A Model to Evaluate the Effect of Urban Road Pricing on Traffic Speed and Congestion in Madrid City Center and Its Surrounding
Abstract
:1. Introduction
2. Survey: Methodology and Results
2.1. The Survey and Questionnaire
2.2. Survey Results
3. Estimation and Forecasting Model
3.1. Model Description
3.2. Dynamic Modelling
3.3. Outliers
3.4. Dynamic Regression
3.4.1. Inside M-30 Model
3.4.2. Outside M-30 Model
4. Results
5. Discussion
5.1. Traffic Speed Increase during the Urban Road Pricing Working Time
5.2. Effective Traffic Speed Increase
5.3. Traffic Speed Increase due to Increase of Occupation of Public Transport as a Consequence of Urban Road Pricing
5.4. Traffic Speed Decrease due to Displaced Traffic Intensity to Time Periods in Which Urban Road Pricing Scheme Is Non-Operating
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Methodology Applied to Selection of Sample for the Mobility Survey
Appendix B. Forecast for Each of the Regressive Variables in Each Analyzed Zone
Period (Month/year) | Traffic Intensity | Atmospheric Humidity | Average Occupation Level in Public Transport |
---|---|---|---|
01/2016 | 1872329 | 73,1284903 | 13331117 |
02/2016 | 1904351 | 58,6325344 | 13040076 |
03/2016 | 1877874 | 52,3098851 | 13512536 |
04/2016 | 1957864 | 50,6977218 | 14336265 |
05/2016 | 1945901 | 41,870411 | 13850126 |
06/2016 | 1921627 | 36,830037 | 13433052 |
07/2016 | 1845078 | 29,7182597 | 11115917 |
08/2016 | 1460778 | 33,1781532 | 9910561 |
09/2016 | 1877200 | 42,5958749 | 11951715 |
10/2016 | 1874224 | 56,975613 | 13498437 |
11/2016 | 1893633 | 61,3141543 | 13311370 |
12/2016 | 1865249 | 62,3246083 | 12364391 |
Period (Month/year) | Traffic Intensity | Atmospheric Humidity | Average Occupation Level in Public Transport |
---|---|---|---|
01/2016 | 413664,136 | 73,1284903 | 13236505 |
02/2016 | 423480,918 | 58,6325344 | 13172811 |
03/2016 | 424781,204 | 52,3098851 | 13429291 |
04/2016 | 426823,676 | 50,6977218 | 12833639 |
05/2016 | 433652,501 | 41,870411 | 13216471 |
06/2016 | 426801,808 | 36,830037 | 12927484 |
07/2016 | 389074,731 | 29,7182597 | 11405382 |
08/2016 | 300550,304 | 33,1781532 | 8529643 |
09/2016 | 412690,956 | 42,5958749 | 12270321 |
10/2016 | 426296,453 | 56,975613 | 14411474 |
11/2016 | 426622,108 | 61,3141543 | 13995698 |
12/2016 | 417586,417 | 62,3246083 | 12961358 |
Appendix C
Indicators of Traffic Speed | |||
---|---|---|---|
Traffic Speed Type in Maximum Daily Congestion Time 1 | Real Average Traffic Speed 2 | Legal Restrictions on Traffic Speed Established | |
Inside toll zone | |||
Madrid’s city center | 20 km/h | 30 km/h | |
M-30 (1st orbital road) | <40 km/h | 65 km/h | 90 km/h |
Metropolitan Crown 3 | 41 km/h | 90 km/h | |
Outside toll zone | |||
M-40 (2nd orbital road) | 40 km/h–80 km/h | 71 km/h | 120 km/h |
Outside M-40 | 40 km/h–80 km/h | 95 km/h | 120 km/h |
References
- Moya-Gómez, B.; García-Palomares, J.C. The impacts of congestion on automobile accessibility. What happens in large European cities? J. Transp. Geogr. 2017, 62, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, G.; Small, K.A. The determinants of growth of employment subcenters. J. Transp. Geogr. 1999, 7, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.P. Urban Toll Systems: Study and Prediction of the Effects Derived from the Implementation of an Urban Toll System for the City of Madrid; Rey Juan Carlos University: Madrid, Spain, 2012. [Google Scholar]
- Batty, P.; Palacin, R.; González-Gil, A. Challenges and opportunities in developing urban modal shift. Travel Behav. Soc. 2015, 2, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Börjesson, M.; Kristoffersson, I. The Gothenburg Congestion Charge. Effects, Design and Politics. Transp. Res. Part A Policy Pract. 2015, 75, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Buckingham, C.; Doherty, A.R.; Hawkett, D.C.L.; Vitouladiti, S. Central London Congestion Charging: Understanding Its Impacts. Proceeding Inst. Civ. Eng. Transp. 2010, 163, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, J.; Hultkrantz, L.; Nerhagen, L.; Rosqvist, L.S. The Stockholm congestion-charging trial 2006: Overview of effects. Transp. Res. Part A Policy Pract. 2009, 43, 240–250. [Google Scholar] [CrossRef]
- Santos, G. The London congestion charging scheme. Brook. Whart. Pap. Urban Aff. 2008, 177–234. [Google Scholar] [CrossRef]
- Curacao Project. Promoting Progressive Pricing. Deliverable D2: State of Art Review (Final). Available online: http://www.isis-it.net/curacao/index.asp (accessed on 15 May 2019).
- United Nations Sustainable Development Goals. 17 Goals to Transform Our World. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 10 April 2019).
- Holland, E.P.; Watson, P.L. Traffic restraint in Singapore 1: Measuring the effects of the area license scheme. Traffic Eng. Control 1978, 19, 14–22. [Google Scholar]
- Sock-Yong, P.; Rex, T. Road Congestion Pricing in Singapore: 1975 to 2003. Transp. J. 2004, 43, 16–25. [Google Scholar]
- Christainsen, G. Road pricing in Singapore after 30 years. Cato J. 2006, 26, 71–88. [Google Scholar]
- Santos, G.; Shaffer, B. Preliminary results of the London Congestion Charging Scheme. Public Work. Manag. Policy 2004, 9, 164–181. [Google Scholar] [CrossRef]
- Santos, G.; Fraser, G. Road pricing: Lessons from London. Econ. Policy 2006, 21, 264–310. [Google Scholar] [CrossRef]
- Leape, J. The London congestion charge. J. Econ. Perspect. 2006, 20, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, J. Lessons from the Stockholm congestion trial. Transp. Policy 2008, 15, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Börjesson, M.; Eliasson, J.; Hugosson, M.B.; Brundell-Freij, K. The Stockholm congestion charges—5 years on. Effects, acceptability and lessons learnt. Transp. Policy 2012, 20, 1–12. [Google Scholar] [CrossRef]
- Rotaris, L.; Danielis, R.; Marcucci, E.; Massiani, J. The urban road pricing scheme to curb pollution in Milan, Italy: Description, impacts and preliminary cost-benefit analysis assessment. Transp. Res. Part A Policy Pract. 2010, 44, 359–375. [Google Scholar] [CrossRef]
- Eliasson, J.; Lundberg, M. Road Pricing in Urban Areas. Swedish Road. Administration Borlager. 2002. Available online: http://www.transportpricing.net/download/swedishreport.pdf (accessed on 20 February 2019).
- Phang, S.Y.; Toh, R.S. From manual to electronic road congestion pricing: The Singapore experience and experiment. Transp. Res. Part E Logist. Transp. Rev. 1997, 33, 97–106. [Google Scholar] [CrossRef]
- Pozueta, J. International Experience in Urban Tolls. Urban Research Notebooks (Ci [ur] 58). May/June 2008. Available online: http://polired.upm.es/index.php/ciur/article/view/273/268 (accessed on 10 June 2019).
- Transport for London. Congestion Charging. Update on Scheme Impacts and Operations. Feburary 2004. Available online: http://www.tfl.gov.uk/tfl/downloads/pdf/congestion-charging/cc-12monthson.pdf (accessed on 10 March 2019).
- Liu, Z.; Meng, Q.; Wang, S. Speed-based toll design for cordon-based congestion pricing scheme. Transp. Res. Part C Emerg. Technol. 2013, 31, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Menon, A. ERP in Singapore—A perspective one year on. Traffic Eng. Control 2000, 41, 40–45. [Google Scholar]
- Olszewski, P.; Xie, L. Modelling the effects of road pricing on traffic in Singapore. Transp. Res. Part A Policy Pract. 2005, 39, 755–772. [Google Scholar] [CrossRef]
- Xie, L.; Olszewski, P. Modelling the effects of road pricing on traffic using ERP traffic data. Transp. Res. Part A Policy Pract. 2011, 45, 512–522. [Google Scholar] [CrossRef]
- De Lara, M.; De Palma, A.; Kilani, M.; Piperno, S. Congestion pricing and long-term urban form: Application to Paris region. Reg. Sci. Urban Econ. 2013, 43, 282–295. [Google Scholar] [CrossRef]
- Li, M.Z.F. The role of speed-flow relationship in congestion pricing implementation with an application to Singapore. Transp. Res. Part B Methodol. 2002, 36, 731–754. [Google Scholar] [CrossRef]
- Abulibdeh, A. Implementing congestión pricing policies in MENA Region City: Analysis of the impact in travel behiviour and equity. Cities 2018, 74, 196–207. [Google Scholar] [CrossRef]
- Nello, O.; Muñoz, F. The urbanization process. In Human Geography. Processes, Risks and Uncertainties in a Globalized World; Romero, J., Ed.; Ariel: Barcelona, Spain, 2004; pp. 254–332. [Google Scholar]
- Giuliano, G.; Gillespie, A. Research issues regarding societal change and transport. J. Transp. Geogr. 1997, 5, 165–176. [Google Scholar] [CrossRef]
- Garcia-Palomares, J.C. Urban sprawl and travel to work: The case of the metropolitan area of Madrid. J. Transp. Geogr. 2010, 18, 197–213. [Google Scholar] [CrossRef]
- Madrid Regional Transport Consortium. Annual Report 2007. Madrid. Available online: https://www.crtm.es/media/651608/informe_anual.pdf (accessed on 5 October 2019).
- RACC Foundation. Congestion in the Access Corridors to Madrid. Studies and Publications of the RACC Foundation. January 2009 Madrid. Available online: http://imagenes.racc.es/pub/ficheros/adjuntos/adjuntos_estudio_congestion_webb_jzq_9adadbd7.pdf (accessed on 15 November 2019).
- Gutiérrez, J.; Garcia-Palomares, J.C. New spatial patterns of mobility within the metropolitan area of Madrid: Towards more complex and dispersed Flow networks. J. Transp. Geogr. 2007, 15, 18–30. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Simón, C.; García, A.E. A forecast air pollution model applied to a hypothetical urban road pricing scheme: An empirical study in Madrid. Transp. Res. Part D Transp. Environ. 2017, 55, 21–38. [Google Scholar] [CrossRef]
- Thomson, I.; Bull, A. Urban traffic congestion: Economic and social causes and consequences. J. CEPAL 2002, 76, 109–121. Available online: http://www.cepal.org/es/node/30737 (accessed on 15 November 2019). [CrossRef] [Green Version]
- Kearney, A.T. Towards a Social and Sustainable Model of Road Infrastructures in Spain. September 2018. Available online: http://www.atkearney.es/documents/3900187/6315418/AT+KEARNEY_Hacia+un+modelo+social+y+sostenible+de+infraestructuras+viarias+en+Espa%C3%B1a.pdf/c0c7635f-e81c-d954-25d5-159feda88d39 (accessed on 5 December 2019).
- Alonso, A.; Monzón, A.; Wang, Y. Modelling Land Use and Transport Policies to Measure Their Contribution to Urban Challenges: The Case of Madrid. Sustainability 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Madrid Council. Environmental and Mobility Government Area. Sustainability General Authority. Statistical information. Available online: http://www-2.munimadrid.es/CSE6/control/seleccionDatos?numSerie=15010000012 (accessed on 15 March 2019).
- AEMET. State Meteorological Agency. Ministry for Ecological Transition. Available online: http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?k=mad (accessed on 15 April 2019).
- Madrid Council. Environmental and Mobility Government Area. Sustainability General Authority. Statistical information. Available online: http://www-2.munimadrid.es/CSE6/control/menuCSE?filtro=NS&tablaSerie=SERIES (accessed on 15 March 2019).
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: Ann Arbor, MI, USA, 1976. [Google Scholar]
- Gómez, V.; Maravall, A.; Peña, D. Missing Observations in ARIMA Models. Working Paper 9701; Bank of Spain: Madrid, Spain, 1997. [Google Scholar]
- Gómez, V.; Maravall, A.; Peña, D. Missing observations in ARIMA models: Skipping approach versus, additive outlier approach. J. Econom. 1999, 88, 341–363. [Google Scholar] [CrossRef]
- Fair, R.C. Evaluating the predictive accuracy of models. Handb. Econom. 1986, 3, 1979–1995. [Google Scholar] [CrossRef]
- Willoughby, C. Singapore’s Experience in Managing Motorization and Its Relevance to Other Countries. New York: World Bank. Discussion Paper TWU-43, 2000. 2000. Available online: http://www.worldbank.org/transport/publicat/twu_43.pdf (accessed on 10 June 2019).
Area A 1 | Area B 2 | |||
---|---|---|---|---|
Respondents | % | Respondents | % | |
Car drivers before road pricing | 369 | 100.0% | 396 | 100.0% |
Mobility behavior after road pricing | ||||
1 = Car drivers | 141 | 38.2% | 158 | 39.9% |
2 = Public transportation | 130 | 35.2% | 76 | 19.2% |
3 = Non-motorized modes (bicycle or walk) | 11 | 3.0% | 0 | 0.0% |
4 = Car drivers in radial displacements to access in area A by public transportation 3 | 11 | 3.0% | 26 | 6.6% |
5 = Car drivers that changes to alternative route | 0 | 0.0% | 28 | 7.0% |
6 = Car drivers who make their trips out of operating hours of road pricing | 76 | 20.6% | 108 | 27.3% |
Traffic congestion reduction in charged periods | −228 | −61.8% | −212 | −60.1%v |
Inside the Toll Zone | Outside the Toll Zone | |||
---|---|---|---|---|
Respondents | % | Respondents | % | |
Car drivers before road pricing | 369 | 100.0% | 396 | 100.0% |
Traffic intensity reduction on charged periods | 228 | −61.8% | 212 | −60.1% |
Effectively reduced traffic intensity (2+3+4 Table 1) 1 | 152 | −41.2% | 76 2 | −19.2% |
Increase in use of public transport (2 Table 1) | 130 | 35.2% | 76 | 19.2% |
Displaced traffic intensity (5+6 Table 1) | 76 | −20.6% | 136 | −40.9% |
Parameters | Estimate | Std Error | T Ratio | Lag | |
---|---|---|---|---|---|
Traffic intensity1 | TH1 | −0.41930 | 0.084426 | −4.97 | 1 |
C(M30_Ins)t | BTH | −0.51595 | 0.079662 | −6.48 | 12 |
Atmospheric humidity 2 | PHI1 | −0.78346 | 0.057398 | −13.65 | 1 |
H(M30_Ins)t | BTH | −0.95000 | 0.028840 | −32.94 | 12 |
Average occupation level in public transport 3 | TH1 | −0.75298 | 0.062359 | −12.08 | 1 |
T(M30_Ins)t | BTH | −0.72694 | 0.065075 | −11.17 | 12 |
Parameters | Value | Std Error | T Value | ||
---|---|---|---|---|---|
Model Equation (6) | OUT 1 (25) | −0.96536 | (0.15980) | −6.04 | TC (1 2007) |
OUT 2 (118) | −0.55483 | (0.12637) | −4.39 | AO (10 2014) | |
OUT 3 (30) | 0.45829 | (0.12626) | 3.63 | AO (6 2007) | |
Model Equation (7) | OUT 1 (100) | −2357.4 | (530.10169) | −4.45 | AO (4 2013) |
OUT 2 (32) | −1896.8 | (530.10885) | −3.58 | AO (8 2007) |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
C(M30_Ins)t | −6.307622 | 3.033845 | −2.079085 | 0.0400 |
D log C(M30_Ins)t | −15.58778 | 0.793129 | −19.65353 | 0.0000 |
D log C(M30_Ins)t (−1) | −1.610115 | 0.785498 | −2.049801 | 0.0429 |
H(M30_Ins)t | −0.003430 | 0.001062 | −3.230835 | 0.0016 |
T(M30_Ins)t | 0.394695 | 0.184816 | 2.135609 | 0.0350 |
AR (1) | 0.204268 | 0.097776 | 2.089146 | 0.0391 |
SAR (12) | 0.321852 | 0.068886 | 4.672235 | 0.0000 |
MA (1) | −0.995325 | 0.009506 | −104.7017 | 0.0000 |
SMA (12) | 0.872228 | 0.028566 | 30.53355 | 0.0000 |
Parameters | ||||
R-squared | 0.940250 | Mean dependent var | 0.020696 | |
Adjusted R-squared | 0.935740 | S.D. dependent var | 2.289234 | |
S.E. of regression | 0.580310 | Akaike info criterion | 1.824519 | |
Sum squared resid | 35.69647 | Schwarz criterion | 2.039339 | |
Log likelihood | −95.90981 | F-statistic | 208.5063 | |
Durbin-Watson stat | 2.072600 | Prob (F-statistic) | 0.000000 |
Parameters | Estimate | Std Error | T Ratio | Lag | |
---|---|---|---|---|---|
Traffic intensity 1 | PHI1 | –0.30728 | 0.088182 | 3.48 | 1 |
C(M30_Out)t | BTH | –0.70590 | 0.065636 | –10.75 | 12 |
Average occupation level in public transport 2 | TH1 | –0.75255 | 0.062406 | –12.06 | 1 |
T(M30_Out)t | BTH | –0.72707 | 0.065062 | –11.18 | 12 |
Parameters | Value | Std Error | T Value | ||
---|---|---|---|---|---|
Model Equation (9) | OUT 1 (25) | –46692. | (6189.78871) | –7.54 | AO (4 2007) |
OUT 2 (118) | –39910. | (7561.96073) | –5.28 | LS (4 2006) | |
OUT 3 (30) | –37456. | (7115.29321) | –5.26 | TC (2 2007) | |
OUT 4 (70) | 23286. | (6036.40259) | 3.86 | AO (10 2010) | |
Model Equation (10) | OUT 1 (100) | –2357.4 | (530.10169) | –4.45 | AO (4 2013) |
OUT 2 (32) | –1896.8 | (530.10885) | –3.58 | AO (8 2007) |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
C(M30_Out)t | 60.61926 | 9.066392 | 6.686151 | 0.0000 |
D log C(M30_Out)t | −3.020643 | 0.610702 | −4.946179 | 0.0000 |
H(M30_Out)t | −0.002430 | 0.002062 | −3.240835 | 0.0013 |
T(M30_Out)t | 2.164192 | 0.558603 | 3.874293 | 0.0002 |
AR (1) | 0.738075 | 0.117904 | 6.259964 | 0.0000 |
SAR (12) | 0.416938 | 0.077309 | −5.393159 | 0.0000 |
MA (1) | −0.515637 | 0.143140 | −3.602322 | 0.0005 |
SMA (12) | 0.892738 | 0.026897 | 33.19153 | 0.0000 |
Parameters | ||||
R-squared | 0.642619 | Mean dependent var | 24.93509 | |
Adjusted R-squared | 0.619455 | S.D. dependent var | 0.908153 | |
S.E. of regression | 0.560224 | Akaike info criterion | 1.745513 | |
Sum squared resid | 33.89593 | Schwarz criterion | 1.935416 | |
Log likelihood | −93.23974 | F-statistic | 27.74262 | |
Durbin-Watson stat | 1.898455 | Prob (F-statistic) | 0.000000 |
Effects by Study Area (Expressed in Km/h) | ||
---|---|---|
Inside Area of Cordon Toll | Outside Area of Cordon Toll | |
Increase in traffic speed due to traffic intensity reduction on charged periods | 6.5 | 1.2 |
Increase in traffic speed due to effective traffic intensity reduction because of road pricing | 3.6 | 0.3 |
Increase in traffic speed due to average occupation of public transport increase because of urban road pricing | 0.5 | 2.6 |
Reduction in traffic speed due to displaced traffic intensity out to operating time of road pricing | –1.3 | –0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz Miguel, J.P.; García Sipols, A.E.; Simón de Blas, C.; Anguita Rodríguez, F. A Model to Evaluate the Effect of Urban Road Pricing on Traffic Speed and Congestion in Madrid City Center and Its Surrounding. Sustainability 2021, 13, 8415. https://doi.org/10.3390/su13158415
Muñoz Miguel JP, García Sipols AE, Simón de Blas C, Anguita Rodríguez F. A Model to Evaluate the Effect of Urban Road Pricing on Traffic Speed and Congestion in Madrid City Center and Its Surrounding. Sustainability. 2021; 13(15):8415. https://doi.org/10.3390/su13158415
Chicago/Turabian StyleMuñoz Miguel, Juan Pedro, Ana Elizabeth García Sipols, Clara Simón de Blas, and Francisca Anguita Rodríguez. 2021. "A Model to Evaluate the Effect of Urban Road Pricing on Traffic Speed and Congestion in Madrid City Center and Its Surrounding" Sustainability 13, no. 15: 8415. https://doi.org/10.3390/su13158415
APA StyleMuñoz Miguel, J. P., García Sipols, A. E., Simón de Blas, C., & Anguita Rodríguez, F. (2021). A Model to Evaluate the Effect of Urban Road Pricing on Traffic Speed and Congestion in Madrid City Center and Its Surrounding. Sustainability, 13(15), 8415. https://doi.org/10.3390/su13158415