Research on Regional Differences of the Leisure Agriculture’s Impact on Farmers’ Income—An Empirical Analysis Based on Nonlinear Threshold Regression
Abstract
:1. Introduction
2. Impact Mechanism and Areas Division
2.1. Function Mechanism of Leisure Agriculture on Farmers’ Income
2.2. Division Methods for Types of Recreational Agriculture Development Areas
3. Materials and Methods
3.1. Model Setting
3.2. Data Source
4. Results
4.1. Impact of Leisure Agriculture on Nominal Income
4.2. Impact of Leisure Agriculture on Farmers’ Actual Income: From the Perspective of Engel Coefficient
4.3. Robustness Test
5. Conclusions and Policy Suggestions
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohe, Y. Evaluating household leisure behaviour of rural tourism in Japan/European Association of Agricultural Economists (EAAE). In Proceedings of the Exploring Diversity in the European Agri-Food System, Zaragoza, Spain, 28–31 August 2002; pp. 1–15. [Google Scholar]
- Li, B.B.; Mi, Z.Y.; Zhang, Z.H. The Contribution and Influence Mechanism of Leisure Agriculture to Rural Economic Development:Taking the National Demonstration County of Leisure Agriculture and Rural Tourism as an Example. Econ. Geogr. 2020, 40, 154–162. [Google Scholar]
- Miller, F.P.; Vandome, A.F.; McBrewster, J. Capability Approach: Welfare Economics, Amartya Sen, Martha Nussbaum, Human Development Index, Human Development and Capability Association, Income; Alphascript Publishing: Riga, Latvia, 2010. [Google Scholar]
- Marcotte, P.; Bourdeau, L.; Doyon, M. Agrotourisme, agritourisme et tourisme à la ferme? Une analyse comparative. Téoros. Revue Rech. Tour. 2006, 25, 59–67. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, S.W. The effect of the rural tourism policy on non-farm income in South Korea. Tour. Manag. 2015, 46, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Lupi, C.; Giaccio, V.; Mastronardi, L.; Giannelli, A.; Scardera, A. Exploring the features of agritourism and its contribution to rural development in Italy. Land. Use Policy. 2017, 64, 383–390. [Google Scholar] [CrossRef]
- Li, B.B.; Mi, Z.Y.; Zhang, Z.H. Willingness of the New Generation of Farmers to Participate in Rural Tourism: The Role of Perceived Impacts and Sense of Place. Sustainability. 2020, 12, 766. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Peng, W.; Huang, Z. Influence mechanism and effect of family-based rural tourism development on farm household income—Evidence from Zhejiang, Sichuan and Hunan. Econ. Geogr. 2016, 36, 169–176. [Google Scholar]
- Giaccio, V.; Giannelli, A.; Mastronardi, L. Explaining determinants of agri-tourism income: Evidence from Italy. Tour. Rev. 2018, 73, 216–229. [Google Scholar] [CrossRef]
- Jiang, X.J.; Li, H. Compare for the real and nominal income disparity among different regions in China. Econ. Res. J. 2005, 9, 11–18. [Google Scholar]
- Yan, M.; Fan, J. Regional disparity of real income in China based on purchasing power parity. Econ. Geogr. 2016, 36, 1–7. [Google Scholar]
- Srisomyong, N.; Meyer, D. Political economy of agritourism initiatives in Thailand. J. Rural. Stud. 2015, 41, 95–108. [Google Scholar] [CrossRef]
- Snyman, S.; Ahebwa, W.M.; Novelli, M. The impact of ecotourism employment on rural household incomes and social welfare in six southern African countries. Tour. Hosp. Res. 2014, 14, 37–52. [Google Scholar] [CrossRef]
- Katircioglu, S.T. Revisiting the tourism-led-growth hypothesis for Turkey using the bounds test and Johansen approach for cointegration. Tour. Manag. 2009, 30, 17–20. [Google Scholar] [CrossRef]
- Khanal, A.R.; Mishra, A.K. Agritourism and off-farm work: Survival strategies for small farms. Agric. Econ. 2015, 45, 65–76. [Google Scholar] [CrossRef]
- Cui, X.M.; Yang, X.J. A research on farmers’ livelihood assets and sustainable livelihood development of community: A case study of Ankang in Qinling-Bashan mountain area. Hum. Geogr. 2018, 33, 147–153. [Google Scholar]
- Blake, A.; Arbache, J.S.; Sinclair, M.T.; Teles, V. Tourism and poverty relief. Ann. Tour. Res. 2008, 35, 107–126. [Google Scholar] [CrossRef]
- Deller, S. Rural poverty, tourism and spatial heterogeneity. Ann. Tour. Res. 2010, 37, 180–205. [Google Scholar] [CrossRef]
- Joo, H.; Khanal, A.R.; Mishra, A.K. Farmers’ Participation in Agritourism: Does It Affect the Bottom Line? Agric. Resour. Econ. Rev. 2013, 42, 471–490. [Google Scholar] [CrossRef]
- Dubois, C.; Cawley, M.; Schmitz, S. The tourist on the farm: A ‘muddled’ image. Tour. Manag. 2017, 59, 298–311. [Google Scholar] [CrossRef]
- Zhao, D.D.; Zhou, H. Study on cropping structure adjustment under the background of rural-household differentiation from Rural Fixed Watch Points in 31 provinces of China. Resour. Sci. 2018, 40, 64–73. [Google Scholar]
- Tucker, H.; Boonabaana, B. A critical analysis of tourism, gender and poverty reduction. J. Sustain. Tour. 2012, 20, 437–455. [Google Scholar] [CrossRef]
- Scharf, M.M.; Rahut, D.B. Nonfarm Employment and Rural Welfare: Evidence from the Himalayas. Am. J. Agric. Econ. 2014, 96, 1183–1197. [Google Scholar] [CrossRef]
- Luo, W.B.; Wu, C.F.; Dai, M.Q.; Wang, Y.J.; Wu, Z.B. study on the social economic impact of suburban leisure agriculture on local residents—Case of Huangxing, Changsha. J. Agrote. Econ. 2008, 4, 48–54. [Google Scholar]
- Koutsouris, A.; Gidarakou, I.; Grava, F.; Michailidis, A. The phantom of (agri) tourism and agriculture symbiosis? A Greek case study. Tour. Manag. Perspect. 2014, 12, 94–103. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, L.; Yang, X.; Yang, X.J.; Li, G. The impact of tourism development on changes of households’ livelihood and community tourism effect: A case study based on the perspective of tourism development mode. Geog. Res. 2017, 36, 1709–1724. [Google Scholar]
- Chao, C.; Hazari, B.R.; Laffargue, J.; Sgro, P.M.; Yu, E.S. Tourism, Dutch Disease And Welfare In An Open Dynamic Economy. Jpn. Econ. Rev. 2010, 57, 501–515. [Google Scholar] [CrossRef]
- Inchaustisintes, F. Tourism: Economic growth, employment and Dutch Disease. Ann. Tour. Res. 2015, 54, 172–189. [Google Scholar] [CrossRef]
- Wu, X.P.; Li, J.Y. Relationship between growth of tourism industry and inflation: Evidence from Hainan Island. Tour. Trib. 2012, 27, 66–71. [Google Scholar]
- Xu, H.T.; Liu, D.J.; Hu, J.; Hou, J.N. Spatial distribution characteristics and influence factors of rural tourism destination in China—The case of national level leisure agriculture and rural tourism demonstration sites. Econ. Geogr. 2015, 9, 182–188. [Google Scholar]
- Ye, H.; Li, H.P.; Wang, Y.P. Regional differences in water resource endowment and restructuring of rural economy. Chin. Rural. Econ. 2004, 6, 33–39. [Google Scholar]
- Lu, G.Y.; Sheng, L.; Tang, C.H. Static and dynamic analysis of China’s industrial ecologization level—Empirical study based on provincial data. China. Ind. Econ. 2012, 3, 147–159. [Google Scholar]
- Jiang, B.L.; Geng, L.H.; Bian, J.Y. Driving factor analysis and the spatial regionalization on the industrial water use efficiency in China. Resour. Sci. 2014, 36, 2231–2239. [Google Scholar]
- Zhang, Z.H.; Du, K. The Development of Industry and Agriculture in China: Lagging and Synchronously Advancing. China Soft. Sci. 2019, 2, 62–77. [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Weng, C. The Poverty Reduction Effect of Rural Financial Development: Spatial Spillover and Threshold Characteristics. J. Agrote. Econ. 2015, 9, 37–47. [Google Scholar]
- Zhao, L.; Fang, C.; Mao, C.L. Tourism and poverty reduction: An empirical evidence from China. Tour. Trib. 2018, 33, 13–25. [Google Scholar] [CrossRef]
Types of Development Area | Provinces | Feature Agriculture’s Industry Basis | Ecological Resources and Environment | Market Condition | Economic Development Level |
---|---|---|---|---|---|
City-dependent | Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, Guangdong, Hainan and Chongqing | Medium to Low | Medium | High | High |
Agricultural Industry-dependent | Hebei, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, Sichuan and Guizhou | High | Medium | Medium | Medium |
Natural Resource-dependent | Guangxi, Guizhou, Yunnan, Tibet, Gansu, Shaanxi, Ningxia, Qinghai and Xinjiang | Medium | High | Low | Low |
Types of Development Area | Specific Forms | Connection between Tourists and Farmers | Farmers’ Main Income Methods | Farmers’ Access |
---|---|---|---|---|
City-dependent | Modern Agricultural Science and Technology Park and Agritainment | “The Second, Home” | Land or Courtyard Lease, Self-management and Non-agricultural Labor | Low |
Agricultural Industry-dependent | Picking Garden, Agritainment and Leisure Farm | Production Participation | Self-employment, Agricultural Workers and Non-agricultural Workers | High |
Natural Resource-dependent | Agritainment and Folk Village | Tour interaction | Self-management and Agricultural Workers | Medium |
Variable Category | Variables | Variable Expression | Mean | Standard Deviation | Minimum | Maximum | Sample Capacity |
---|---|---|---|---|---|---|---|
Dependent Variable | Farmers’ Nominal Income | ri | 3932.10 | 224.75 | 2723.80 | 25,520.40 | 270 |
Farmers’ Engel Coefficient | engle | 37.86 | 6.45 | 26.50 | 53.40 | 270 | |
Core Explanatory Variables/ Threshold Variables | Development Level of Leisure Agriculture | agat | 0.06 | 0.06 | 0.002 | 0.40 | 270 |
Control Variables | Rural Fixed Capital Investment | inv | 0.20 | 0.09 | 0.01 | 0.46 | 270 |
Cultivated Land Area Per Capita | perland | 0.95 | 0.78 | 0.27 | 4.02 | 270 | |
Educational Level of Rural Residents | peredu | 8.54 | 4.25 | 2.70 | 24.80 | 270 | |
Number of Rural Employees | emp | 0.51 | 0.24 | 0.22 | 2.05 | 270 | |
Financial Support for Agriculture | fin | 0.37 | 0.45 | 0.07 | 3.42 | 270 |
Model | Critical Values | |||||
---|---|---|---|---|---|---|
F | p-Value | BS-Reps | 1% | 5% | 10% | |
Single Threshold | 8.163 ** | 0.023 | 300 | 9.563 | 6.899 | 5.714 |
Double Threshold | 15.565 *** | 0.003 | 300 | 12.900 | 5.189 | 2.164 |
Triple Threshold | 0.000 | 0.243 | 300 | 0.000 | 0.000 | 0.000 |
Thresholds | 95% CI | |
---|---|---|
Single Model(g1) | 0.228 | [0.007, 0.228] |
Double Model | ||
Ito1 (g1) | 0.007 | [0.007, 0.144] |
Ito2 (g2) | 0.105 | [0.011, 0.326] |
Triple Model(g3) | 0.034 | [0.011, 0.326] |
Variables | Panel Regression Model | Panel Threshold Regression Model | ||||||
---|---|---|---|---|---|---|---|---|
The Whole Country | City -Dependent | Agricultural Industry -Dependent | Natural Resource -Dependent | The Whole Country | City -Dependent | Agricultural Industry -Dependent | Natural Resource -Dependent | |
Rural Fixed Capital Investment | 2.60 (2.15) | 4.16 (4.36) | 6.96 ** (2.89) | 2.51 (2.45) | 2.04 (2.32) | 7.61 (5.89) | 8.65 *** (2.81) | 2.09 (2.83) |
Cultivated Land Area Per Capita | 2646 *** (377.7) | 6243***(1528) | −268.1 (339.1) | 719.1 *** (156.8) | 4.395 *** (486.7) | 8.39 *** (1868) | 1.228 ** (523.6) | 5.47 *** (1.31) |
Educational Level Of Rural Residents | −135.8 *** (46.75) | −240.7**(103.0) | −141.7 ** (59.34) | −119.1 *** (35.09) | −137.6 *** (49.91) | −221.9 * (124.4) | −108.7 (68.68) | 9.39 (52.71) |
Employed Population Proportion in Rural Areas | 9.87 *** (876.8) | 6.32***(1.72) | 13.05 *** (1.22) | 9.77 *** (1.05) | 9.62 *** (3.06) | 7.02 *** (2.28) | 11.22 *** (1.24) | 6.47 *** (1.77) |
Financial Support for Agriculture | 568.0 (587.9) | 278.0 (1.01) | 16.87 *** (2.79) | 213.0 (1.19) | 1.19 * (641.8) | 1.72 (1.27) | 21.68 *** (2.71) | 7.18 *** (1.47) |
Leisure Agriculture’s Development Level | 16.21 *** (2.57) | 20.00 *** (5.83) | 27.39 *** (2.32) | 13.15 *** (12.67) | ||||
1.08 * (4.66) | 2.72 (8.07) | 3.50 * (5.01) | −3.63 (26.80) | |||||
3.01 ** (1.46) | 4.30 ** (3.34) | 5.12 * (1.57) | 1.02 * (2.22) | |||||
−2.25 * (3.10) | −5.69 * (5.17) | 1.33 (6.08) | 3.12 (4.24) | |||||
Constant Term | 1.76 ** (888.4) | 4.56 ** (1.87) | 902.8 (1.01) | −1.26 (883.8) | 1.11 (838.4) | 5.32 *** (1.94) | −505.20 (1.05) | −6.46 *** (1.21) |
Sample Size | 270 | 72 | 108 | 72 | 270 | 72 | 108 | 72 |
Area Number | 30 | 8 | 12 | 8 | 30 | 8 | 12 | 8 |
Model | Critical Values | |||||
---|---|---|---|---|---|---|
F | p-Value | BS-Reps | 1% | 5% | 10% | |
Single Threshold | 7.780 * | 0.077 | 300 | 13.531 | 8.652 | 6.867 |
Double Threshold | 24.471 *** | 0.000 | 300 | 14.818 | 10.445 | 8.172 |
Triple Threshold | 0.000 | 0.160 | 300 | 0.000 | 0.000 | 0.000 |
Thresholds | 95% CI | |
---|---|---|
Single Model(g1) | 0.105 | [0.037, 0.109] |
Double Model | ||
Ito1 (g1) | 0.037 | [0.037, 0.045] |
Ito2 (g2) | 0.104 | [0.089, 0.104] |
Triple Model(g3) | 0.064 | [0.089, 0.104] |
Variables | Panel Regression Model | Panel Threshold Regression Model | ||||||
---|---|---|---|---|---|---|---|---|
The Whole Country | City -Dependent | Agricultural Industry -Dependent | Natural Resource -Dependent | The Whole Country | City -Dependent | Agricultural Industry -Dependent | Natural Resource -Dependent | |
Rural Fixed Capital Investment | −16.89 *** (4.62) | −26.99 *** (4.29) | −18.77 *** (7.19) | −5.84 (7.82) | −13.80 *** (5.21) | −7.58 (8.99) | −20.81 *** (7.73) | −9.53 (8.59) |
Cultivated Land Area Per Capita | −5.38 *** (0.75) | −14.55 *** (1.41) | −1.92 * (1.05) | −2.52 * (1.31) | −7.50 *** (1.08) | −12.02 *** (2.74) | −1.80 (1.33) | −4.60 (3.61) |
Educational Level Of Rural Residents | 0.10 (0.11) | −0.17 (0.18) | −0.10 (0.17) | 0.02 (0.136) | 0.11 (0.11) | 0.05 (0.17) | −0.28 (0.19) | −0.10 (0.15) |
Employed Population Proportion in Rural Areas | −14.97 *** (1.89) | −0.92 (2.16) | −20.98 *** (3.11) | −29.14 *** (3.23) | −14.44 *** (2.17) | −3.44 (3.42) | −21.35 *** (3.21) | −26.50 *** (4.95) |
Financial Support for Agriculture | 3.29 *** (1.26) | −2.90 ** (1.29) | −31.12 *** (6.86) | −9.32 ** (4.51) | 2.89 ** (1.43) | −1.32 (1.91) | −39.87 *** (7.42) | −16.68 *** (4.70) |
Leisure Agriculture’s Development Level | −17.36 *** (5.63) | −17.67 ** (7.54) | −36.82 ** (5.84) | −8.34 * (44.82) | ||||
6.65 ** (4.60) | 1.99 (9.43) | 8.31 (7.94) | 12.80 (15.82) | |||||
−17.42 *** (3.54) | −18.84 ** (5.34) | −24.89 *** (4.54) | −13.16 ** (6.41) | |||||
3.58 * (6.73) | 5.59 (7.72) | −3.21 (16.73) | 6.21 (5.41) | |||||
Constant Term | 52.87 *** (1.79) | 58.26 *** (1.77) | 59.43 *** (2.83) | 62.25 *** (3.42) | 52.98 *** (1.88) | 48.13 *** (2.70) | 62.57 *** (2.88) | 66.76 *** (3.65) |
Sample Capacity | 270 | 72 | 108 | 72 | 270 | 72 | 108 | 72 |
Area Number | 30 | 8 | 12 | 8 | 30 | 8 | 12 | 8 |
Variables | Panel Threshold Regression Model | |||
---|---|---|---|---|
The Whole Country | City -Dependent | Agricultural Industry -Dependent | Natural Resource -Dependent | |
Rural Fixed Capital Investment | −14.84 *** (5.16) | 7.31 (7.64) | −14.76 (10.17) | −13.10 ** (5.84) |
Cultivated Land Area Per Capita | −7.58 *** (1.07) | −10.83 *** (2.63) | −2.18 (1.84) | −2.53 (3.01) |
Educational Level of Rural Residents | 0.09 (0.11) | 0.05 (0.16) | −0.61 * (0.43) | −0.08 (0.17) |
Employed Population Proportion in Rural Areas | −13.71 *** (2.16) | −3.57 (3.42) | −23.43 *** (4.27) | −22.16 *** (3.02) |
Financial Support for Agriculture | 1.92 (1.55) | −1.01 (2.01) | −33.47 *** (8.57) | −16.98 *** (3.69) |
14.69 *** (4.62) | 3. 27 ** (1.18) | 199.7 (135.8) | 64.89 * (35.67) | |
−2.26 *** (0.96) | −1. 65 ** (0.83) | −2.23 ** (1.01) | −4.70 (4.71) | |
3.52 *** (1.16) | 5.46 (9.34) | 0.72 ** (0.39) | 8.00 (9.92) | |
Constant Term | 53.44 *** (1.88) | 44.73 *** (2.47) | 66.02 *** (4.29) | 60.78 *** (2.19) |
Sample Capacity | 270 | 72 | 108 | 72 |
Area Number | 30 | 8 | 12 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Li, B. Research on Regional Differences of the Leisure Agriculture’s Impact on Farmers’ Income—An Empirical Analysis Based on Nonlinear Threshold Regression. Sustainability 2021, 13, 8416. https://doi.org/10.3390/su13158416
Lu Y, Li B. Research on Regional Differences of the Leisure Agriculture’s Impact on Farmers’ Income—An Empirical Analysis Based on Nonlinear Threshold Regression. Sustainability. 2021; 13(15):8416. https://doi.org/10.3390/su13158416
Chicago/Turabian StyleLu, Yawen, and Binbin Li. 2021. "Research on Regional Differences of the Leisure Agriculture’s Impact on Farmers’ Income—An Empirical Analysis Based on Nonlinear Threshold Regression" Sustainability 13, no. 15: 8416. https://doi.org/10.3390/su13158416
APA StyleLu, Y., & Li, B. (2021). Research on Regional Differences of the Leisure Agriculture’s Impact on Farmers’ Income—An Empirical Analysis Based on Nonlinear Threshold Regression. Sustainability, 13(15), 8416. https://doi.org/10.3390/su13158416