Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production
Abstract
:1. Introduction
2. Biological Functions of Botanicals
3. Bee Products and Their Effects on Health Status and Poultry Productivity
3.1. Honey
3.2. Royal Jelly
3.3. Bee Venom
3.4. Bee Pollen
3.5. Bee Propolis
4. Botanicals and Their Effects on Health Status and Poultry Productivity
4.1. Fenugreek Seeds (Trigonella foenum L.)
4.2. Black Cumin (Nigella sativa L.)
4.3. Ginger (Zingiber officinale L.)
4.4. Turmeric (Curcuma longa L.)
4.5. Thyme (Thymus vulgaris L.)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ Concerns and Perceptions of Farm Animal Welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Q.; Ganesh, S.; Moreno, M.; Bommireddy, Y.; Gonzalez, M.; Reklaitis, G.V.; Nagy, Z.K. A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing. Comput. Chem. Eng. 2019, 125, 216–231. [Google Scholar] [CrossRef]
- Tasić, S. Geographical and Economic Performance of Organic Agriculture and Its Impact on the Stability of Gastronomy Tourism in Serbia. Oditor 2018, 4, 38–51. [Google Scholar] [CrossRef]
- Nowakiewicz, A.; Zięba, P.; Gnat, S.; Matuszewski, Ł. Last Call for Replacement of Antimicrobials in Animal Production: Modern Challenges, Opportunities, and Potential Solutions. Antibiotics 2020, 9, 883. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Frutos, R.D.L. Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Puvača, N.; Čabarkapa, I.; Bursić, V.; Petrović, A.; Aćimović, M. Antimicrobial, Antioxidant and Acaricidal Properties of Tea Tree (Melaleuca alternifolia). J. Agron. Technol. Eng. Manag. 2018, 1, 29–38. [Google Scholar]
- Marotta, F.; Garofolo, G.; Di Marcantonio, L.; Di Serafino, G.; Neri, D.; Romantini, R.; Sacchini, L.; Alessiani, A.; Di Donato, G.; Nuvoloni, R.; et al. Antimicrobial resistance genotypes and phenotypes of Campylobacter jejuni isolated in Italy from humans, birds from wild and urban habitats, and poultry. PLoS ONE 2019, 14, e0223804. [Google Scholar] [CrossRef] [Green Version]
- Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin. Microorganisms 2017, 5, 11. [Google Scholar] [CrossRef]
- Paphitou, N.I. Antimicrobial resistance: Action to combat the rising microbial challenges. Int. J. Antimicrob. Agents 2013, 42, S25–S28. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2015, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C. Prebiotics and Alternative Poultry Production. Poult. Sci. 2021, 100, 101174. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Playford, R.J. Bioactive natural compounds for the treatment of gastrointestinal disorders. Clin. Sci. 2003, 104, 547–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isman, M.B. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Èntomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and Modern Uses of Natural Honey in Human Diseases: A Review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef]
- Gheisar, M.M.; Kim, I.H. Phytobiotics in poultry and swine nutrition—A review. Ital. J. Anim. Sci. 2017, 17, 92–99. [Google Scholar] [CrossRef]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.-T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas. J. Anim. Sci. 2016, 30, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Kumar, P.; Saxena, M.J. Feed Additives in Animal Health. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 345–362. ISBN 978-3-030-04624-8. [Google Scholar]
- Cabarkapa, I.; Puvača, N.; Popović, S.; Čolović, D.; Kostadinović, L.; Tatham, E.K.; Lević, J. Aromatic plants and their extracts pharmacokinetics and in vitro/in vivo mechanisms of action. In Feed Additives; Elsevier: Amsterdam, The Netherlands, 2020; pp. 75–88. ISBN 978-0-12-814700-9. [Google Scholar]
- Popović, S.; Kostadinović, L.; Đuragić, O.; Aćimović, M.; Čabarkapa, I.; Puvača, N.; Pelić, D.L. Influence of Medicinal Plants Mixtures (Artemisia absinthium, Thymus vulgaris, Menthae piperitae and Thymus serpyllum) In Broilers Nutrition on Biochemical Blood Status. J. Agron. Technol. Eng. Manag. 2018, 1, 91–98. [Google Scholar]
- Singh, A.K.; Cabral, C.; Kumar, R.; Ganguly, R.; Rana, H.K.; Gupta, A.; Lauro, M.R.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [Green Version]
- Cross, D.; McDevitt, R.M.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef]
- Yang, Y.; Iji, P.; Choct, M. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World’s Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Mahady, G.B. Medicinal Plants for the Prevention and Treatment of Bacterial Infections. Curr. Pharm. Des. 2005, 11, 2405–2427. [Google Scholar] [CrossRef]
- Pliego, A.B.; Tavakoli, M.; Khusro, A.; Seidavi, A.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Márquez-Molina, O.; Rivas-Caceres, R.R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: A review. Anim. Biotechnol. 2020, 1–23. [Google Scholar] [CrossRef]
- Raza, A.; Muhammad, F.; Bashir, S.; Anwar, M.; Awais, M.; Akhtar, M.; Aslam, B.; Khaliq, T.; Naseer, M. Antiviral and immune boosting activities of different medicinal plants against Newcastle disease virus in poultry. World’s Poult. Sci. J. 2015, 71, 523–532. [Google Scholar] [CrossRef]
- Seidavi, A.R.; Laudadio, V.; Khazaei, R.; Puvača, N.; Selvaggi, M.; Tufarelli, V. Feeding of black cumin (Nigella sativa L.) and its effects on poultry production and health. World’s Poult. Sci. J. 2020, 76, 346–357. [Google Scholar] [CrossRef]
- McMurray, R.; Ball, M.; Tunney, M.; Corcionivoschi, N.; Situ, C. Antibacterial Activity of Four Plant Extracts Extracted from Traditional Chinese Medicinal Plants against Listeria monocytogenes, Escherichia coli, and Salmonella enterica subsp. enterica serovar Enteritidis. Microorganisms 2020, 8, 962. [Google Scholar] [CrossRef] [PubMed]
- Haščík, P.; Pavelkova, A.; Bobko, M.; Trembecká, L.; Elimam, I.; Capcarova, M. The effect of bee pollen in chicken diet. World’s Poult. Sci. J. 2017, 73, 643–650. [Google Scholar] [CrossRef]
- Oke, O.E.; Sorungbe, F.O.; Abioja, M.O.; Oyetunji, O.; Onabajo, A.O. Effect of different levels of honey on physiological, growth and carcass traits of broiler chickens during dry season. Acta Agric. Slov. 2016, 108, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Abioja, M.O.; Adekunle, M.O.; Abiona, J.A.; Sodipe, O.G.; Jegede, A.V. Laying Performance, Survival Rate, Egg Quality and Shell Characteristics in Laying Pullets Offered Honey in Drinking Water during Hot Season. Agric. Trop. Subtrop. 2016, 49, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Malayoğlu, H.B.; Baysal, Ş.E.N.A.Y.; Misirlioğlu, Z.; Polat, M.; Yilmaz, H.; Turan, N. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets. Br. Poult. Sci. 2010, 51, 67–80. [Google Scholar] [CrossRef]
- Das, L.; Bhaumik, E.; Raychaudhuri, U.; Chakraborty, R. Role of nutraceuticals in human health. J. Food Sci. Technol. 2011, 49, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.O.; Wightman, E.L. Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Santhosha, S.; Jamuna, P.; Prabhavathi, S. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Lika, E.; Tufarelli, V.; Bursić, V.; Pelić, D.L.; Nikolova, N.; Petrović, A.; Prodanović, R.; Vuković, G.; Lević, J.; et al. Influence of Different Tetracycline Antimicrobial Therapy of Mycoplasma (Mycoplasma synoviae) in Laying Hens Compared to Tea Tree Essential Oil on Table Egg Quality and Antibiotic Residues. Foods 2020, 9, 612. [Google Scholar] [CrossRef]
- Arenas-Jal, M.; Suñé-Negre, J.M.; Pérez-Lozano, P.; García-Montoya, E. Trends in the food and sports nutrition industry: A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 2405–2421. [Google Scholar] [CrossRef] [PubMed]
- Sugiharto, S. Role of nutraceuticals in gut health and growth performance of poultry. J. Saudi Soc. Agric. Sci. 2016, 15, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; Abdelwareth, A.; Sallam, I.; Shorbagi, M.; Jehmlich, N.; Fritz-Wallace, K.; Schäpe, S.S.; Rolle-Kampczyk, U.; Ehrlich, A.; Wessjohann, L.A.; et al. Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J. Adv. Res. 2020, 23, 47–59. [Google Scholar] [CrossRef]
- Gowd, V.; Karim, N.; Shishir, M.R.I.; Xie, L.; Chen, W. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends Food Sci. Technol. 2019, 93, 81–93. [Google Scholar] [CrossRef]
- Possemiers, S.; Bolca, S.; Verstraete, W.; Heyerick, A. The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 2011, 82, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Aluko, R. Bioactive Carbohydrates. In Functional Foods and Nutraceuticals; Aluko, R.E., Ed.; Food Science Text Series; Springer: New York, NY, USA, 2012; pp. 3–22. ISBN 978-1-4614-3480-1. [Google Scholar]
- Khan, N.; Abbasi, A.M.; Dastagir, G.; Nazir, A.; Shah, G.; Shah, M.M.; Shah, M.H. Ethnobotanical and antimicrobial study of some selected medicinal plants used in Khyber Pakhtunkhwa (KPK) as a potential source to cure infectious diseases. BMC Complement. Altern. Med. 2014, 14, 122. [Google Scholar] [CrossRef] [Green Version]
- Ghanima, M.M.A.; Elsadek, M.F.; Taha, A.E.; El-Hack, M.E.A.; Alagawany, M.; Ahmed, B.M.; Elshafie, M.M.; El-Sabrout, K. Effect of Housing System and Rosemary and Cinnamon Essential Oils on Layers Performance, Egg Quality, Haematological Traits, Blood Chemistry, Immunity, and Antioxidant. Animals 2020, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N. Bioactive Compounds in Selected Hot Spices and Medicinal Plants. J. Agron. Technol. Eng. Manag. 2018, 1, 8–17. [Google Scholar]
- Babaei, S.; Rahimi, S.; Torshizi, M.A.K.; Tahmasebi, G.; Miran, S.N.K. Effects of propolis, royal jelly, honey and bee pollen on growth performance and immune system of Japanese quails. Vet. Res. Forum 2016, 7, 13–20. [Google Scholar] [PubMed]
- Babaei, S.; Rahimi, S.; Karimi Torshizi, M.A.; Tahmasebi, G.H.; Khaleghi Miran, S.N. Effect of Honey, Royal Jelly and Bee Pollen on Performance, Immune System and Blood Parameters in Japanese Quail. Anim. Prod. 2015, 17, 311–320. [Google Scholar] [CrossRef]
- Pavelková, A.; Haščí k, P.; Capcarová, M.; Kalafová, A.; Hanusová, E.; Tkáčová, J.; Bobko, M.; Čuboň, J.; Čech, M.; Kačániová, M. Meat performance of Japanese quails after the application of bee bread powder. Potravin. Slovak J. Food Sci. 2020, 14, 735–743. [Google Scholar] [CrossRef]
- El-Tarabany, M.S. Effect of Royal Jelly on behavioural patterns, feather quality, egg quality and some haematological parameters in laying hens at the late stage of production. J. Anim. Physiol. Anim. Nutr. 2017, 102, e599–e606. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Zhang, K.; Wang, J.; Bai, S.; Zeng, Q.; Peng, H.; Ding, X. Effect of different concentrations of neohesperidin dihydrochalcone on performance, egg quality, serum biochemistry and intestinal morphology in laying hens. Poult. Sci. 2021, 100, 101097. [Google Scholar] [CrossRef]
- Kim, D.-H.; Han, S.-M.; Choi, Y.-S.; Kang, H.-K.; Lee, H.-G.; Lee, K.-W. Effects of Dietary Bee Venom on Serum Characteristic, Antioxidant Activity and Liver Fatty Acid Composition in Broiler Chickens. Korean J. Poult. Sci. 2019, 46, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Han, S.M.; Lee, K.G.; Yeo, J.H.; Oh, B.Y.; Kim, B.S.; Lee, W.; Baek, H.J.; Kim, S.T.; Hwang, S.J.; Pak, S.C. Effects of honeybee venom supplementation in drinking water on growth performance of broiler chickens. Poult. Sci. 2010, 89, 2396–2400. [Google Scholar] [CrossRef] [PubMed]
- Abuoghaba, A.A.-K. Egg Production, Egg Quality Traits and Some Hematological Parameters of Sinai Chicken Strain Treated With Different Levels of Bee Pollen. Egypt. Poult. Sci. J. 2018, 38, 427–438. [Google Scholar]
- Desoky, A.; Kamel, N. Egg Production Performance, Blood Biochemical and Immunological Response of Laying Japanese Quail Fed Diet Supplemented with Propolis and Bee Pollen. Egypt. J. Nutr. Feeds 2018, 21, 549–557. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, M.; Da Silva, D.; Loch, F.; Martins, P.; Dias, D.; Simon, G. Effect of bee pollen on the immunity and tibia characteristics in broilers. Braz. J. Poult. Sci. 2013, 15, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Farag, S.A.; Rayes, T.E. Effect of Bee-pollen Supplementation on Performance, Carcass Traits and Blood Parameters of Broiler Chickens. Asian J. Anim. Vet. Adv. 2016, 11, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Rabie, A.H.; El-Kaiaty, A.M.; Hassan, M.S.; Stino, F.R. Influence of Some Honey Bee Products And A Growth Promoter Supplementation On Productive And Physiological Performance of Broiler Chickens. Egypt. Poult. Sci. J. 2018, 38, 513–531. [Google Scholar]
- Abdel-Kareem, A.A.A.; El-Sheikh, T.M. Impact of supplementing diets with propolis on productive performance, egg quality traits and some haematological variables of laying hens. J. Anim. Physiol. Anim. Nutr. 2015, 101, 441–448. [Google Scholar] [CrossRef]
- Çetin, E.; Silici, S.; Çetin, N.; Guclu, B.K. Effects of diets containing different concentrations of propolis on hematological and immunological variables in laying hens. Poult. Sci. 2010, 89, 1703–1708. [Google Scholar] [CrossRef]
- Seven, P.T. The Effects of Dietary Turkish Propolis and Vitamin C on Performance, Digestibility, Egg Production and Egg Quality in Laying Hens under Different Environmental Temperatures. Asian-Australas. J. Anim. Sci. 2008, 21, 1164–1170. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Desoky, A.A.; Sakr, O.G.; Sallam, W.; Abass, A.O. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS ONE 2019, 14, e0214839. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.C.; de Souza, R.G.; Dias, D.M.B.; Gonçalves, B.N. Bee pollen improves productivity of laying Japanese quails. Rev. Bras. Saúde Produção Anim. 2020, 21. [Google Scholar] [CrossRef]
- Yassin, M.; Nurfeta, A.; Banerjee, S. The Effect of Supplementing Fenugreek (Trigonella foenum-graecum L.) Seed Powder on Growth Performance, Carcass Characteristics and Meat Quality of Cobb 500 Broilers Reared on Conventional Ration. Ethiop. J. Agric. Sci. 2020, 30, 129–142. [Google Scholar]
- Gaikwad, B.; Patil, R.; Padghan, P.; Shinde, S. Effect of Fenugreek (Trigonella foenum-gracum L.) Seed Powder as Natural Feed Additive on Performance and Blood Parameters of Broiler Chicks. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1147–1155. [Google Scholar] [CrossRef]
- Laudadio, V.; Nasiri-Dehbaneh, M.; Bilal, R.M.; Qotbi, A.; Javandel, F.; Ebrahimi, A.; Seidavi, A.; Slozhenkina, M.; Gorlov, I.; Dunne, P.G.; et al. Effects of different levels of dietary black cumin (Nigella sativa L.) and fenugreek (Trigonella foenum-graecum L.) and their combination on productive traits, selected blood constituents, microbiota and immunity of broilers. Anim. Biotechnol. 2020, 1–14. [Google Scholar] [CrossRef]
- Hafeez, A.; Iqbal, S.; Sikandar, A.; Din, S.; Khan, I.; Ashraf, S.; Khan, R.; Tufarelli, V.; Laudadio, V. Feeding of Phytobiotics and Exogenous Protease in Broilers: Comparative Effect on Nutrient Digestibility, Bone Strength and Gut Morphology. Agriculture 2021, 11, 228. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Wang, Y.; Yang, W.; Jiang, S.; Gai, G. Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult. Sci. 2009, 88, 2159–2166. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Chand, N.; Khan, R.U.; Naz, S.; Gul, S. Anticoccidial effect of garlic (Allium sativum) and ginger (Zingiber officinale) against experimentally induced coccidiosis in broiler chickens. J. Appl. Anim. Res. 2019, 47, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Shewita, R.; Taha, A. Influence of dietary supplementation of ginger powder at different levels on growth performance, haematological profiles, slaughter traits and gut morphometry of broiler chickens. S. Afr. J. Anim. Sci. 2019, 48. [Google Scholar] [CrossRef]
- Akbarian, A.; Golian, A.; Ahmadi, A.S.; Moravej, H. Effects of ginger root (Zingiber officinale) on egg yolk cholesterol, antioxidant status and performance of laying hens. J. Appl. Anim. Res. 2011, 39, 19–21. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yang, Z.; Yang, W.; Wang, Y.; Jiang, S.; Zhang, G. Effects of ginger root (Zingiber officinale) on laying performance and antioxidant status of laying hens and on dietary oxidation stability. Poult. Sci. 2011, 90, 1720–1727. [Google Scholar] [CrossRef]
- Malekizadeh, M.; Moeini, M.M.; Ghazi, S. The Effects Of Different Levels Of Ginger (Zingiber officinale Rosc) And Turmeric (Curcuma longa Linn) Rhizomes Powder On Some Blood Metabolites And Production Performance Characteristics Of Laying Hens. J. Agric. Sci. Technol. 2012, 14, 127–134. [Google Scholar]
- Gumus, H.; Oguz, M.N.; Bugdayci, K.E.; Oguz, F.K. Effects of sumac and turmeric as feed additives on performance, egg quality traits, and blood parameters of laying hens. Rev. Bras. Zootec. 2018, 47. [Google Scholar] [CrossRef] [Green Version]
- Riasi, A. Production performance, egg quality and some serum metabolites of older commercial laying hens fed different levels of turmeric rhizome (Curcuma longa) powder. J. Med. Plants Res. 2012, 6. [Google Scholar] [CrossRef]
- Sugiharto, S. Alleviation of heat stress in broiler chicken using turmeric (Curcuma longa)—A short review. J. Anim. Behav. Biometeorol. 2020, 8, 215–222. [Google Scholar] [CrossRef]
- Akbarian, A.; Golian, A.; Kermanshahi, H.; Gilani, A.; Moradi, S. Influence of Turmeric Rhizome and Black Pepper on Blood Constituents and Performance of Broiler Chickens. Afr. J. Biotechnol. 2012, 11, 8606–8611. [Google Scholar] [CrossRef]
- Khan, R.; Naz, S.; Javdani, M.; Nikousefat, Z.; Selvaggi, M.; Tufarelli, V.; Laudadio, V. The use of Turmeric (Curcuma longa) in poultry feed. World’s Poult. Sci. J. 2012, 68, 97–103. [Google Scholar] [CrossRef]
- Ahmadian, A.; Seidavi, A.; Phillips, C.J.C. Growth, Carcass Composition, Haematology and Immunity of Broilers Supplemented with Sumac Berries (Rhus coriaria L.) and Thyme (Thymus vulgaris). Animals 2020, 10, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolukbasi, S.C.; Erhan, M.K.; Ozkan, A. Effect of Dietary Thyme Oil and Vitamin E on Growth, Lipid Oxidation, Meat Fatty Acid Composition and Serum Lipoproteins of Broilers. S. Afr. J. Anim. Sci. 2006, 36, 189–196. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.; Kehraus, S.; Hippenstiel, F.; Südekum, K.-H. Effects of thyme and oregano on growth performance of broilers from 4 to 42 days of age and on microbial counts in crop, small intestine and caecum of 42-day-old broilers. Anim. Feed Sci. Technol. 2012, 178, 198–202. [Google Scholar] [CrossRef]
- Beyzi, S.B.; Konca, Y.; Kaliber, M.; Sarıözkan, S.; Güçlü, B.K.; Aktuğ, E.; Şentürk, M. Effects of thyme essential oil and A, C, and E vitamin combinations to diets on performance, egg quality, MDA, and 8-OHdG of laying hens under heat stress. J. Appl. Anim. Res. 2020, 48, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Torki, M.; Kaviani, K. Single and combined effects of peppermint and thyme essential oils on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition (6.8 ± 3 °C). Int. J. Biometeorol. 2015, 60, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Arpášová, H.; Gálik, B.; Hrnčár, C.; Fik, M.; Herkeľ, R.; Pistová, V. The Effect of Essential Oils on Performance of Laying Hens. Sci. Pap. Anim. Sci. Biotechnol. 2015, 48, 8–14. [Google Scholar]
- Abasi, O.; Daneshyar, M. Effect of Different Levels of Mentha Longifolia and Thymus Vulgaris Powders on Growth, Carcass Characteristics and Immune System of Japanese Quails. Iran. Vet. J. 2020, 16, 71–81. [Google Scholar] [CrossRef]
- Khaksar, V.; van Krimpen, M.; Hashemipour, H.; Pilevar, M. Effects of Thyme Essential Oil on Performance, Some Blood Parameters and Ileal Microflora of Japanese Quail. J. Poult. Sci. 2012, 49, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Horáková, K.; Šovčíková, A.; Seemannová, Z.; Syrová, D.; Bušányová, K.; Drobná, Z.; Ferenčík, M. Detection of drug-induced, superoxide-mediated cell damage and its prevention by antioxidants. Free Radic. Biol. Med. 2001, 30, 650–664. [Google Scholar] [CrossRef]
- Huang, S.-S.; Liu, S.-M.; Lin, S.-M.; Liao, P.-H.; Lin, R.-H.; Chen, Y.-C.; Chih, C.-L.; Tsai, S.-K. Antiarrhythmic effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia/reperfusion injury in rats. Clin. Biochem. 2005, 38, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, T.; Farooqui, A.A. Aging: An important factor for the pathogenesis of neurodegenerative diseases. Mech. Ageing Dev. 2009, 130, 203–215. [Google Scholar] [CrossRef]
- Song, Y.S.; Park, E.-H.; Hur, G.M.; Ryu, Y.S.; Lee, Y.S.; Lee, J.Y.; Kim, Y.M.; Jin, C. Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. Cancer Lett. 2002, 175, 53–61. [Google Scholar] [CrossRef]
- Khayyal, M.T.; El-Ghazaly, M.A.; El-Khatib, A.; Hatem, A.M.; De Vries, P.J.F.; El-Shafei, S.; Khattab, M.M. A clinical pharmacological study of the potential beneficial effects of a propolis food product as an adjuvant in asthmatic patients. Fundam. Clin. Pharmacol. 2003, 17, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Naz, S.; Nikousefat, Z.; Tufarelli, V.; Javdani, M.; Qureshi, M.S.; Laudadio, V. Potential applications of ginger (Zingiber officinale) in poultry diets. World’s Poult. Sci. J. 2012, 68, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Saeid, J.M.; Mohamed, A.B.; Al-Baddy, M.A. Effect of Aqueous Extract of Ginger (Zingiber officinale) on Blood Biochemistry Parameters of Broiler. Int. J. Poult. Sci. 2010, 9, 944–947. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; Sambaiah, K. The effect of spices on cholesterol 7 alpha-hydroxylase activity and on serum and hepatic cholesterol levels in the rat. Int. J. Vitam. Nutr. Res. 1991, 61, 364–369. [Google Scholar]
- Kolayli, S.; Keskin, M. Chapter 7—Natural bee products and their apitherapeutic applications. In Studies in Natural Products Chemistry; Rahman, A.U., Ed.; Bioactive Natural Products; Elsevier: Amsterdam, The Netherlands, 2020; Volume 66, pp. 175–196. [Google Scholar]
- Lima, W.G.; Brito, J.C.M.; Nizer, W.S.D.C. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phytother. Res. 2020, 35, 743–750. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; Khalifa, S.A.; El-Wahed, A.A.; Gao, R.; Guo, Z.; Tahir, H.E.; Zhao, C.; Du, M.; Farag, M.A.; Musharraf, S.G.; et al. Honeybee products: An updated review of neurological actions. Trends Food Sci. Technol. 2020, 101, 17–27. [Google Scholar] [CrossRef]
- Prodanović, R.; Ignjatijević, S.; Bošković, J. Innovative Potential of Beekeeping Production in AP Vojvodina. J. Agron. Technol. Eng. Manag. 2019, 2, 268–277. [Google Scholar]
- Callaway, T.; Lillehoj, H.; Chuanchuen, R.; Gay, C. Alternatives to Antibiotics: A Symposium on the Challenges and Solutions for Animal Health and Production. Antibiotics 2021, 10, 471. [Google Scholar] [CrossRef]
- Hashem, N.; Hassanein, E.; Simal-Gandara, J. Improving Reproductive Performance and Health of Mammals Using Honeybee Products. Antioxidants 2021, 10, 336. [Google Scholar] [CrossRef]
- Haščík, P.; Pavelková, A.; Arpášová, H.; Čuboň, J.; Kačániová, M.; Kunová, S. The Effect of Bee Products And Probiotic On Meat Performance of Broiler Chickens. J. Microbiol. Biotechnol. Food Sci. 2021, 9, 88–92. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; El-Hack, M.E.A.; Alagawany, M.; Taha, A.E.; Elnesr, S.S.; Elmonem, O.M.A.; Swelum, A.A. Useful impacts of royal jelly on reproductive sides, fertility rate and sperm traits of animals. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1798–1808. [Google Scholar] [CrossRef] [PubMed]
- Galal, A.; Ahmed, A.; Ali, W.; El-Sanhoury, M.; Ahmed, H.E. Residual Feed Intake and its Effect on Cell-Mediated Immunity in Laying Hens Given Different Propolis Levels. Int. J. Poult. Sci. 2008, 7, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- The Effect of Diet Propolis Supplementation on Ross Broiler Chicks Performance. Int. J. Poult. Sci. 2005, 5, 84–88. [CrossRef] [Green Version]
- Humoral Immunity of Broilers is Affected by Oil Extracted Propolis (OEP) in the Diet. Int. J. Poult. Sci. 2005, 4, 414–417. [CrossRef] [Green Version]
- Jiang, W.; Ying, M.; Zhang, J.; Cui, Z.; Chen, Q.; Chen, Y.; Wang, J.; Fang, F.; Shen, L. Quantification of major royal jelly proteins using ultra performance liquid chromatography tandem triple quadrupole mass spectrometry and application in honey authenticity. J. Food Compos. Anal. 2021, 97, 103801. [Google Scholar] [CrossRef]
- Kanbur, E.D.; Yuksek, T.; Atamov, V.; Ozcelik, A.E. A comparison of the physicochemical properties of chestnut and highland honey: The case of Senoz Valley in the Rize province of Turkey. Food Chem. 2021, 345, 128864. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Zhao, L.; Zhao, Y.; Li, Q.; Xue, X.; Wu, L.; Escalada, M.G.; Wang, K.; Peng, W. Comparison of the Chemical Composition and Biological Activity of Mature and Immature Honey: An HPLC/QTOF/MS-Based Metabolomic Approach. J. Agric. Food Chem. 2020, 68, 4062–4071. [Google Scholar] [CrossRef]
- Haščík, P.; Pavelková, A.; Tkáčová, J.; Čuboň, J.; Kačániová, M.; Habánová, M.; Mlyneková, E. The amino acid profile of broiler chicken meat after dietary administration of bee products and probiotics. Biologia 2020, 75, 1899–1908. [Google Scholar] [CrossRef]
- Abioja, M.O.; Ogundimu, K.B.; Akibo, T.E.; Odukoya, K.E.; Ajiboye, O.O.; Abiona, J.A.; Williams, T.J.; Oke, O.E.; Osinowo, O.A. Growth, Mineral Deposition, and Physiological Responses of Broiler Chickens Offered Honey in Drinking Water during Hot-Dry Season. Int. J. Zool. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Adekunle, M.O.; Abioja, M.O.; Abiona, J.A.; Jegede, A.V.; Sodipe, O.G. Rectal Temperature, Heart Rate, Packed Cell Volume and Differential White Blood Cell Count of Laying Pullets to Honey Supplemented Water during Hot–Dry Season. Slovak J. Anim. Sci. 2017, 50, 15–20. [Google Scholar]
- Ali, A.M.; Kunugi, H. Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods 2020, 9, 1362. [Google Scholar] [CrossRef] [PubMed]
- Collazo, N.; Carpena, M.; Nuñez-Estevez, B.; Otero, P.; Simal-Gandara, J.; Prieto, M.A. Health Promoting Properties of Bee Royal Jelly: Food of the Queens. Nutrients 2021, 13, 543. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouamama, S.; Merzouk, H.; Latrech, H.; Charif, N. Royal jelly alleviates the detrimental effects of aging on immune functions by enhancing the in vitro cellular proliferation, cytokines, and nitric oxide release in aged human PBMCS. J. Food Biochem. 2021, 45, e13619. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Addeo, N.; Roncarati, A.; Secci, G.; Parisi, G.; Piccolo, G.; Ariano, A.; Scivicco, M.; Rippa, A.; Bovera, F. Potential use of a queen bee larvae meal (Apis mellifera ligustica Spin.) in animal nutrition: A nutritional and chemical-toxicological evaluation. J. Insects Food Feed 2021, 7, 173–186. [Google Scholar] [CrossRef]
- Rahnama, G.; Deldar, H.; Pirsaraei, Z.A.; Kazemifard, M. Oral administration of royal jelly may improve the preservation of rooster spermatozoa. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1768–1777. [Google Scholar] [CrossRef]
- El-Seedi, H.; El-Wahed, A.A.; Yosri, N.; Musharraf, S.G.; Chen, L.; Moustafa, M.; Zou, X.; Al-Mousawi, S.; Guo, Z.; Khatib, A.; et al. Antimicrobial Properties of Apis mellifera’s Bee Venom. Toxins 2020, 12, 451. [Google Scholar] [CrossRef]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Simal-Gandara, J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients 2020, 12, 3360. [Google Scholar] [CrossRef]
- Gu, H.; Han, S.M.; Park, K.-K. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease. Toxins 2020, 12, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkomy, A.; El-Hanoun, A.; Abdella, M.; El-Sabrout, K. Improving the reproductive, immunity and health status of rabbit does using honey bee venom. J. Anim. Physiol. Anim. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- El-Hanoun, A.; El-Komy, A.; El-Sabrout, K.; Abdella, M. Effect of bee venom on reproductive performance and immune response of male rabbits. Physiol. Behav. 2020, 223, 112987. [Google Scholar] [CrossRef]
- Bakchiche, B.; Temizer, İ.K.; Güder, A.; Çelemli, Ö.G.; Yegin, S.Ç.; Bardaweel, S.K.; Ghareeb, M.A. Chemical Composition and Biological Activities of Honeybee Products From Algeria. J. Appl. Biotechnol. Rep. 2020, 7, 93–103. [Google Scholar] [CrossRef]
- Demir, Z.; Kaya, H. Effect of Bee Pollen Supplemented Diet on Performance, Egg Quality Traits and some Serum Parameters of Laying Hens. Pak. J. Zool. 2020, 52. [Google Scholar] [CrossRef]
- Ali, A.; Kunugi, H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021, 26, 1232. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; El-Hack, M.E.A.; Alagawany, M.; Farag, M.R.; ElNesr, S.S. Beneficial impacts of bee pollen in animal production, reproduction and health. J. Anim. Physiol. Anim. Nutr. 2018, 103, 477–484. [Google Scholar] [CrossRef]
- Sanchez, R.D.V.; Ibarra-Arias, F.J.; Torres-Martínez, B.D.M.; Sánchez-Escalante, A.; Torrescano-Urrutia, G.R. Use of natural ingredients in Japanese quail diet and their effect on carcass and meat quality—A review. Asian-Australas. J. Anim. Sci. 2019, 32, 1641–1656. [Google Scholar] [CrossRef]
- Haščík, P.; Trembecká, L.; Bobko, M.; Čuboň, J.; Kačániová, M.; Tkáčová, J. Amino acid profile of broiler chickens meat fed diets supplemented with bee pollen and propolis. J. Apic. Res. 2016, 55, 324–334. [Google Scholar] [CrossRef]
- Trembecká, L.; Haščík, P.; Čuboň, J.; Bobko, M.; Cviková, P.; Hleba, L. Chemical and Sensory Characteristics Of Chicken Breast Meat After Dietary Supplementation With Probiotic Given In Combination With Bee Pollen And Propolis. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 275–280. [Google Scholar] [CrossRef]
- Prakatur, I.; Miškulin, I.; Senčić, Đ.; Pavić, M.; Miškulin, M.; Samac, D.; Galović, D.; Domaćinović, M. The influence of propolis and bee pollen on chicken meat quality. Vet. Arh. 2020, 90, 617–625. [Google Scholar] [CrossRef]
- Ketkar, S.; Rathore, A.S.; Kandhare, A.; Lohidasan, S.; Bodhankar, S.; Paradkar, A.; Mahadik, K. Alleviating exercise-induced muscular stress using neat and processed bee pollen: Oxidative markers, mitochondrial enzymes, and myostatin expression in rats. Integr. Med. Res. 2015, 4, 147–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohdaly, A.A.; Mahmoud, A.A.; Roby, M.H.; Smetanska, I.; Ramadan, M.F. Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Khafaji, S.S.O.; Aljanabi, T.K.; Suhailaltaie, S.M. Evaluation the Impact of Different Levels of Propolis on Some Reproductive features in Iraqi Local Roosters. Adv. Anim. Vet. Sci. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Alvarez, J.A. Functional Properties of Honey, Propolis, and Royal Jelly. J. Food Sci. 2008, 73, R117–R124. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, Z.; Naseri, M.; Vatandoost, F. Propolis: Chemical Composition and Its Applications in Endodontics. Iran. Endod. J. 2018, 13, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Zweil, H.S.; Zahran, S.M.; El Rahman, M.A.; Desoky, W.M.; Abu Hafsa, S.H.; Mokhtar, A. Effect of Using Bee Propolis as Natural Supplement on Productive and Physiological Performance of Japanese Quail. Egypt. Poult. Sci. J. 2016, 36, 161–175. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Ibrahim, R.M.; Desoky, A.A.; Safaa, H.; El-Sayed, O.A.; Abass, A.O. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS ONE 2017, 12, e0186907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righi, F.; Pitino, R.; Manuelian, C.; Simoni, M.; Quarantelli, A.; De Marchi, M.; Tsiplakou, E. Plant Feed Additives as Natural Alternatives to the Use of Synthetic Antioxidant Vitamins on Poultry Performances, Health, and Oxidative Status: A Review of the Literature in the Last 20 Years. Antioxidants 2021, 10, 659. [Google Scholar] [CrossRef]
- Pieroni, C.A.; De Oliveira, M.C.; Dos Santos, W.L.R.; Mascarenhas, L.B.; Oliveira, M.A.D. Effect of green propolis on the productivity, nutrient utilisation, and intestinal morphology of Japanese laying quail. Rev. Bras. Zootec. 2020, 49. [Google Scholar] [CrossRef]
- Kostadinović, L.; Lević, J. Effects of Phytoadditives in Poultry and Pigs Diseases. J. Agron. Technol. Eng. Manag. 2018, 1, 1–7. [Google Scholar]
- El-Hack, M.E.A.; Abdelnour, S.A.; Taha, A.E.; Khafaga, A.; Arif, M.; Ayasan, T.; Swelum, A.A.; Abukhalil, M.H.; Alkahtani, S.; Aleya, L.; et al. Herbs as thermoregulatory agents in poultry: An overview. Sci. Total Environ. 2020, 703, 134399. [Google Scholar] [CrossRef]
- Alagawany, M.; Nasr, M.; Al-Abdullatif, A.; Alhotan, R.A.; Azzam, M.M.; Reda, F.M. Impact of dietary cold-pressed chia oil on growth, blood chemistry, haematology, immunity and antioxidant status of growing Japanese quail. Ital. J. Anim. Sci. 2020, 19, 896–904. [Google Scholar] [CrossRef]
- Mishra, N. (Ed.) Ethnopharmacological Investigation of Indian Spices: Potential Health Benefits of Fenugreek with Multiple Pharmacological Properties; Advances in Medical Diagnosis, Treatment, and Care; IGI Global: Hershey, PA, USA, 2020; ISBN 978-1-79982-524-1. [Google Scholar]
- Tewari, D.; Jóźwik, A.; Łysek-Gładysińska, M.; Grzybek, W.; Adamus-Białek, W.; Bicki, J.; Strzałkowska, N.; Kamińska, A.; Horbańczuk, O.K.; Atanasov, A.G. Fenugreek (Trigonella foenum-graecum L.) Seeds Dietary Supplementation Regulates Liver Antioxidant Defense Systems in Aging Mice. Nutrients 2020, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- Rashid, F.; Bao, Y.; Ahmed, Z.; Huang, J.-Y. Effect of high voltage atmospheric cold plasma on extraction of fenugreek galactomannan and its physicochemical properties. Food Res. Int. 2020, 138, 109776. [Google Scholar] [CrossRef]
- Jain, D.; Bains, K.; Singla, N. Mode of Action of Anti-diabetic Phyto-Compounds Present in Traditional Indian Plants: A Review. Curr. J. Appl. Sci. Technol. 2020, 19–38. [Google Scholar] [CrossRef]
- Omri, B.; Manel, B.L.; Jihed, Z.; Durazzo, A.; Lucarini, M.; Romano, R.; Santini, A.; Abdouli, H. Effect of a Combination of Fenugreek Seeds, Linseeds, Garlic and Copper Sulfate on Laying Hens Performances, Egg Physical and Chemical Qualities. Foods 2019, 8, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdouli, H.; Haj-Ayed, M.; Belhouane, S.; Emna, E.H. Effect of Feeding Hens with Fenugreek Seeds on Laying Performance, Egg Quality Characteristics, Serum and Egg Yolk Cholesterol. J. New Sci. 2014, 3, 1–9. [Google Scholar]
- Abbas, R.J. Effect of Using Fenugreek, Parsley and Sweet Basil Seeds as Feed Additives on the Performance of Broiler Chickens. Int. J. Poult. Sci. 2010, 9, 278–282. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhang, Q.; Hu, X. A comprehensive review of ethnopharmacological uses, phytochemistry, biological activities, and future prospects of Nigella glandulifera. Med. Chem. Res. 2020, 29, 1168–1186. [Google Scholar] [CrossRef]
- Williamson, E.M.; Liu, X.; Izzo, A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2019, 177, 1227–1240. [Google Scholar] [CrossRef] [Green Version]
- Aispuro, J.A.M.; Velasco, J.L.F.; Sánchez-Torres, M.T.; Mora, J.L.C. Unconventional plants as a source of phytochemicals for broiler chicken. AGROProductividad 2020, 13. [Google Scholar] [CrossRef]
- Heidary, M.; Hassanabadi, A.; Mohebalian, H. Effects of in Ovo Injection of Nanocurcumin and Vitamin E on Antioxidant Status, Immune Responses, Intestinal Morphology and Growth Performance of Broiler Chickens Exposed to Heat Stress. J. Livest. Sci. Technol. 2020, 8, 17–27. [Google Scholar] [CrossRef]
- Rahman, M.; Kim, S.-J. Effects of dietaryNigella sativaseed supplementation on broiler productive performance, oxidative status and qualitative characteristics of thighs meat. Ital. J. Anim. Sci. 2016, 15, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Boka, J.; Mahdavi, A.H.; Samie, A.H.; Jahanian, R. Effect of different levels of black cumin (Nigella sativa L.) on performance, intestinal Escherichia coli colonization and jejunal morphology in laying hens. J. Anim. Physiol. Anim. Nutr. 2013, 98, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Aydin, R.; Karaman, M.; Cicek, T.; Yardibi, H. Black Cumin (Nigella sativa L.) Supplementation into the Diet of the Laying Hen Positively Influences Egg Yield Parameters, Shell Quality, and Decreases Egg Cholesterol. Poult. Sci. 2008, 87, 2590–2595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res. 2020, 35, 711–742. [Google Scholar] [CrossRef]
- Ma, R.-H.; Ni, Z.-J.; Zhu, Y.-Y.; Thakur, K.; Zhang, F.; Zhang, Y.-Y.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct. 2020, 12, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Herve, T.; Raphaël, K.J.; Ferdinand, N.; Herman, N.V.; Marvel, N.M.W.; D’Alex, T.C.; Vitrice, F.T.L. Effects of Ginger (Zingiber officinale, Roscoe) Essential Oil on Growth and Laying Performances, Serum Metabolites, and Egg Yolk Antioxidant and Cholesterol Status in Laying Japanese Quail. J. Vet. Med. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- El-Hack, M.E.A.; Alagawany, M.; Shaheen, H.; Samak, D.; Othman, S.I.; Allam, A.A.; Taha, A.E.; Khafaga, A.F.; Arif, M.; Osman, A.; et al. Ginger and Its Derivatives as Promising Alternatives to Antibiotics in Poultry Feed. Animals 2020, 10, 452. [Google Scholar] [CrossRef] [Green Version]
- Oleforuh-Okoleh, V.U.; Ndofor-Foleng, H.M.; Olorunleke, S.O.; Uguru, J.O. Evaluation of Growth Performance, Haematological and Serum Biochemical Response of Broiler Chickens to Aqueous Extract of Ginger and Garlic. J. Agric. Sci. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- He, F.-Y.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Kim, S.-Y.; Yeo, I.-J.; Jung, T.-J.; Kim, C.-J. Effect of Ginger Extract and Citric Acid on the Tenderness of Duck Breast Muscles. Food Sci. Anim. Resour. 2015, 35, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Ajitomi, A.; Inoue, Y.; Horita, M.; Nakaho, K. Bacterial wilt of three Curcuma species, C. longa (turmeric), C. aromatica (wild turmeric) and C. zedoaria (zedoary) caused by Ralstonia solanacearum in Japan. J. Gen. Plant Pathol. 2015, 81, 315–319. [Google Scholar] [CrossRef]
- Mythri, R.B. Curcumin: A Potential Neuroprotective Agent in Parkinson’s Disease. Curr. Pharm. Des. 2012, 18, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhavan-Salamat, H.; Ghasemi, H.A. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: Dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status. Trop. Anim. Health Prod. 2015, 48, 181–188. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold BT. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Aggarwal, B.B., Surh, Y.-J., Shishodia, S., Eds.; Advances in Experimental Medicine and Biology; Springer US: Boston, MA, USA, 2007; pp. 1–75. ISBN 978-0-387-46401-5. [Google Scholar]
- Priyadarsini, K. Free Radical Reactions of Curcumin in Membrane Models. Free Radic. Biol. Med. 1997, 23, 838–843. [Google Scholar] [CrossRef]
- Swathi, B.; Gupta, P.; Nagalakshmi, D.; Raju, M. Efficacy of turmeric (Curcuma longa) as antioxidant in combating heat stress in broiler chicken. Indian J. Poult. Sci. 2016, 51, 48. [Google Scholar] [CrossRef]
- Sadeghi, A.; Moghaddam, M. The Effects of Turmeric, Cinnamon, Ginger and Garlic Powder Nutrition on Antioxidant Enzymes’ Status and Hormones Involved in Energy Metabolism of Broilers during Heat Stress. Iran. J. Appl. Anim. Sci. 2018, 8, 125–130. [Google Scholar]
- El-Maaty, A.; Hayam, M.; Rabie, M.; El-Khateeb, A.; El-Maaty, A.A.; El-Khateeb, A. Response of Heat-Stressed Broiler Chicks to Dietary Supplementation with Some Commercial Herbs. Asian J. Anim. Vet. Adv. 2014, 9, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Alagawany, M.; Farag, M.R.; Dhama, K. Nutritional and Biological Effects of Turmeric (Curcuma longa) Supplementation on Performance, Serum Biochemical Parameters and Oxidative Status of Broiler Chicks Exposed to Endosulfan in the Diets. Asian J. Anim. Vet. Adv. 2015, 10, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Swamy, M.K.; Sinniah, U.R. A Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of Pogostemon cablin Benth.: An Aromatic Medicinal Plant of Industrial Importance. Molecules 2015, 20, 8521–8547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-J.; Umano, K.; Shibamoto, T.; Lee, K.-G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Abdallah, A.; Zhang, P.; Zhong, Q.; Sun, Z. Application of Traditional Chinese Herbal Medicine By-products as Dietary Feed Supplements and Antibiotic Replacements in Animal Production. Curr. Drug Metab. 2019, 20, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Calín-Sánchez, K.; Figiel, A.; Lech, K.; Szumny, A.; Carbonell-Barrachina, A.; Carbonell-Barrachina, A. Effects of Drying Methods on the Composition of Thyme (Thymus vulgaris L.) Essential Oil. Dry. Technol. 2013, 31, 224–235. [Google Scholar] [CrossRef]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2016, 58, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yu, Y.; Su, Z.; Zhang, K. Effects of essential oils on performance, egg quality, nutrient digestibility and yolk fatty acid profile in laying hens. Anim. Nutr. 2017, 3, 127–131. [Google Scholar] [CrossRef]
- Yalçin, S.; Eser, H.; Onbaşilar, İ.; Yalçin, S. Effects of dried thyme (Thymus vulgaris L.) leaves on performance, some egg quality traits and immunity in laying hens. Ank. Üniversitesi Vet. Fakültesi Derg. 2020, 67, 303–311. [Google Scholar] [CrossRef]
- Hassan, F.; Awad, A. Impact of thyme powder (Thymus vulgaris L.) supplementation on gene expression profiles of cytokines and economic efficiency of broiler diets. Environ. Sci. Pollut. Res. 2017, 24, 15816–15826. [Google Scholar] [CrossRef] [PubMed]
- El-Ashram, S.; Abdelhafez, G.A. Effects of phytogenic supplementation on productive performance of broiler chickens. J. Appl. Poult. Res. 2020, 29, 852–862. [Google Scholar] [CrossRef]
- Attia, Y.A.; Bakhashwain, A.A.; Bertu, N.K. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Ital. J. Anim. Sci. 2016, 16, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Abdulkarimi, R.; Daneshyar, M.; Aghazadeh, A. Thyme (Thymus vulgaris) extract consumption darkens liver, lowers blood cholesterol, proportional liver and abdominal fat weights in broiler chickens. Ital. J. Anim. Sci. 2011, 10, e20. [Google Scholar] [CrossRef]
- Haselmeyer, A.; Zentek, J.; Chizzola, R. Effects of thyme as a feed additive in broiler chickens on thymol in gut contents, blood plasma, liver and muscle. J. Sci. Food Agric. 2014, 95, 504–508. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Pournazari, M.; Islamic Azad University; Qotbi, A.A.; Seidavi, A.; Corazzin, M.; Di Udine, U. Prebiotics, probiotics and thyme (Thymus vulgaris) for broilers: Performance, carcass traits and blood variables. Rev. Colomb. Cienc. Pecu. 2017, 30, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Adefegha, S.A.; Oyeleye, S.I.; Akintemi, A.; Okeke, B.M.; Oboh, G. Thyme (Thymus vulgaris) leaf extract modulates purinergic and cholinergic enzyme activities in the brain homogenate of 5-fluorouracil administered rats. Drug Chem. Toxicol. 2019, 43, 43–50. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Placha, I.; Ocelova, V.; Chizzola, R.; Battelli, G.; Gai, F.; Bacova, K.; Faix, S. Effect of thymol on the broiler chicken antioxidative defence system after sustained dietary thyme oil application. Br. Poult. Sci. 2019, 60, 589–596. [Google Scholar] [CrossRef] [PubMed]
- El-Ghousein, S.S.; Al-Beitawi, N.A. The Effect of Feeding of Crushed Thyme (Thymus valgaris L.) on Growth, Blood Constituents, Gastrointestinal Tract and Carcass Characteristics of Broiler Chickens. J. Poult. Sci. 2009, 46, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Hernández, F.; Madrid, J.; García, V.; Orengo, J.; Megias, M. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A. Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens. Br. Poult. Sci. 2019, 60, 530–538. [Google Scholar] [CrossRef] [PubMed]
Additive | Poultry Species | Additive Concentrations | Obtained Results | Source |
---|---|---|---|---|
Honey | Japanese quails | 22 g/L | Improved weight gain, feed intakes, and lower feed conversion ratio; improved immune system, and blood parameters; improved meat quality | [49,50,51] |
Royal jelly | Laying hens | 100–400 mg/kg | Increased egg production, improved welfare, and improved immunity; improved performance, egg quality, serum biochemistry and intestinal morphology | [52,53] |
Bee venom | Broiler chickens | 10–500 µg/kg | Improved production results, fatty acid composition, and antioxidant capacity; Better early development of chickens’ digestive system and a helpful tool against short bowel syndrome | [54,55] |
Bee pollen | Laying hens and quails | 500–1500 mg/kg | Improved production results and biochemical blood parameters with the dietary addition of 500 mg/kg; improved egg production performance, blood biochemical and immunological response | [56,57] |
Broiler chickens | 0.5–1.5% | Enhanced immunity of chickens with dietary addition in the concentration of 1.5%; improved performance, carcass traits and blood parameters | [58,59] | |
Bee propolis | Broiler chickens | 200–400 mg/kg | The dietary concentration of 200 to 400 mg/kg improved blood lipid status | [60] |
Laying hens | 250–1000 mg/kg | Increased body weight, egg production, and stimulate immunity; improved hematological and immunological parameters; improved performance, digestibility, egg production and egg quality under different environmental temperatures | [61,62,63] | |
Japanese quails | 1000 mg/kg | Retaining the performance and egg production at expedient levels under heat stress conditions; improved productivity of laying Japanese quails | [64,65] |
Additive | Poultry Species | Additive Concentrations | Obtained Results | Source |
---|---|---|---|---|
Fenugreek seeds | Broiler chickens | 1–3% | Improved production of chickens with the dietary addition of 1% to 3% of fenugreek seed powder | [66,67] |
Black cumin | Broiler chickens | 5–10 g/kg | Improved broiler performance and meat quality by enhancing antioxidant activities and suppressing lipid peroxidation in meat | [68,69] |
Ginger | Broilers chickens | 2–6 g/kg | Improved oxidative status; improved anticoccidial effects against experimentally induced coccidiosis; improved growth performance, haematological profiles, slaughter traits and gut morphometry | [70,71,72] |
Laying hens | 0.25–0.75% | Improved antioxidant status and performance, decreased egg yolk cholesterol levels | [73] | |
Turmeric | Laying hens | 0.5–3% | Improved performance, serum and egg yolk antioxidant status; improved blood metabolites and production performance characteristics; improved performance, egg quality traits, and blood parameters | [74,75,76,77] |
Broiler chickens | 0.5–1 g/kg | Under heat stress, dietary addition of 0.5% increased the serum concentration of T3 and T4; improved blood constituents and performance | [78,79,80] | |
Thyme | Broiler chickens | 1–3% 100–200 mg/kg | Possibility to replace antibiotics in the diet of chickens; Reduction of fat in chicken carcasses; improved growth, lipid oxidation, meat fatty acid composition and serum lipoproteins; improved growth performance microbial counts in the crop, small intestine and caecum | [81,82,83] |
Laying hens | 300 mg/kg | Maintain production results, decreased serum glucose level, decrease plasma MDA during the heat stress; improved productive performance, egg quality traits, and blood parameters under cold stress conditions | [84,85,86] | |
Japanese quails | 0.01–1% | Increased antibody titer against sheep red blood cells (SRBC), lymphocyte proliferation, and respiratory bursting ability and decreased the delayed type of hypersensitivity; improved performance, some blood parameters and ileal microflora | [87,88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lika, E.; Kostić, M.; Vještica, S.; Milojević, I.; Puvača, N. Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. Sustainability 2021, 13, 8467. https://doi.org/10.3390/su13158467
Lika E, Kostić M, Vještica S, Milojević I, Puvača N. Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. Sustainability. 2021; 13(15):8467. https://doi.org/10.3390/su13158467
Chicago/Turabian StyleLika, Erinda, Marija Kostić, Sunčica Vještica, Ivan Milojević, and Nikola Puvača. 2021. "Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production" Sustainability 13, no. 15: 8467. https://doi.org/10.3390/su13158467
APA StyleLika, E., Kostić, M., Vještica, S., Milojević, I., & Puvača, N. (2021). Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. Sustainability, 13(15), 8467. https://doi.org/10.3390/su13158467