Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, A.P.; Spies, T.A.; Steelman, T.A.; Moseley, C.; Johnson, B.R.; Bailey, J.D.; Ager, A.A.; Bourgeron, P.; Charnley, S.; Collins, B.M.; et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 2016, 14, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Ríos-Pena, L.; Kneib, T.; Cadarso-Suárez, C.; Marey-Pérez, M. Predicting the occurrence of wildfires with binary structured additive regression models. J. Environ. Manag. 2017, 187, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Boubeta, M.; Lombardía, M.J.; Marey-Pérez, M.; Morales, D. Poisson mixed models for predicting number of fires. Int. J. Wildland Fire 2019, 28, 237–253. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- North, M.P.; Stephens, S.L.; Collins, B.M.; Agee, J.K.; Aplet, G.; Franklin, J.F.; Fule, P.Z. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef]
- Turco, M.; Levin, N.; Tessler, N.; Saaroni, H. Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: The case of Israel. Glob. Planet. Chang. 2017, 151, 28–35. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Goldarag, Y.J.; Mohammadzadeh, A.; Ardakani, A.S. Fire risk assessment using neural network and logistic regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [Google Scholar] [CrossRef]
- Maria, L. LOUREIRO & Maria ALLO Los Incendios Forestales Y Su Impacto Económico: Propuesta Para Una Agenda Investigadora. In Revista Galega de Economía; University of Santiago de Compostela, Faculty of Economics and Business: La Coruña, Spain, 2018; Volume 27, p. 129. [Google Scholar]
- Palaiologou, P.; Ager, A.A.; Nielsen-Pincus, M.; Evers, C.R.; Day, M.A. Social vulnerability to large wildfires in the western USA. Landsc. Urban Plan. 2019, 189, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San-Miguel, J.; Camia, A. Forest fires at a glance: Facts, figures and trends in the EU. Living with Wildfires: What science can tell us. EFI Discuss. Pap. 2009, 15, 11–18. [Google Scholar]
- Krasovskii, A.; Khabarov, N.; Migliavacca, M.; Kraxner, F.; Obersteiner, M. Regional aspects of modelling burned areas in Europe. Int. J. Wildland Fire 2016, 25, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Khabarov, N.; Krasovskiy, A.; Obersteiner, M.; Swart, R.; Dosio, A.; San-Miguel-Ayanz, J.; Durrant, T.; Camia, A.; Migliavacca, M. Forest fires and adaptation options in Europe. Reg. Environ. Chang. 2016, 16, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Costafreda-Aumedes, S.; Vega-Garcia, C.; Comas, C. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions. J. Environ. Manag. 2018, 217, 90–99. [Google Scholar] [CrossRef]
- Gómez-González, S.; González, M.E.; Paula, S.; Díaz-Hormazábal, I.; Lara, A.; Delgado-Baquerizo, M. Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. For. Ecol. Manag. 2019, 433, 535–543. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Elvira, A.; van Kempen, L.; van Logtestijn, R.S.; Aptroot, A.; Cornelissen, J.H.C. Flammability across the gymnosperm phylogeny: The importance of litter particle size. New Phytol. 2015, 206, 672–681. [Google Scholar] [CrossRef]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Segarra-Moragues, J.G. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 2016, 180, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Schwilk, D.W.; Ackerly, D.D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 2001, 94, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Simpson, K.J.; Ripley, B.S.; Christin, P.A.; Belcher, C.M.; Lehmann, C.E.; Thomas, G.H.; Osborne, C.P. Determinants of flammability in savanna grass species. J. Ecol. 2016, 104, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Jaureguiberry, P.; Bertone, G.; Diaz, S. Device for the standard measurement of shoot flammability in the field. Austral Ecol. 2011, 36, 821–829. [Google Scholar] [CrossRef]
- Schwilk, D.W. Flammability is a niche construction trait: Canopy architecture affects fire intensity. Am. Nat. 2003, 162, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Vázquez, G. Different approaches to the social vision of communal land management: The case of Galicia (Spain). Span. J. Agric. Res. 2010, 8, 848–863. [Google Scholar] [CrossRef] [Green Version]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Caballero, G. Community-based forest management institutions in the Galician communal forests: A new institutional approach. For. Policy Econ. 2015, 50, 347–356. [Google Scholar] [CrossRef]
- Boubeta, M.; Lombardía, M.J.; González-Manteiga, W.; Marey-Pérez, M.F. Burned area prediction with semiparametric models. Int. J. Wildland Fire 2016, 25, 669–678. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez, A.; de la Riva, J. Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Nat. Hazards 2016, 84, 2049–2070. [Google Scholar] [CrossRef] [Green Version]
- Vilar, L.; Camia, A.; San-Miguel-Ayanz, J.; Martín, M.P. Modeling temporal changes in human-caused wildfires in Mediterranean Europe based on land use-land cover interfaces. For. Ecol. Manag. 2016, 378, 68–78. [Google Scholar] [CrossRef]
- Eugenio, F.C.; Dos Santos, A.R.; Pedra, B.D.; Pezzopane, J.E.M.; Mafia, R.G.; Loureiro, E.B.; Martins, L.D.; Saito, N.S. Causal, temporal and spatial statistics of wildfires in areas of planted forests in Brazil. Agric. For. Meteorol. 2019, 266, 157–172. [Google Scholar] [CrossRef]
- Molina, C.M.; Martín, O.K.; Martín, L.G. Regional fire scenarios in Spain: Linking landscape dynamics and fire regime for wildfire risk management. J. Environ. Manag. 2019, 233, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Farina, A. Principles and Methods in Landscape Ecology; Chapman & Hall: London, UK, 1998; p. 235. [Google Scholar]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Cruz, M.G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef]
- Regos, A.; Brotons, L.; Aquilué, N.; de Cáceres, M. Uso de Estrategias Oportunistas de Extinción para Reducir el Impacto de los Incendios en Condiciones Climáticas Extremas. 6th Spanish Forestry Congress. Spanish Society of Forestry Sciences. Vitoria. 2013. Available online: https://www.congresoforestal.es/index.php?men=405&idCP=85 (accessed on 4 June 2021).
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Negligent and intentional fires in Portugal: Spatial distribution characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.M.; Arianoutsou, M.; González-Cabán, A.; Mouillot, F.; Oechel, W.C.; Spano, D.; Thonicke, K.; Vallejo, V.R.; Vélez, R. Forest Fires under Climate, Social and Economic Changes in Europe, the Mediterranean and Other Fire-Affected Areas of the World: FUME: Lessons Learned and Outlook; European Commission: Brussels, Belgium, 2014; 56p, ISBN 978-84-695-9759-0. [Google Scholar]
- Barreal, J.; Loureiro, M.L. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain). For. Syst. 2015, 24, e022. [Google Scholar]
- Viedma, O.; Moity, N.; Moreno, J.M. Changes in landscape fire-hazard during the second half of the 20th century: Agriculture abandonment and the changing role of driving factors. Agric. Ecosyst. Environ. 2015, 207, 126–140. [Google Scholar] [CrossRef]
- Galiana-Martín, L. Spatial planning experiences for vulnerability reduction in the wildland-urban interface in Mediterranean European countries. Eur. Countrys. 2017, 9, 577–593. [Google Scholar] [CrossRef] [Green Version]
- Wigtil, G.; Hammer, R.B.; Kline, J.D.; Mockrin, M.H.; Stewart, S.I.; Roper, D.; Radeloff, V.C. Places where wildfire potential and social vulnerability coincide in the coterminous United States. Int. J. Wildland Fire 2016, 25, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Paveglio, T.B.; Edgeley, C.M.; Stasiewicz, A.M. Assessing influences on social vulnerability to wildfire using surveys, spatial data and wildfire simulations. J. Environ. Manag. 2018, 213, 425–439. [Google Scholar] [CrossRef]
- Galiana, L.; Aguilar, S.; Lázaro, A. An assessment of the effects of forest-related policies upon wildland fires in the European Union: Applying the subsidiarity principle. For. Policy Econ. 2013, 29, 36–44. [Google Scholar] [CrossRef]
- Montiel-Molina, C. Comparative assessment of wildland fire legislation and policies in the European Union: Towards a Fire Framework Directive. For. Policy Econ. 2013, 29, 1–6. [Google Scholar] [CrossRef]
- de Anta, R.M.C.; Vázquez, F.M.; Rodríguez, A.R.; Pando, F.J.S. El Eucalipto en Galicia. Aspectos Ambientales y Socioeconómicos; Confederación de organizaciones de selvicultores de España: Santiago de Compostela, Spain, 2019. [Google Scholar]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Reyer, C.P.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Oliveira, S.; Félix, F.; Nunes, A.; Lourenço, L.; Laneve, G.; Sebastián-López, A. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. J. Environ. Manag. 2018, 206, 158–169. [Google Scholar] [CrossRef]
- Tutmez, B.; Ozdogan, M.G.; Boran, A. Mapping forest fires by nonparametric clustering analysis. J. For. Res. 2018, 29, 177–185. [Google Scholar] [CrossRef]
- Hong, H.; Jaafari, A.; Zenner, E.K. Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: An integrated model to analysis of landscape indicators. Ecol. Indic. 2019, 101, 878–891. [Google Scholar] [CrossRef]
- Alló, M.; Loureiro, M.L. Assessing preferences for wildfire prevention policies in Spain. For. Policy Econ. 2020, 115, 102145. [Google Scholar] [CrossRef]
- PLADIGA. Plan de Prevención e Defensa Contra os Incendios Forestais de Galicia; Consellería do Medio Rural: Xunta de Galicia, Santiago de Compostela, Spain, 2020; p. 156. [Google Scholar]
- Fonda, R.W. Burning characteristics of needles from eight pine species. For. Sci. 2001, 47, 390–396. [Google Scholar]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.F.M.; Vicente, V.R.; Maseda, R.C. Using GIS to measure changes in the temporal and spatial dynamics of forestland: Experiences from north-west Spain. Forestry 2006, 79, 409–423. [Google Scholar] [CrossRef] [Green Version]
- CMR. Anuario de Estadística Forestal de Galicia 2019; Consellería do Medio Rural: Xunta de Galicia, Santiago de Compostela, Spain, 2020; p. 120.
- Ministerio de Medio Ambiente. Dirección General de la Conservación de la Naturaleza. (2000). Tercer Inventario Forestal Nacional 1997–2006; Ministerio de Medio Ambiente: Madrid, Spain, 2006.
- Chas-Amil, M.L.; Prestemon, J.P.; McClean, C.J.; Touza, J. Human-ignited wildfire patterns and responses to policy shifts. Appl. Geogr. 2015, 56, 164–176. [Google Scholar] [CrossRef]
- PLADIGA. Plan de Prevención e Defensa Contra os Incendios Forestais de Galicia; Consellería do Medio Rural: Xunta de Galicia, Santiago de Compostela, Spain, 2015; p. 156. [Google Scholar]
- Elands, B.H.; O’Leary, T.N.; Boerwinkel, H.W.; Wiersum, K.F. Forests as a mirror of rural conditions; local views on the role of forests across Europe. For. Policy Econ. 2004, 6, 469–482. [Google Scholar] [CrossRef]
- Pagdee, A.; Homchuen, S.; Sang-arome, P.; Sasaki, Y. Community forest: A local attempt in natural resource management, economic value of ecosystem services, and contribution to local livelihoods. Asia Pac. J. Sci. Technol. 2008, 13, 1129–1134. [Google Scholar]
- Rodríguez-Vicente, V.; Marey-Pérez, M.F. Sistemas de apoio á propiedade privada forestal e a súa aplicación en Galicia. Rev. Galega De Econ. Agrar. 2008, 17, 111–130. [Google Scholar]
- Oficina Virtual do Medio Rural. Available online: https://ovmediorural.xunta.gal/es/consultas-publicas/montes-vecinales-en-man-comun (accessed on 4 June 2021).
- Official Databases of Forest Fires; Ministry of Agriculture, Fisheries and Food, Government of Spain: Madrid, Spain, 2021.
- MAPA. Mapa Forestal de España, MFE50; Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, Spain, 1999.
- MAPA. Mapa Forestal de España, MFE25; Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, Spain, 2009.
- Pausas, J.G.; Bradstock, R.A. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Glob. Ecol. Biogeogr. 2007, 16, 330–340. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Gobron, N.; Dolman, A.J. Climate controls on the variability of fires in the tropics and subtropics. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Ribeiro, E. The global fire–productivity relationship. Glob. Ecol. Biogeogr. 2013, 22, 728–736. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- McWethy, D.B.; Pauchard, A.; García, R.A.; Holz, A.; González, M.E.; Veblen, T.T.; Stahl, J.; Currey, B. Landscape drivers of recent fire activity (2001–2017) in south-central Chile. PLoS ONE 2018, 13, e0201195. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces. For. Ecol. Manag. 2016, 372, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vega, J.A.; Arellano-Pérez, S.; Fernández, C.; Fontúrbel, T.; Ruiz, A.D. Os incendios forestais do cambio global xa estan aquí: Un desafío e unha ocasión para lograr unha resposta social consensuada. Dialnet 2021. [Google Scholar] [CrossRef]
- Guo, F.; Innes, J.L.; Wang, G.; Ma, X.; Sun, L.; Hu, H.; Su, Z. Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005. J. Plant Ecol. 2015, 8, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Fusco, E.J.; Abatzoglou, J.T.; Balch, J.K.; Finn, J.T.; Bradley, B.A. Quantifying the human influence on fire ignition across the western USA. Ecol. Appl. 2016, 26, 2390–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef]
GRID. | MFE 4 (09) | MFE 3 (99) | DIF | % Increase | % Gain | % Loss | % Changes |
---|---|---|---|---|---|---|---|
TOTAL FOREST SUP | 1,579,048.36 | 1,467,439.35 | 111,609.01 | 7.61 | 58.86 | 38.05 | 3.08 |
MVMC | 1,487,349.82 | 1,436,285.22 | 51,064.60 | 3.56 | 54.89 | 41.96 | 3.15 |
MVMC WITH FIRES 09/14 | 1,467,827.89 | 1,418,340.52 | 49,487.37 | 3.49 | 52.96 | 43.20 | 3.84 |
MVMC WITHOUT FIRES 09/14 | 1,787,209.50 | 1,772,454.91 | 14,754.59 | 0.83 | 57.00 | 40.89 | 2.11 |
N° | Average Area | MVMC with Increase | N° of Fires | Fires/100 ha | Productivity | |
---|---|---|---|---|---|---|
MVMC with GAIN PRODUCTION | 1706 | 233.19 | 541 | 1559 | 0.39 | 1,696,860 |
MVMC with LOSS PRODUCTION | 1327 | 201.78 | 468 | 1427 | 0.53 | 1,575,280 |
Same Productivity | Increased Productivity | Loss in Productivity | ||||
---|---|---|---|---|---|---|
% Grids | % Fires | % Grids | % Fires | % Grids | % Fires | |
Regular grid | 3.08 | 58.86 | 38.05 | |||
MVMC with fires | 3.32 | 5.60 | 54.78 | 49.95 | 41.90 | 44.45 |
MVMC without fires | 0.57 | 54.30 | 45.12 |
Burned Area per Year in Hectares and Percentage of Burned Area over Total Area | ||||||||
---|---|---|---|---|---|---|---|---|
Year | MVMC with Profit | MVMC with Loss | ||||||
Not Wooded | % | Wooded | % | Not Wooded | % | Wooded | % | |
2009 | 2433.01 | 1.44 | 666.29 | 0.35 | 1224.33 | 1.19 | 281.71 | 0.21 |
2010 | 4256.66 | 2.52 | 422.92 | 0.22 | 1695.63 | 1.64 | 707.19 | 0.54 |
2011 | 7852.03 | 4.65 | 1473.58 | 0.77 | 3362.25 | 3.25 | 1772.27 | 1.35 |
2012 | 1640.01 | 0.97 | 551.35 | 0.29 | 1070.85 | 1.04 | 282.07 | 0.21 |
2013 | 1400.72 | 0.83 | 803.87 | 0.42 | 1680.2 | 1.63 | 1992.9 | 1.52 |
2014 | 324.38 | 0.19 | 35.99 | 0.02 | 133.34 | 0.13 | 62.69 | 0.05 |
Total | 17,906.81 | 10.60 | 3954 | 2.07 | 9166.6 | 8.87 | 5098.83 | 3.88 |
46.96 | 53.04 | 44.05 | Arb: | 55.95 |
Year | MVMC with Profit | MVMC with Loss | ||||||
---|---|---|---|---|---|---|---|---|
Wooded | Scrub | Crops | Water and Other | Wooded | Scrub | Crops | Water and Other | |
2009 | 35.98% | 54.67% | 5.95% | 3.40% | 41.85% | 49.20% | 7.35% | 1.60% |
2010 | 37.06% | 55.59% | 6.29% | 1.05% | 48.67% | 46.46% | 3.98% | 0.88% |
2011 | 38.85% | 51.97% | 7.87% | 1.31% | 45.91% | 43.01% | 8.97% | 2.11% |
2012 | 43.22% | 50.00% | 5.93% | 0.85% | 46.29% | 45.85% | 5.68% | 2.18% |
2013 | 49.46% | 42.93% | 5.43% | 2.17% | 51.32% | 35.98% | 10.05% | 2.65% |
2014 | 45.61% | 52.63% | 1.75% | 0.00% | 57.14% | 32.47% | 9.09% | 1.30% |
Total | 40.08% | 51.90% | 6.28% | 1.74% | 46.85% | 43.88% | 7.43% | 1.84% |
Type of Use | Lowest Occurrence | Highest Occurrence |
---|---|---|
Woodland | 65.60 | 35.98 |
Scrub | 25.15 | 58.51 |
Agriculture | 7.73 | 2.50 |
Water and buildings | 1.52 | 3.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Rodríguez, G.; Rodríguez-Vicente, V.; Marey-Pérez, M.F. Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain). Sustainability 2021, 13, 8472. https://doi.org/10.3390/su13158472
López-Rodríguez G, Rodríguez-Vicente V, Marey-Pérez MF. Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain). Sustainability. 2021; 13(15):8472. https://doi.org/10.3390/su13158472
Chicago/Turabian StyleLópez-Rodríguez, Gervasio, Verónica Rodríguez-Vicente, and Manuel F. Marey-Pérez. 2021. "Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain)" Sustainability 13, no. 15: 8472. https://doi.org/10.3390/su13158472
APA StyleLópez-Rodríguez, G., Rodríguez-Vicente, V., & Marey-Pérez, M. F. (2021). Study of Forest Productivity in the Occurrence of Forest Fires in Galicia (Spain). Sustainability, 13(15), 8472. https://doi.org/10.3390/su13158472