Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard
Abstract
:1. Introduction
- To present the existing types of viticulture practices and to highlight the added value that precision viticulture brings to the current practices,
- To present the background of the Romanian and, more specifically, Transylvanian viticulture and the impact of the climatic changes in Transylvanian viticulture,
- To reveal the impact of the Internet of Things solutions in viticulture,
- To present the Amurg grapevine cultivar, as a cultivar whose cultivation can be extended based on the climatic changes context and IoT technologies,
- To introduce the Climatic Change Precision Viticulture (CCPV) concept to benefit from climatic changes, decision support systems, and IoT technologies to support the extension of the Amurg cultivar and to increase the sustainability of viticulture, by lowering the energetic inputs: fertilizers, herbicides, fungicides, insecticides, and gas,
- To propose a sustainable CCPV architecture for a smoother adaption of the Amurg cultivar to Transylvania climate conditions, increased grapevine productivity and income, and lowered costs in terms of the resources used,
- To reveal the improvements brought by the proposed Internet of Things technologies in viticulture.
2. Types of Viticulture
2.1. Conventional Viticulture
2.2. Integrated Viticulture
2.3. Organic Viticulture
2.4. Ecological Viticulture
2.5. Bio-Dynamic Viticulture
2.6. Precision Viticulture
3. Precision Viticulture: Impact and IoT Solutions
4. Viticulture in Romania-General Context
5. Grapevine Cultivation and Wine Production in Târnave Vineyards
6. Perspectives on the Culture in Târnave Vineyards of Amurg—A Disease Tolerant Autochthonous Grapevine Cultivar for POD Red and Rosé Wines
6.1. The Climate Change Context
6.1.1. Period 1975–2007
6.1.2. Period 2000–2020
6.1.3. Comparing the Two Periods (1975–2007 and 2000–2020)
7. Grapevine Amurg Cultivar
7.1. Morphological Characteristics
7.2. Agrobiological and Technological Characteristics
8. Amurg’s Diseases Tolerance and Resistance
9. Designing and Developing a New Climate Change-Based Precision Viticulture (CCPV) Technology Based on the Following Concepts: IoT, Cloud Computing, Data Cyber-Security, Blockchain (for Amurg Vine Cultivar Traceability)
9.1. Context, Approach and Objectives
- (a) Increase grapevine productivity and income,
- (b) Adapt the Amurg cultivar to climate extremes in the Transylvania region,
- (c) Support new technologies in acquiring data.
- (a) The data collection system, which provides the advanced data collection functions and the autonomous monitoring functions, including smart sensors and tracking devices, aerial sensing systems with high-accuracy monitoring features, weather and climate data control with forecasting features, energy management, and harvesting system gateway. Finally, it will allow event and data analytics based on Cloud features.
- (b) Software, which encloses all the user-friendly services and applications, such as anomaly detection, pest detection, irrigation, and fertilization recommendations as a service, and the farming economics.
- To design and provide a specific framework to analyze the Amurg cultivar by fostering its terroir;
- To enhance plant health assessment methods;
- To limit the use of fertilizers to the necessary quantities depending on the plant status;
- To promote the best practices towards the resilience and mitigation of climate changes in the vineyard. Knowledge dissemination of best practices is of paramount importance for their swift adoption in Romania’s vineyards.
9.2. System Architecture and Workflow
9.2.1. Vineyard Layer
9.2.2. Network Layer
- Short-range communication scenario (I). The sensors are close to the gateway/router, and fast or/and frequent data retrieval is desired. Consequently, Wi-Fi technology is used.
- Short-range communication scenario (II). The sensors are close to the gateway/router, and no fast and frequent data retrieval is required. Thus, LoRa technology is used.
- Long-range communication scenario (I). The sensors are placed far from the gateway (outside the Wi-Fi module’s range), and fast retrieval is desired. Thus, drones act as a Wi-Fi flying ad-hoc network, forwarding the data from the sensors to the Wi-Fi router (as we emphasized in Figure 9).
- Long-range communication scenario (II). The sensors are placed far from the gateway (outside the Wi-Fi module’s range), and no fast or frequent retrieval is required. Thus, LoRa communication will ensure data transmission.
9.2.3. Cloud Layer
9.2.4. Application Layer
9.3. Challenges
- Integration of multiple data acquisition: Satellite imagery, UAVs have different resolutions, bands, and more important spectral responses. An image fusion technique is used with multisensor images to extract information of higher quality and reliability. However, there is not yet a unique model for an optimal workflow. The development of algorithms that will work consistently and independently of the satellite and with multiple data sources for exploitation is a remarkable challenge.
- Development and integration of smart algorithms: In the case of the UAVs, developing an algorithm able to transform images into spatial (efficiency from volume of grapes and bunch of grapes) and chemical information of the samples (quality end maturity parameters).
- To ensure a good prediction capability: Integration of Blockchain technology for data security.
10. Conclusions, Future Directions and Open Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiefenbacher, J.P.; Townsend, C. The Semiofoodscape of Wine: The Changing Global Landscape of Wine Culture and the Language of Making, Selling, and Drinking Wine. In Handbook of the Changing World Language Map; Springer International Publishing: Basel, Switzerland, 2019; pp. 1–44. [Google Scholar] [CrossRef]
- Mullins, M. Biology of the Grapevine; Cambridge University Press: Cambridge, NY, USA, 1992. [Google Scholar]
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases with Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Possingham, J. On the growing of grapevines in the tropics. Acta Hortic. 2004, 39–44. [Google Scholar] [CrossRef]
- Jordão, A.; Vilela, A.; Cosme, F. From Sugar of Grape to Alcohol of Wine: Sensorial Impact of Alcohol in Wine. Beverages 2015, 1, 292–310. [Google Scholar] [CrossRef] [Green Version]
- Guguchkina, T.; Antonenko, M.; Yakimenko, Y. New grape varieties for production of high-quality wines, and assessment methodology for varietal characteristics of the product. BIO Web Conf. 2020, 25, 02016. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Gokcekus, O.; Fargnoli, A. Is Globalization Good for Wine Drinkers in the United States? J. Wine Econ. 2007, 2, 187–195. [Google Scholar] [CrossRef]
- Anderson, K. Wine’s Gradual Globalization. In Handbook of Eating and Drinking; Springer International Publishing: Basel, Switzerland, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Leeuwen, C.V.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Vaudour, E. The Quality of Grapes and Wine in Relation to Geography: Notions of Terroir at Various Scales. J. Wine Res. 2002, 13, 117–141. [Google Scholar] [CrossRef]
- Meinert, L.D. 8. WINE AND TERROIR. Geochem. Perspect. 2020, 9, 99–112. [Google Scholar]
- Charters, S.; Spielmann, N.; Babin, B.J. The nature and value of terroir products. Eur. J. Mark. 2017, 51, 748–771. [Google Scholar] [CrossRef]
- Schaller, K. Terroir—Myth and/or Reality—Outstanding Marketing Idea? A Review. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Clingeleffer, P. Terroir: The Application of an Old Concept in Modern Viticulture. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 277–288. [Google Scholar] [CrossRef]
- Belda, I.; Gobbi, A.; Ruiz, J.; de Celis, M.; Ortiz-Álvarez, R.; Acedo, A.; Santos, A. Microbiomics to Define Wine Terroir. In Comprehensive Foodomics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 438–451. [Google Scholar] [CrossRef]
- Reiss, M.; Bernard, B.; Jedicke, E. Climate Change Resilience in Viticulture: Knowledge transfer and ecosystem services of adaptation strategies. In Proceedings of the EGU General Assembly 2020, Vienna, Austria, 3–8 May 2020; p. 37. [Google Scholar]
- Drumonde-Neves, J.; Franco-Duarte, R.; Lima, T.; Schuller, D.; Pais, C. Association between Grape Yeast Communities and the Vineyard Ecosystems. PLoS ONE 2017, 12, e0169883. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.Y.T. The Effect of Region of Origin on the Individual Brands in the Region: A Study About São Roque and Vinícola Goés. Ph.D. Thesis, Escola de Administração de Empresas de São Paulo da Fundação Getulio Vargas, São Paulo, Brazil, 2020. [Google Scholar]
- Feinberg, R. Uprooting wine. Food Cult. Soc. 2020, 23, 551–569. [Google Scholar] [CrossRef]
- Rossi, A.; Cortassa, D. Exploring Italy’s Wine Law Reforms. In Wine Law and Policy; Brill|Nijhoff: Leiden, The Netherlands, 2020; pp. 99–126. [Google Scholar] [CrossRef]
- Charters, S.; Pettigrew, S. The dimensions of wine quality. Food Qual. Prefer. 2007, 18, 997–1007. [Google Scholar] [CrossRef]
- Rahman, I.; Reynolds, D. Wine: Intrinsic attributes and consumers’ drinking frequency, experience, and involvement. Int. J. Hosp. Manag. 2015, 44, 1–11. [Google Scholar] [CrossRef]
- Chironi, S.; Altamore, L.; Columba, P.; Bacarella, S.; Ingrassia, M. Study of Wine Producers’ Marketing Communication in Extreme Territories–Application of the AGIL Scheme to Wineries’ Website Features. Agronomy 2020, 10, 721. [Google Scholar] [CrossRef]
- Lemaire, D.; Kasserman, D. Bordeaux and Burgundy: A Comparison of Two French Wine Regions in Transition. In The Geography of Wine; Springer: Cham, The Netherlands, 2011; pp. 61–80. [Google Scholar] [CrossRef]
- Niemeyer, K. A theoretical approach to vintage: From oenology to media. NECSUS Eur. J. Media Stud. 2015, 4, 85–102. [Google Scholar] [CrossRef]
- Faye, B.; Fur, E.L.; Prat, S. Dynamics of fine wine and asset prices: Evidence from short- and long-run co-movements. Appl. Econ. 2015, 47, 3059–3077. [Google Scholar] [CrossRef]
- Geană, E.I.; Ciucure, C.T.; Apetrei, C.; Artem, V. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Molecules 2019, 24, 4166. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.M.; Mitchell, R. Wine Marketing; Routledge: London, UK, 2007. [Google Scholar] [CrossRef]
- Fraga, H. Viticulture and Winemaking under Climate Change. Agronomy 2019, 9, 783. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Cyr, D.; Kusy, M.; Shaw, A.B. Climate Change and the Potential Use of Weather Derivatives to Hedge Vineyard Harvest Rainfall Risk in the Niagara Region. J. Wine Res. 2010, 21, 207–227. [Google Scholar] [CrossRef]
- Webb, L.; Whiting, J.; Watt, A.; Hill, T.; Wigg, F.; Dunn, G.; Needs, S.; Barlow, E.W. Managing Grapevines through Severe Heat: A Survey of Growers after the 2009 Summer Heatwave in South-eastern Australia. J. Wine Res. 2010, 21, 147–165. [Google Scholar] [CrossRef]
- Jones, G.V.; Webb, L.B. Climate Change, Viticulture, and Wine: Challenges and Opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Hadarits, M.; Smit, B.; Diaz, H. Adaptation in Viticulture: A Case Study of Producers in the Maule Region of Chile. J. Wine Res. 2010, 21, 167–178. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate Induced Historic and Future Changes in Viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Jones, G.V.; Reid, R.; Vilks, A. Climate, Grapes, andWine: Structure and Suitability in a Variable and Changing Climate. In The Geography of Wine; Springer: Cham, The Netherlands, 2011; pp. 109–133. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, J.; Speratti, A.B.; Gabarra, L.; Govaerts, B. Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit. Agriculture 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.; Zhang, Q.; Deng, J.; Lan, Y.; Yin, X.; Shan, J. Design and Experiment of a Variable Spray System for Unmanned Aerial Vehicles Based on PID and PWM Control. Appl. Sci. 2018, 8, 2482. [Google Scholar] [CrossRef] [Green Version]
- Van der Merwe, D.; Burchfield, D.R.; Witt, T.D.; Price, K.P.; Sharda, A. Drones in agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–30. [Google Scholar] [CrossRef]
- de Castro, A.I.; Peña, J.M.; Torres-Sánchez, J.; Jiménez-Brenes, F.M.; Valencia-Gredilla, F.; Recasens, J.; López-Granados, F. Mapping Cynodon Dactylon Infesting Cover Crops with an Automatic Decision Tree-OBIA Procedure and UAV Imagery for Precision Viticulture. Remote Sens. 2020, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Tropea, M.; Santamaria, A.F.; Potrino, G.; Rango, F.D. Bio-Inspired Recruiting Protocol for FANET in Precision Agriculture Domains: Pheromone Parameters Tuning. In Proceedings of the 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Isaac, W.A.P.; Ganpat, W.G.; Bridgemohan, P.; Attzs, M. Defining a Policy Nexus for Sustainable Agriculture and Food Security in the Caribbean Region. In Global Climate Change: Resilient and Smart Agriculture; Springer: Singapore, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Roy, T.; George K, J. Precision Farming: A Step Towards Sustainable, Climate-Smart Agriculture. In Global Climate Change: Resilient and Smart Agriculture; Springer: Singapore, 2020; pp. 199–220. [Google Scholar] [CrossRef]
- Pérez-Expósito, J.P.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. An IoT Monitoring System for Precision Viticulture. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; pp. 662–669. [Google Scholar] [CrossRef]
- Caprio, E.; Nervo, B.; Isaia, M.; Allegro, G.; Rolando, A. Organic versus conventional systems in viticulture: Comparative effects on spiders and carabids in vineyards and adjacent forests. Agric. Syst. 2015, 136, 61–69. [Google Scholar] [CrossRef]
- Likar, M.; Stres, B.; Rusjan, D.; Potisek, M.; Regvar, M. Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Appl. Soil Ecol. 2017, 113, 86–95. [Google Scholar] [CrossRef]
- Hendgen, M.; Döring, J.; Stöhrer, V.; Schulze, F.; Lehnart, R.; Kauer, R. Spatial Differentiation of Physical and Chemical Soil Parameters under Integrated, Organic, and Biodynamic Viticulture. Plants 2020, 9, 1361. [Google Scholar] [CrossRef]
- Maykish, A.; Rex, R.; Sikalidis, A.K. Organic Winemaking and Its Subsets; Biodynamic, Natural, and Clean Wine in California. Foods 2021, 10, 127. [Google Scholar] [CrossRef]
- Commision, E. Integrated Pest Management (IPM). Available online: https://ec.europa.eu/food/plant/pesticides/sustainable_use_pesticides/ipm_en (accessed on 12 February 2021).
- Jose, M.L. Long Island Sustainable Winegrowing: The Road to Certification, 3rd ed.; Rivers Run By Press: Ardsley, NY, USA, 2019. [Google Scholar]
- Biological, I.O.; Control, I. Integrated Production Objectives and Principles. Available online: https://www.iobc-wprs.org/ (accessed on 16 February 2021).
- Karlsson, B. Organic, Biodynamic and Sustainable Wine, an Overview. 2020. Available online: https://www.bkwine.com/features/winemaking-viticulture/organic-biodynamic-sustainable-wine-overview-part-1/ (accessed on 16 February 2021).
- Cordero-Bueso, G.; Arroyo, T.; Valero, E. A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard. Int. J. Food Microbiol. 2014, 189, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Mackie, K.; Müller, T.; Kandeler, E. Remediation of copper in vineyards—A mini review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Meissner, G.; Athmann, M.E.; Fritz, J.; Kauer, R.; Stoll, M.; Schultz, H.R. Conversion to organic and biodynamic viticultural practices: Impact on soil, grapevine development and grape quality. OENO ONE 2019, 53. [Google Scholar] [CrossRef]
- Zanzotti, R.; Mescalchin, E. Green manure effects on inorganic nitrogen dynamics in soil and its accumulation in grape must. BIO Web Conf. 2019, 13, 04010. [Google Scholar] [CrossRef]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable Viticulture: First Determination of the Environmental Footprint of Grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Tomoiagă, L.L.; Ficiu, L.; Tabaranu, G.; Argatu, C.; Zaldea, G.; Vizitiu, D. Studies on Biodiversity Diagnosis of Vineyard Farms at the Agro-Ecological Infrastructure Level. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2016, 73, 205. [Google Scholar] [CrossRef] [Green Version]
- Spachos, P.; Gregori, S. Integration of Wireless Sensor Networks and Smart UAVs for Precision Viticulture. IEEE Internet Comput. 2019, 23, 8–16. [Google Scholar] [CrossRef]
- Döring, J.; Collins, C.; Frisch, M.; Kauer, R. Organic and Biodynamic Viticulture Affect Biodiversity and Properties of Vine and Wine: A Systematic Quantitative Review. Am. J. Enol. Vitic. 2019, 70, 221–242. [Google Scholar] [CrossRef]
- Döring, J.; Frisch, M.; Tittmann, S.; Stoll, M.; Kauer, R. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management. PLoS ONE 2015, 10, e0138445. [Google Scholar] [CrossRef] [Green Version]
- Leiber, F.; Fuchs, N.; Spiess, H. Biodynamic Agriculture today. In Organic Agriculture: A Global Perspective; CABI: Wallingford, UK, 2006; pp. 141–149. [Google Scholar] [CrossRef]
- Masson, P. Landwirtschaft, Garten- und Weinbau Biodynamisch; AT-Verl: Verl, Germany, 2013. [Google Scholar]
- Setati, M.E.; Jacobson, D.; Andong, U.C.; Bauer, F. The vineyard yeast microbiome, a mixed model microbial map. PLoS ONE 2012, 7, e52609. [Google Scholar] [CrossRef] [Green Version]
- Coller, E.; Cestaro, A.; Zanzotti, R.; Bertoldi, D.; Pindo, M.; Larger, S.; Albanese, D.; Mescalchin, E.; Donati, C. Microbiome of vineyard soils is shaped by geography and management. Microbiome 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spachos, P. Towards a Low-Cost Precision Viticulture System Using Internet of Things Devices. IoT 2020, 1, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Ammoniaci, M.; Kartsiotis, S.P.; Perria, R.; Storchi, P. State of the Art of Monitoring Technologies and Data Processing for Precision Viticulture. Agriculture 2021, 11, 201. [Google Scholar] [CrossRef]
- Pedersen, S.; Pedersen, M.; Ørum, J.; Fountas, S.; Balafoutis, A.; van Evert, F.; van Egmond, F.; Knierim, A.; Kernecker, M.; Mouazen, A. Economic, environmental and social impacts. In Agricultural Internet of Things and Decision Support for Precision Smart Farming; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–330. [Google Scholar] [CrossRef]
- Bălăceanu, C.; Negoiţă, A.; Drăgulinescu, A.M.; Roşcăneanu, R.; Chedea, V.S.; Suciu, G., Jr. The use of IoT technology in Smart Viticulture. In Proceedings of the 23rd Conference on Control Systems and Computer Science, Intelligence, Systems and Applications (IISA), Online, 12–14 July 2021; pp. 362–369. [Google Scholar] [CrossRef]
- Libelium. Libelium Smart Agriculture Xtreme IoT Vertical Kit. 2020. Available online: https://www.the-iot-marketplace.com/libelium-smart-agriculture-xtreme-iot-vertical-kit (accessed on 10 June 2021).
- Maraš, V.; Popović, T.; Gajinov, S.; Mugoša, M.; Popović, V.; Savović, A.; Pavićević, K.; Mirović, V. Precision Viticulture Using Wireless Sensor Network. In Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mouakher, A.; Belkaroui, R.; Bertaux, A.; Labbani, O.; Hugol-Gential, C.; Nicolle, C. An Ontology-Based Monitoring System in Vineyards of the Burgundy Region. In Proceedings of the 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Naples, Italy, 12–14 June 2019; pp. 307–312. [Google Scholar] [CrossRef]
- Oliver, S.T.; González-Pérez, A.; Guijarro, J.H. An IoT Proposal for Monitoring Vineyards Called SEnviro for Agriculture. In Proceedings of the 8th International Conference on the Internet of Things—IOT’18, Santa Barbara, CA, USA, 15–18 October 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Pepper, I.; Brusseau, M. Chapter 2—Physical-Chemical Characteristics of Soils and the Subsurface. In Environmental and Pollution Science, 3rd ed.; Brusseau, M.L., Pepper, I.L., Gerba, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 9–22. [Google Scholar] [CrossRef]
- Voutos, Y.; Mylonas, P.; Spyrou, E.; Charou, E. An IoT-Based Insular Monitoring Architecture for Smart Viticulture. In Proceedings of the 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA), Zakynthos, Greece, 23–25 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- João, L.; Machado, R.; Tabim, V.; Cardoso, A.; Lopes, J.L.; Pernas, A.; Yamin, A. Applying the Internet of Things in Precision Viticulture: An Approach Exploring the EXEHDA Middleware. In Proceedings of the 2018 XLIV Latin American Computer Conference (CLEI), São Paulo, Brazil, 1–5 October 2018; pp. 680–687. [Google Scholar] [CrossRef]
- Giordano, S.; Verrastro, V. IoT technologies in viticulture: Innovation and Sustainability. The IoF Project case study. GeoProgress J. 2020, 7, 57–71. [Google Scholar]
- Suciu, G.; Fratu, O.; Vulpe, A.; Butca, C.; Suciu, V. IoT agro-meteorology for viticulture disease warning. In Proceedings of the 2016 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Varna, Bulgaria, 6–9 June 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Suciu, G.; Vulpe, A.; Fratu, O.; Suciu, V. M2M remote telemetry and cloud IoT big data processing in viticulture. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; pp. 1117–1121. [Google Scholar] [CrossRef]
- Orozco-Barbosa, L.; García, F.M.; Ramos, A.B.; Riquelme, F.M. An Experimental Evaluation of IoT Technologies in Precision Viticulture. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Basel, Switzerland, 2016; pp. 51–62. [Google Scholar] [CrossRef]
- Trilles, S.; Torres-Sospedra, J.; Belmonte, Ó.; Zarazaga-Soria, F.J.; González-Pérez, A.; Huerta, J. Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease. Sustain. Comput. Inform. Syst. 2020, 28, 100309. [Google Scholar] [CrossRef]
- FAOSTAT. 2021 Food and Agriculture Organization of the United Nations. Available online: www.fao.org/faostat/en/#data/QC (accessed on 12 April 2021).
- FAOSTAT. 2021 Food and Agriculture Organization of the United Nations. Available online: www.fao.org/faostat/en/#data/QD (accessed on 12 April 2021).
- Organisation Internationale Vitivinicole Note de Conjoncture Vitivinicole Mondiale 2020. 2020. Available online: https://www.oiv.int/public/medias/7899/oiv-note-de-conjoncture-vitivinicole-mondiale-2020.pdf (accessed on 2 July 2021).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Roșca, B. Climate change impact on climate suitability for wine production in Romania. Theor. Appl. Climatol. 2017, 133, 1–14. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Bojariu, R.; Birsan, M.V.; Marin, L.; Manea, A. Recent climatic changes in Romania from observational data (1961–2013). Theor. Appl. Climatol. 2014, 122, 111–119. [Google Scholar] [CrossRef]
- Bălteanu, D.; Chendeş, V.; Sima, M.; Enciu, P. A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 2010, 124, 102–112. [Google Scholar] [CrossRef]
- Chirciu, I.A.; Zaharia, I.; Soare, E. Production Of Wine Grapes And Cultural Traditions Related To Vine In Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 133–144. [Google Scholar] [CrossRef]
- Cichi, D.D.; Stoica, F.; Muntean, C.; Cichi, M.; Cîmpeanu, C.B. Table Grapes Production Sector In Romania-Evaluation, The Current State And Perspectives. Sci. Pap. Ser. Hortic. 2019, 63, 217–226. [Google Scholar]
- Romania Map. Available online: https://www.mapsofworld.com/romania/ (accessed on 7 March 2021).
- Rotaru, L.; Colibaba, L.C.; Aelenei, S.I. The agrobiological and technological value of ancient Romanian grape varieties cultivated in Iaşi vineyard. Lucr. Ştiinţifice, Univ. Ştiinţe Agric. Med. Vet. Ion Ionescu Brad Iaşi Ser. Hortic. 2018, 61, 135–138. [Google Scholar]
- Tomoiagă, L.L.; Chedea, V.S. Grapevine Trunk Diseases Management in Vineyards from Central Transylvania. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2020, 77, 117. [Google Scholar] [CrossRef]
- Iliescu, M.; Tomoiaga, L.; Chedea, V.S.; Pop, E.A.; Sirbu, A.; Popa, M.; Calugar, A.; Babes, A. Evaluation Of Climate Changes On The Vine Agrosystem In Tarnave Vineyard. J. Environ. Prot. Ecol. 2019, 20, 1754–1760. [Google Scholar]
- Oşlobeanu, M. Zonarea Soiurilor de viţă de vie în România; Ceres: Bucharest, Romania, 1991. [Google Scholar]
- Iliescu, M.; Tomoiaga, L.; Farago, M.; Comsa, M. The Nutrition of Vine in Tarnave; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Cudur, F.; Iliescu, M.; Comsa, M.; Popescu, D.; Cristea, C. Soil Type Influence On Yield Quantity And Quality At Grape Varieties for White Wines Obtained In The Viticultural Centre Blaj. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2014, 71, 21–28. [Google Scholar]
- Călugăr, A.; Babeş, A.C.; Bunea, C.I.; Pop, T.I.; Tomoiagă, L.; Iliescu, M. Oenological characterization of wines from grape clones created at Research Station for Viticulture and Enology Blaj, Romania. Stiinta Agric. 2018, 2018, 50–56. [Google Scholar]
- Donici, A.; Bunea, C.I.; Călugăr, A.; Harsan, E.; Bora, F.D. Investigation of the copper content in vineyard soil, grape, must and wine in the main vineyards of Romania: A preliminary study. Bull. UASVM Hortic 2019, 76, 31–46. [Google Scholar] [CrossRef]
- Valeriu, C. Podgoriile şi Vinurile României; Ed. Acad. Române: Bucurest, Romania, 2003. [Google Scholar]
- Coroș, M.M.; Pop, A.M.; Popa, A.I. Vineyards and Wineries in Alba County, Romania towards Sustainable Business Development. Sustainability 2019, 11, 4036. [Google Scholar] [CrossRef] [Green Version]
- Macici, M. Romania’s Wines; Alcor Edimpex SRL: Bucharest, Romania, 1996. [Google Scholar]
- SCDVV. Brief History of SCDVV Blaj. 2021. Available online: https://www.scvblaj.ro/articole/scurt-istoric-al-scdvv-blaj (accessed on 28 January 2021).
- Popescu, D.; Iliescu, M.; Cristea, C.; Comşa, M. Researches Regarding the Agrotehnic Behaviour of Perspective Elites Obtained at Research Station for Viticulture and Enology Blaj. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2014, 71, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Stroe, M. Ampelografie; Ceres Publishing House: Bucharest, Romania, 2012. [Google Scholar]
- Comșa, A.; Cristea, C.; Cudur, F. Behaviour In The Production Of New Varieties For White Wines Created at SCDVV Blaj. In Proceedings of the Simpozionul Ştiinţific Anual Cu Participare Internaţională “Horticultura—Ştiinţă, Calitate, Diversitate Şi Armonie”, Iași, Romania, 26–28 May 2011. [Google Scholar]
- Comșa, A.; Cristea, C.; Cudur, F. Perspective clone elites from the Italian Riesling variety, Scientifical papers. USAMV Bucur. Ser. Hortic. 2011, LV, 501–504. [Google Scholar]
- Iliescu, M.; Tomoiagă, L.; Babeș, A.C.; Călugăr, A. New Grapevine Variety Created And Approved: Roze Blaj. In Proceedings of the 2020 19th International Conference Life Sciences for Sustainable Development, Cluj-Napoca, Romania, 25 September 2020. [Google Scholar]
- Sîrbu, A.; Tomoiagă, L.; Vasiu, I.; Chedea, V.S.; Iliescu, M. New Wines from Târnave vineyard: SELENA and Blasius. In Proceedings of the 2020 19th International Conference Life Sciences for Sustainable Development, Cluj-Napoca, Romania, 25 September 2020. [Google Scholar]
- Iliescu, M.; Tomoiagă, L.; Elena, A.P.; Sîrbu, A. Soiuri noi de struguri, create la SCDVV Blaj SELENA—Soi pentru vinuri albe, DOC BLASIUS—Soi recomandat pentru vinuri albe de calitate superioara. InfoAMSEM J. 2020, 3, 20. [Google Scholar]
- Iliescu, M.; Tomoiagă, L.; Bărbuleţiu, A.; Pop, A.; Sîrbu, A.; Şerbu, F. Clona de viţă de vie pentru vinuri albe Pinot Gris 11BL. In Oferta Cercetării; ASAS: București, Romania, 2020. [Google Scholar]
- Tomoiagă, L.L.; Iliescu, M.L.; Răcoare, H.S.; Botea, V.; Sîrbu, A.D.; Puşcă, G.; Chedea, V.S. Grape pomance generation from grape cultivars cultivated in Târnave vineyards in the framework of the climate change. Rom. J. Hortic. 2020, 1, 81–88. [Google Scholar] [CrossRef]
- Pop, E.A.; Tomoiaga, L.; Victoria Artem, A.R.; Iliescu, M. Studies about climate change in the Târnave and Murfatlar Vineyards. Agricultura 2020, 113. [Google Scholar] [CrossRef]
- Iliescu, M.L.; Tomoiagă, L.L.; Popa, E.A.; Sîrbu, A.D.; Botea, V.; Călugar, A.; Babeş, A.C.; Chedea, V.S. Potential effects of climate change on vine phenology and grape ripening in Târnave vineyard. In Proceedings of the 8th World Sustainability Forum, Geneva, Switzerland, 14–19 September 2020. [Google Scholar]
- Comșa, A.; Cristea, C.; Cudur, F. Soiul de viţă de vie pentru vinuri roşii Amurg. In Oferta Cercetării; ASAS: Champaign, IL, USA, 2011. [Google Scholar]
- Chedea, V.S.; Bălăceanu, C.M.; Tomoiagă, L.L.; Zătreanu, I.; Iliescu, M.L. Climate change-the ground for improving the cultivated assortment of grapevine varieties with new autochthonous disease tolerant grapevine varieties. In Proceedings of the 8th World Sustainability Forum, Geneva, Switzerland, 14–19 September 2020. [Google Scholar]
- Janex-Favre, M.; Parguey-Leduc, A.; Jailloux, F. The ontogeny of pycnidia of Guignardia bidwellii in culture. Mycol. Res. 1993, 97, 1333–1339. [Google Scholar] [CrossRef]
- Tomoiaga, L.; Criveanu, H.; Micle, S. Monitoring of climatic parameters an effective solution of fighting against the black rot of the vine (Black-Rot). In Proceedings of the UTC–N Symposium Modern Science and Energy, Cluj-Napoca, Romania, 15–17 May 2002; pp. 337–341. [Google Scholar]
- Tomoiaga, L.; Chedea, V.S. The Behaviour of Some Grapevine Varieties to the Guignardia bidwellii Fungus Attack. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2020, 77, 122. [Google Scholar] [CrossRef]
- Tomoiaga, L.; Comsa, M. The strategy of optimization for combat the Black Rot of vine (Guignardia bidwellii), in the ecoclimatic conditions from vineyard Tarnave. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2010, 67, 500. [Google Scholar]
- Alves, A.; Phillips, A.J.; Henriques, I.; Correia, A. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res. Microbiol. 2007, 158, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, W.F. Black Rot Guignardia Bidwellii (Ellis) Viala and Ravaz; Disease Identification Sheet No. 102GFSG-D4; Cornell Cooperative: Ithaca, NY, USA, 2003. [Google Scholar]
- Shi, X.; An, X.; Zhao, Q.; Liu, H.; Xia, L.; Sun, X.; Guo, Y. State-of-the-Art Internet of Things in Protected Agriculture. Sensors 2019, 19, 1833. [Google Scholar] [CrossRef] [Green Version]
- Villa-Henriksen, A.; Edwards, G.T.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Tan, J.Y.; Ker, P.J.; Lau, K.Y.; Hannan, M.A.; Tang, S.G.H. Applications of Photonics in Agriculture Sector: A Review. Molecules 2019, 24, 2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Morales, J.A.; Martínez, J.A.; Skarmeta, A.F. Digital Transformation of Agriculture through the Use of an Interoperable Platform. Sensors 2020, 20, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw. Appl. 2018, 24, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Gaddam, A.; Wilkin, T.; Angelova, M.; Gaddam, J. Detecting Sensor Faults, Anomalies and Outliers in the Internet of Things: A Survey on the Challenges and Solutions. Electronics 2020, 9, 511. [Google Scholar] [CrossRef] [Green Version]
- Ouafiq, E.M.; Elrharras, A.; Mehdary, A.; Chehri, A.; Saadane, R.; Wahbi, M. IoT in Smart Farming Analytics, Big Data Based Architecture. In Human Centred Intelligent Systems; Springer: Singapore, 2020; pp. 269–279. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Yan, Z.; Fan, X. ScienceEarth: A Big Data Platform for Remote Sensing Data Processing. Remote Sens. 2020, 12, 607. [Google Scholar] [CrossRef] [Green Version]
- Diaconita, V.; Bologa, A.R.; Bologa, R. Hadoop Oriented Smart Cities Architecture. Sensors 2018, 18, 1181. [Google Scholar] [CrossRef] [Green Version]
- Morfino, V.; Rampone, S. Towards Near-Real-Time Intrusion Detection for IoT Devices using Supervised Learning and Apache Spark. Electronics 2020, 9, 444. [Google Scholar] [CrossRef] [Green Version]
- Colizzi, L.; Caivano, D.; Ardito, C.; Desolda, G.; Castrignanò, A.; Matera, M.; Khosla, R.; Moshou, D.; Hou, K.M.; Pinet, F.; et al. Chapter 1—Introduction to agricultural IoT. In Agricultural Internet of Things and Decision Support for Precision Smart Farming; Castrignanò, A., Buttafuoco, G., Khosla, R., Mouazen, A.M., Moshou, D., Naud, O., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–33. [Google Scholar] [CrossRef]
Winery | Practices | Surface [ha] | Production (0.75 L Bottles) | Production Increase with Respect to Conventional Viticulture (%) |
---|---|---|---|---|
W1 | Conventional viticulture | 2.5 | 40,000 | - |
W2 | Organic viticulture | 5 | 80,000 | 0 |
W3 | Only small quantities of synthetic fertilizers; no synthetic pesticides | 6.5 | 120,000 | 11.5 |
Vineyard | Practices | Species Diversity (Shanon’s Diversity Index) | Species Evenness (Pielou’s Index) | Species Richness (Menhinick Index) |
---|---|---|---|---|
V1 | Conventional viticulture | 1.2 | 0.5 | 0.96 |
V2 | Integrated viticulture | 1.45 | 0.63 | 1.06 |
V3 | Biodynamic viticulture | 2.15 | 0.76 | 1.45 |
References | |||||
---|---|---|---|---|---|
Feature | [74] | [76] | [77] | [49] | [86] |
Sensors | RHT, SM, ST, SH, SR, AP, WD, LH, NL, RFL, UVR | SM | RHT, ST, RFL | RHT, SM, ST | RHT, WD, ST, RFL, AP |
Hardware platform | Libelium SmartAgriculture Xtreme | NaN | NaN | ESP8266 | LinkIt ONE |
Other monitoring devices | Drones | No | No | Weather station | No |
Other data | Satellite images | No | Ontology Data | No | No |
Alerting | Yes | Recipe | Yes | Yes | Yes |
Analysis | Yes | Yes | No | Yes | Yes |
Dashboard | DISAVIT | AgroNET | Not mentioned | Yes | No |
Target Actions | Disease prevention, yield, nutrients level estimation, irrigation, fertigation, planning | Irrigation | Disease detection, send alerts, recommendations, farmer’s feedback | Downy mildew, prevention | prevention, disease detection |
Effective results | aerated soil, RH 5-month mean value of RH: 54.24%, in the optimum range (55–65%) for grape development | reducing of water loss by precision irrigation, adaptation to cultivars’ different water needs, reduced manpower | early detection of eventual pests and diseases attack risks, precise grapevine phenophases indication | monitoring grapevine status, platform-based grapevine growers alerting, minimize farm’s energy consumption | Alert the growers for Downy mildew, Powdery mildew, Black rot, Botrytis prevention in the function of detected soil and air temperature, soil and air humidity, atmospheric pressure, rainfall, wind direction, and speed |
Cultivar-Homologation Year | Colour of the Grape’s Skin | Usage | Genetic Ortigin | Characteristics |
---|---|---|---|---|
Homologated cultivars developed at SCDVV Blaj | ||||
Roze Blaj-2020 | Rosé | Grape cultivar for white wine | Sexuate intercrossing of two elites 8-33-44 (Iordană × Traminer roz) × 51-19 (Raisin de Saint Pierre × Perla de Csaba). | High richness and yield; suitable for white, dry or semi-dry superior quality wines; high tolerance to drought due to leaf structure; increased tolerance to cryptogamic diseases due to the tight berry skin. |
Rubin-2007 | Red | Grape cultivar for red wine | Sexuate interspecific hybridization between the Traminer roz cultivar and a hybrid descendant (Seyve Villard 12375 × Regina viilor) | High tolerance to diseases and good tolerance to cold; favorable results for economic viticulture, especially for family use and for replacing the direct-producer hybrids; recommended for leisure vineyards. |
Astra-1995 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Fetească regală × Pinot gris | High yielding capacity; good potential to accumulate sugars; good tolerance to cold (buds’ dead less than 25% at −20), drought and diseases with respect to other cultivars specific to (Transylvania), preserving its foliar apparatus and grapes in a normal stage. Because of its late bud break, it is more protected against the late spring frosts. |
Homologated cultivars developed at SCDVV Blaj | ||||
Selena-1995 | Rosé | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Sexuate hybridization between Iordană cultivars × Traminer roz | High fertility and yieldingness; ensures the production of high quality dry and semi-dry white wines; high to very good tolerance to cold and several cryptogamic diseases. |
Blasius-1994 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. (Traminer roz × Iordană) × (Raisin de Saint Piere × Perlă de Csaba) | Maturation of the vine ropes is done at a superior level, favoring the cold tolerance increase, while the fertile region is placed at the very base of the cane. The shoot maturation is done at the shoot tip, which favors the tolerance to cold increasing, and the fertile buds are at the base of the cane. Succulent pulp, with a sweet-sour taste, favorable for wine equilibrium sugars/acidity. |
Radames-1993 | Rosé | Grape cultivar for white wine | Interspecific hybrid Traminer roz × (Seyve Villard 12.375) | High tolerance to cold and cryptogamic diseases; high fertility and yieldingness; ensures the production of dry white wines for current consumption or wine-distillates; recommended for leisure farms. |
Amurg-1989 | Dark-red | Grape cultivar for red wine | Vitis vinifera ssp. sativa L. Muscat de Hamburg × Cabernet Sauvignon | Ensures the production of superior, table and sparkling red wines. Recommended in Târnave and Aiud vineyards and other viticultural zones with favorable conditions for producing red wines; medium tolerance to cryptogamic diseases and cold. |
Brumăriu-1983 | White | Grape cultivar for white wine | Interspecific hybrid Saint Emilion × Rayon d’Or | Good tolerance to cryptogamic diseases and cold; recommended for wine-distillate. |
Homologated clones developed at SCDVV Blaj | ||||
Pinot gris 11 Bl. 2020 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Pinot gris | Superior qualities compared to the parental cultivar population. Better fertility; it does not show millerandage (or shot berries, hens, and chicks and pumpkins and peas) phenomena has resistance to diseases. Ensures the production of high-quality white wines with POD potential. |
Fetească albă 29 Bl. 2006 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Fetească albă cultivar | |
Iordană 9-1 Bl. 2006 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Iordană cultivar | |
Riesling de Rhin 7-2 Bl. 2006 | White | Grape cultivars for white wine | Vitis vinifera ssp. sativa L. Population Riesling de Rhin cultivar | |
Muscat Ottonel 12 Bl. 1995 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Muscat Ottonel cultivar | |
Neuburger-10 Bl. 1993 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Neuburger cultivar | |
Homologated clones developed at SCDVV Blaj | ||||
Riesling Italian-3 Bl. 1983 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Riesling Italian cultivar | Superior qualities compared to the parental cultivar population. Better fertility; does not show millerandage (or shot berries, hens and chicks and pumpkins and peas) phenomena has resistance to diseases. It ensures the production of high-quality white wines with POD potential. |
Fetească regală-21 Bl. 1979 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Fetească regală cultivar | |
Traminer roz-60 Bl. 1975 | Pink | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Traminer roz cultivar | |
Pinot gris-34 Bl. 1975 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Pinot gris cultivar | |
Sauvignon gris-9 Bl. 1975 | White | Grape cultivar for white wine | Vitis vinifera ssp. sativa L. Population of the Sauvignon blanc cultivar |
Alcohol (% vol.) | Inverted Total Sugars (g/L) | Total Acidity (g/L H2SO4) | Volatile Acidity (g/L Acetic Acid) | SO2 Free (mg/L) | SO2 Total (mg/L) | Total Dry Extract (g/L) | Non-Reducing Dry Extract (g/L) | Glucose + Fructose (g/L) |
---|---|---|---|---|---|---|---|---|
12.38 | 1.52 | 5.92 | 0.35 | 22.50 | 110.00 | 22.70 | 21.18 | 0.35 |
Parameters | Characteristics |
---|---|
Appearance | clear, glossy |
Colour | cherry |
Aroma/ Bouquet | floral notes aromas and fresh fruit aromas |
Taste | pleasant, dry, light raspberry aroma, soft wine, balanced |
Acidity | low |
Cultivar | Attack Frequency (F) (%) | Intensity (I) (%) | Climatic Conditions |
---|---|---|---|
Fetească regală 21 Bl | 90 | 35 | few weeks with intense daily precipitation combined with high temperatures |
Fetească albă 29 Bl | 95 | 37 | |
Muscat Ottonel 12 Bl | 90 | 43 | |
Pinot gris 34 Bl | 85 | 36 | |
Rubin | 2.8 | 4.8 | |
Amurg | 4.5 | 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chedea, V.S.; Drăgulinescu , A.-M.; Tomoiagă , L.L.; Bălăceanu, C.; Iliescu , M.L. Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard. Sustainability 2021, 13, 8170. https://doi.org/10.3390/su13158170
Chedea VS, Drăgulinescu A-M, Tomoiagă LL, Bălăceanu C, Iliescu ML. Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard. Sustainability. 2021; 13(15):8170. https://doi.org/10.3390/su13158170
Chicago/Turabian StyleChedea, Veronica Sanda, Ana-Maria Drăgulinescu , Liliana Lucia Tomoiagă , Cristina Bălăceanu, and Maria Lucia Iliescu . 2021. "Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard" Sustainability 13, no. 15: 8170. https://doi.org/10.3390/su13158170
APA StyleChedea, V. S., Drăgulinescu , A. -M., Tomoiagă , L. L., Bălăceanu, C., & Iliescu , M. L. (2021). Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard. Sustainability, 13(15), 8170. https://doi.org/10.3390/su13158170