | 76 | 0.91 | 0.04 | 0.90 | 0.91 | ||
ARB+ZNTS+URBAN | 28 | 0.88 | 0.10 | 0.84 | 0.92 | 2.080 | 0.152 |
Control group | 95 | 0.90 | 0.03 | 0.89 | 0.90 |
Preventable | Less Preventable | All Causes | Behavioral Change and/or Medical Intervention | Medical Intervention | Injuries | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | |||||||||||||
ARB (ref. Comparison Areas) | 1.20 | 1.07 | 1.34 | ** | 1.30 | 1.07 | 1.57 | ** | 1.16 | 1.06 | 1.25 | *** | 0.00 | 1.26 | 1.11 | 0.06 | 0.69 | 0.46 | 1.24 | 0.80 | 1.93 | |||
Period (ref. 2002–2006) | ||||||||||||||||||||||||
2007–2011 | 0.92 | 0.85 | 1.00 | * | 1.01 | 0.88 | 1.17 | 0.96 | 0.91 | 1.02 | 0.03 | 0.90 | 0.82 | 0.36 | 0.90 | 0.72 | 1.09 | 0.80 | 1.48 | |||||
2012–2016 | 0.83 | 0.76 | 0.90 | *** | 1.00 | 0.87 | 1.15 | 0.92 | 0.87 | 0.97 | ** | 0.00 | 0.86 | 0.78 | 0.02 | 0.76 | 0.60 | 0.77 | 0.56 | 1.07 | ||||
ARB*Period | ||||||||||||||||||||||||
ARB*2007–2011 | 0.97 | 0.82 | 1.14 | 0.88 | 0.66 | 1.16 | 1.05 | 0.93 | 1.18 | 0.67 | 0.96 | 0.79 | 0.07 | 1.62 | 0.96 | 0.78 | 0.41 | 1.47 | ||||||
ARB*2012–2016 | 0.95 | 0.80 | 1.12 | 1.03 | 0.78 | 1.34 | 1.03 | 0.92 | 1.16 | 0.13 | 0.86 | 0.71 | 0.00 | 2.21 | 1.32 | 0.45 | 0.20 | 1.00 | * | |||||
Goodness of Fit | ||||||||||||||||||||||||
Log Likelihood | −15,018.92 | −6819.88 | −24,947.37 | −11,343.24 | −3043.42 | −1781.11 | ||||||||||||||||||
Akaike’s Information Criterion (AIC) | 30,067.84 | 13,669.77 | 49,924.75 | 22,716.49 | 6116.85 | 3592.21 | ||||||||||||||||||
Bayesian Information Criterion (BIC) | 30,207.60 | 13,809.52 | 50,064.50 | 22,856.24 | 6256.60 | 3731.97 | ||||||||||||||||||
Likelihood Ratio Chi-Square | 1650.93 | *** | 868.31 | *** | 2430.04 | *** | 1739.90 | *** | 135.63 | *** | 65.10 | *** | ||||||||||||
N deaths | 18,276 | 4560 | 41,670 | 9111 | 1826 | 734 |
Preventable | Less Preventable | All Causes | Behavioral Change and/or Medical Intervention | Medical Intervention | Injuries | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | |||||||||||||
ARB+URBAN (ref. Comparison Areas) | 1.42 | 1.24 | 1.62 | *** | 1.40 | 1.10 | 1.78 | ** | 1.36 | 1.24 | 1.51 | *** | 1.49 | 1.28 | 1.73 | *** | 1.18 | 0.79 | 1.77 | 0.91 | 0.47 | 1.77 | ||
Period (ref. 2002–2006) | ||||||||||||||||||||||||
2007–2011 | 0.90 | 0.83 | 0.98 | * | 1.02 | 0.89 | 1.16 | 0.97 | 0.92 | 1.03 | 0.87 | 0.79 | 0.95 | ** | 0.73 | 0.57 | 0.92 | ** | 1.18 | 0.86 | 1.61 | |||
2012–2016 | 0.81 | 0.74 | 0.88 | *** | 1.06 | 0.93 | 1.21 | 0.92 | 0.87 | 0.97 | ** | 0.79 | 0.71 | 0.87 | *** | 0.73 | 0.57 | 0.92 | ** | 0.83 | 0.59 | 1.17 | ||
ARB+URBANBI*Period | ||||||||||||||||||||||||
ARB+URBANBI*2007–2011 | 0.87 | 0.71 | 1.07 | 0.73 | 0.51 | 1.04 | 0.88 | 0.76 | 1.02 | 0.92 | 0.73 | 1.16 | 0.74 | 0.39 | 1.43 | 1.35 | 0.58 | 3.12 | ||||||
ARB+URBANBI*2012–2016 | 0.79 | 0.64 | 0.97 | * | 0.79 | 0.56 | 1.11 | 0.84 | 0.72 | 0.97 | * | 0.76 | 0.60 | 0.97 | * | 0.70 | 0.36 | 1.36 | 1.59 | 0.67 | 3.78 | |||
Goodness of Fit | ||||||||||||||||||||||||
Log Likelihood | −13,239.47 | −6051.60 | −21,884.74 | −9971.31 | −2537.85 | −1576.07 | ||||||||||||||||||
Akaike’s Information Criterion (AIC) | 26,508.95 | 12,133.21 | 43,799.48 | 19,972.63 | 5105.71 | 3182.14 | ||||||||||||||||||
Bayesian Information Criterion (BIC) | 26,646.96 | 12,271.22 | 43,937.49 | 20,110.64 | 5243.72 | 3320.16 | ||||||||||||||||||
Likelihood Ratio Chi-Square | 364.30 | *** | 108.52 | *** | 796.46 | *** | 1150.46 | *** | 12.42 | 74.20 | *** | |||||||||||||
N deaths | 17,055 | 4205 | 38,131 | 8879 | 1652 | 670 |
Preventable | Less Preventable | All Causes | Behavioral Change and/or Medical Intervention | Medical Intervention | Injuries | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | |||||||||||||
ARB+ZNTS (ref. Comparison Areas) | 1.04 | 0.90 | 1.20 | 1.26 | 0.95 | 1.66 | 1.11 | 1.00 | 1.24 | 0.96 | 0.81 | 1.15 | 0.79 | 0.45 | 1.40 | 1.60 | 0.87 | 2.95 | ||||||
Period (ref. 2002–2006) | ||||||||||||||||||||||||
2007–2011 | 0.85 | 0.75 | 0.96 | * | 0.98 | 0.79 | 1.23 | 0.93 | 0.85 | 1.01 | 0.80 | 0.69 | 0.92 | ** | 1.16 | 0.77 | 1.73 | 0.93 | 0.53 | 1.63 | ||||
2012–2016 | 0.84 | 0.75 | 0.95 | ** | 1.02 | 0.82 | 1.27 | 0.93 | 0.85 | 1.02 | 0.82 | 0.72 | 0.95 | ** | 1.16 | 0.78 | 1.74 | 0.75 | 0.42 | 1.34 | ||||
ARB+ZNTS*Period | ||||||||||||||||||||||||
ARB+ZNTS*2007–2011 | 1.08 | 0.88 | 1.33 | 0.81 | 0.54 | 1.20 | 0.97 | 0.83 | 1.13 | 1.21 | 0.94 | 1.55 | 0.95 | 0.44 | 2.08 | 0.92 | 0.39 | 2.16 | ||||||
ARB+ZNTS*2012–2016 | 1.00 | 0.81 | 1.23 | 0.79 | 0.54 | 1.17 | 0.92 | 0.79 | 1.07 | 1.15 | 0.89 | 1.47 | 0.87 | 0.40 | 1.91 | 0.68 | 0.27 | 1.71 | ||||||
Goodness of Fit | ||||||||||||||||||||||||
Log Likelihood | −7584.87 | −2884.29 | −11,930.22 | −5723.35 | −1148.95 | −744.32 | ||||||||||||||||||
Akaike’s Information Criterion (AIC) | 15,199.75 | 5798.57 | 23,890.44 | 11,476.69 | 2327.91 | 1518.65 | ||||||||||||||||||
Bayesian Information Criterion (BIC) | 15,327.01 | 5925.83 | 24,017.70 | 11,603.95 | 2455.17 | 1645.91 | ||||||||||||||||||
Likelihood Ratio Chi-Square | 617.14 | *** | 361.56 | *** | 1244.83 | *** | 553.20 | *** | 64.13 | *** | 51.68 | *** | ||||||||||||
N deaths | 8357 | 1849 | 18,113 | 3801 | 691 | 337 |
Preventable | Less Preventable | All Causes | Behavioral Change and/or Medical Intervention | Medical Intervention | Injuries | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | HR | CI 95% | |||||||||||||
ARB+ZNTS+URBAN (ref. Comparison Areas) | 1.03 | 0.89 | 1.20 | 1.12 | 0.87 | 1.44 | 1.06 | 0.96 | 1.18 | 0.99 | 0.84 | 1.18 | 1.18 | 0.74 | 1.89 | 1.15 | 0.65 | 2.02 | ||||||
Period (ref. 2002–2006) | ||||||||||||||||||||||||
2007–2011 | 0.93 | 0.84 | 1.03 | 0.84 | 0.70 | 1.02 | 0.96 | 0.89 | 1.03 | 0.90 | 0.80 | 1.02 | 0.93 | 0.66 | 1.31 | 0.88 | 0.58 | 1.34 | ||||||
2012–2016 | 0.82 | 0.73 | 0.91 | *** | 1.03 | 0.87 | 1.23 | 0.91 | 0.85 | 0.99 | * | 0.81 | 0.71 | 0.91 | *** | 0.82 | 0.58 | 1.17 | 0.55 | 0.35 | 0.89 | * | ||
ARB+ZNTS+URBAN*Period | ||||||||||||||||||||||||
ARB+ZNTS+URBAN*2007–2011 | 0.95 | 0.77 | 1.18 | 1.12 | 0.77 | 1.61 | 1.00 | 0.86 | 1.17 | 0.99 | 0.77 | 1.27 | 0.77 | 0.39 | 1.55 | 0.93 | 0.41 | 2.12 | ||||||
ARB+ZNTS+URBAN*2012–2016 | 1.07 | 0.87 | 1.32 | 0.93 | 0.65 | 1.33 | 1.00 | 0.86 | 1.17 | 1.16 | 0.91 | 1.48 | 0.68 | 0.33 | 1.40 | 1.08 | 0.44 | 2.65 | ||||||
Goodness of Fit | ||||||||||||||||||||||||
Log Likelihood | −8854.47 | −3591.49 | −13,775.89 | −6814.33 | −1412.57 | −931.26 | ||||||||||||||||||
Akaike’s Information Criterion (AIC) | 17,738.95 | 7212.98 | 27,581.79 | 13,658.65 | 2855.14 | 1892.53 | ||||||||||||||||||
Bayesian Information Criterion (BIC) | 17,867.31 | 7341.35 | 27,710.16 | 13,787.02 | 2983.51 | 2020.89 | ||||||||||||||||||
Likelihood Ratio Chi-Square | 560.23 | *** | 284.20 | *** | 1193.58 | *** | 757.98 | *** | 84.50 | *** | 42.76 | *** | ||||||||||||
N deaths | 10,443 | 2252 | 21,962 | 5268 | 860 | 397 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-Moya, Á.R.; Martín-Díaz, M.J.; Viciana-Fernández, F.J. Area-Based Policies and Potential Health Benefits: A Quasi-Experimental Cohort Study in Vulnerable Urban Areas of Andalusia (Spain). Sustainability 2021, 13, 8169. https://doi.org/10.3390/su13158169
Zapata-Moya ÁR, Martín-Díaz MJ, Viciana-Fernández FJ. Area-Based Policies and Potential Health Benefits: A Quasi-Experimental Cohort Study in Vulnerable Urban Areas of Andalusia (Spain). Sustainability. 2021; 13(15):8169. https://doi.org/10.3390/su13158169
Chicago/Turabian StyleZapata-Moya, Ángel R., María J. Martín-Díaz, and Francisco J. Viciana-Fernández. 2021. "Area-Based Policies and Potential Health Benefits: A Quasi-Experimental Cohort Study in Vulnerable Urban Areas of Andalusia (Spain)" Sustainability 13, no. 15: 8169. https://doi.org/10.3390/su13158169
APA StyleZapata-Moya, Á. R., Martín-Díaz, M. J., & Viciana-Fernández, F. J. (2021). Area-Based Policies and Potential Health Benefits: A Quasi-Experimental Cohort Study in Vulnerable Urban Areas of Andalusia (Spain). Sustainability, 13(15), 8169. https://doi.org/10.3390/su13158169