Farm Rejuvenation-Induced Changes in Tree Spatial Pattern and Live Biomass Species of Cocoa Agroforests in Central Cameroon: Insights for Tree Conservation Incentives in Cocoa Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Methods
2.2. Field Sampling Scheme
- Age of cocoa agroforestry farm—we selected at least one cocoa agroforestry parcel in each of the following age ranges [11]:
- (a)
- ≤10 years (immature plantation)
- (b)
- 11–20 years (young plantation)
- (c)
- 21–40 years (mature plantation)
- (d)
- 41–60 years (old plantation), and
- (e)
- >60 years (completely rejuvenated old plantation);
- Farm management—only cocoa stands continuously managed as family farms, with the observed practice of agroforestry and tree diversification were included; and
- Farmer participation—sample farms were marked after consent from owner/managers, upon which access into the farm was granted.
2.3. Data Collection
2.3.1. Tree Mapping
2.3.2. Above-Ground Live Woody Biomass (L-AGB)
2.4. Data Analysis
2.4.1. Analysis of Farm Structural Dynamics
2.4.2. Horizontal Spatial Pattern of Trees within CAFS
2.4.3. Temporal Dynamics in CAFS Rejuvenation
3. Results
3.1. Dynamics of Tree Structure at the Farm Scale
3.1.1. Temporal Variability in Tree Abundance and Live Biomass
3.1.2. Synergy between Live Woody Biomass and Cocoa Tree Density
3.2. Temporal Dynamics of Farm Structure
3.3. Horizontal Structure of Cocoa Tree Management
3.4. Spatial Influence of Associated Trees on Replanting of Young Cocoa Trees
4. Discussion
4.1. The Structural Dynamics of Trees across Plot Age of CAFSs
4.2. Shade Tree Management and Basal Area Allocation
4.3. Synergies and Trade-Offs between Tree Categories in CAFSs
4.4. Reconciling Farm Intensification and the Patchy Tree Structure in CAFS
4.5. Shade Patterns in CAFSs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bisseleua, D.H.B.; Missoup, A.D.; Vidal, S. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv. Biol. 2009, 23, 1176–1184. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Bhagwat, S.A.; Buchori, D.; Faust, H.; Hertel, D.; Hölscher, D.; Juhrbandt, J.; Kessler, M.; Perfecto, I.; et al. Multifunctional shade-tree management in tropical agroforestry landscapes-A review. J. Appl. Ecol. 2011, 48, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, J.; Andres, C.; Schneider, M.; Pillco, M.; Calizaya, P.; Rist, S. Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor. Syst. 2014, 88, 1117–1132. [Google Scholar] [CrossRef] [Green Version]
- Asare, R.; Afari-Sefa, V.; Osei-Owusu, Y.; Pabi, O. Cocoa agroforestry for increasing forest connectivity in a fragmented landscape in Ghana. Agrofor. Syst. 2014, 88, 1143–1156. [Google Scholar] [CrossRef]
- Vaast, P.; Somarriba, E. Trade-offs between crop intensification and ecosystem services: The role of agroforestry in cocoa cultivation. Agrofor. Syst. 2014, 88, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Somarriba, E.; Orozco-Aguilar, L.; Cerda, R.; López-Sampson, A. Analysis and design of the shade canopy of cocoa-based agroforestry systems. In Achieving Sustainable Cultivation of Cocoa; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 469–499. [Google Scholar] [CrossRef] [Green Version]
- Tollens, E. Potential Impacts of Agriculture Development on the Forest Cover in the Congo Basin; The World Bank: Washintgon, DC, USA, 2010. [Google Scholar]
- Ruf, F.; Schroth, G.; Doffangui, K. Climate change, cocoa migrations and deforestation in West Africa: What does the past tell us about the future? Sustain. Sci. 2015, 10, 101–111. [Google Scholar] [CrossRef]
- Ordway, E.M.; Asner, G.P.; Lambin, E.F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa Deforestation risk due to commodity crop expansion in sub- Saharan Africa. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- FAOSTAT. Crops. FAO, Data. 2019. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 5 November 2019).
- Jagoret, P.; Michel-Dounias, I.; Snoeck, D.; Ngnogué, H.T.; Malézieux, E. Afforestation of savannah with cocoa agroforestry systems: A small-farmer innovation in central Cameroon. Agrofor. Syst. 2012, 86, 493–504. [Google Scholar] [CrossRef]
- Dumont, S.E.; Gnahoua, G.M.; Ohouo, L.; Sinclair, F.L.; Vaast, P. Farmers in Côte d’Ivoire value integrating tree diversity in cocoa for the provision of ecosystem services. Agrofor. Syst. 2014, 88, 1047–1066. [Google Scholar] [CrossRef] [Green Version]
- Gyau, A.; Smoot, K.; Diby, L.; Kouame, C. Drivers of tree presence and densities: The case of cocoa agroforestry systems in the Soubre region of Republic of Côte d’Ivoire. Agrofor. Syst. 2015, 89, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Sonwa, D.J.; Weise, S.F.; Nkongmeneck, B.A.; Tchatat, M.; Janssens, M.J.J. Structure and composition of cocoa agroforests in the humid forest zone of Southern Cameroon. Agrofor. Syst. 2016, 91, 451–470. [Google Scholar] [CrossRef]
- Gockowski, J.; Sonwa, D. Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environ. Manag. 2011, 48, 307–321. [Google Scholar] [CrossRef]
- Pedelahore, P. Farmers accumulation strategies and agroforestry systems intensification: The example of cocoa in the central region of Cameroon over the 1910–2010 period. Agrofor. Syst. 2014, 88, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Saj, S.; Durot, C.; Mvondo Sakouma, K.; Tayo Gamo, K.; Avana-Tientcheu, M.L. Contribution of associated trees to long-term species conservation, carbon storage and sustainability: A functional analysis of tree communities in cacao plantations of Central Cameroon. Int. J. Agric. Sustain. 2017, 5903, 1–21. [Google Scholar] [CrossRef]
- Schroth, G.; Läderach, P.; Martinez-valle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Sci. Total Environ. J. 2016, 556, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, S.A.; Awung, G.L.; Lysinge, R.J. Cocoa farms in the Mount Cameroon region: Biological and cultural diversity in local livelihoods. Biodivers. Conserv. 2007, 16, 2401–2427. [Google Scholar] [CrossRef]
- Gyau, A.; Smoot, K.; Kouame, C.; Diby, L.; Kahia, J.; Ofori, D. Farmer attitudes and intentions towards trees in cocoa (Theobroma cacao L.) farms in Côte d’Ivoire. Agrofor. Syst. 2014, 88, 1035–1045. [Google Scholar] [CrossRef]
- Bos, M.M.; Steffan-Dewenter, I.; Tscharntke, T. Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agric. Ecosyst. Environ. 2007, 120, 201–205. [Google Scholar] [CrossRef]
- Babin, R.; Anikwe, J.C.; Dibog, L.; Lumaret, J.P. Effects of cocoa tree phenology and canopy microclimate on the performance of the mirid bug Sahlbergella singularis. Entomol. Exp. Et Appl. 2011, 141, 25–34. [Google Scholar] [CrossRef]
- Saj, S.; Jagoret, P.; Todem Ngogue, H. Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor. Syst. 2013, 87, 1309–1320. [Google Scholar] [CrossRef]
- Gockowski, J.; Afari-Sefa, V.; Sarpong, D.B.; Osei-Asare, Y.B.; Agyeman, N.F. Improving the productivity and income of Ghanaian cocoa farmers while maintaining environmental services: What role for certification? Int. J. Agric. Sustain. 2013, 11, 331–346. [Google Scholar] [CrossRef]
- Richard, A.; Ræbild, A. Tree diversity and canopy cover in cocoa systems in Ghana. New For. 2016, 47, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Asare, R.; Asare, R.A.; Asante, W.A.; Markussen, B.; Ræbild, A. Influences of Shading and Fertilization on on-Farm Yields of Cocoa in Ghana. Exp. Agric. 2016, 53, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Mbile, P.; Ngaunkam, P.; Besingi, M.; Nfoumou, C.; Degrande, A.; Tsobeng, A.; Sado, T.; Menimo, T. Farmer management of cocoa agroforests in Cameroon: Impacts of decision scenarios on structure and biodiversity of indigenous tree species. Biodiversity 2009, 10, 12–19. [Google Scholar] [CrossRef]
- Jagoret, P.; Kwesseu, J.; Messie, C.; Michel-Dounias, I.; Malézieux, E. Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor. Syst. 2014, 88, 983–1000. [Google Scholar] [CrossRef]
- Jagoret, P.; Snoeck, D.; Bouambi, E.; Ngnogue, H.T.; Nyassé, S.; Saj, S. Rehabilitation practices that shape cocoa agroforestry systems in Central Cameroon: Key management strategies for long-term exploitation. Agrofor. Syst. 2017, 92, 1185–1199. [Google Scholar] [CrossRef]
- Jagoret, P.; Michel-Dounias, I.; Malézieux, E. Long-term dynamics of cocoa agroforests: A case study in central Cameroon. Agrofor. Syst. 2011, 81, 267–278. [Google Scholar] [CrossRef]
- Batcheler, C.L.; Craib, D.G. A variable area plot method of assessment of forest condition and trend. N. Z. J. Ecol. 1985, 8, 83–95. [Google Scholar]
- Allen, R.B. A Permanent Plot Method for Monitoring Changes in Indigenous Forests: A Field Manual; Technical Report January 1993; Manaaki Whenua-Landcare Research: Christchurch, New Zealand, 1993. [Google Scholar]
- Woo, S.Y.; Thai, H.T.; Park, P.S. Stand structure and natural regeneration of degraded forestland in the northern mountainous region of Vietnam. Landsc. Ecol. Eng. 2011, 7, 251–261. [Google Scholar] [CrossRef]
- Deheuvels, O.; Rousseau, G.X.; Soto Quiroga, G.; Decker Franco, M.; Cerda, R.; Vílchez Mendoza, S.J.; Somarriba, E. Biodiversity is affected by changes in management intensity of cocoa-based agroforests. Agrofor. Syst. 2014, 88, 1081–1099. [Google Scholar] [CrossRef]
- Maleki, K.; Kiviste, A. Effect of sample plot size and shape on estimates of structural indices: A case study in mature silver birch (Betula pendula Roth) dominating stand in Järvselja. For. Stud. 2015, 63, 130–150. [Google Scholar] [CrossRef] [Green Version]
- Cerda, R.; Deheuvels, O.; Calvache, D.; Niehaus, L.; Saenz, Y.; Kent, J.; Vilchez, S.; Villota, A.; Martinez, C.; Somarriba, E. Contribution of cocoa agroforestry systems to family income and domestic consumption: Looking toward intensification. Agrofor. Syst. 2014, 88, 957–981. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Tanguy, A.; Piponiot, C.; Chave, J.; Hérault, B. biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 2017, 8, 1163–1167. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Zanne, A.; Lopez-Gonzalez, G.; Coomes, D.; Ilic, J.; Jansen, S.; Lewis, S.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Global Wood Density Database. Dryad Dataset 2009. [Google Scholar] [CrossRef]
- Lutz, J.A.; Furniss, T.J.; Johnson, D.J.; Davies, S.J.; Allen, D.; Alonso, A.; Anderson-Teixeira, K.J.; Andrade, A.; Baltzer, J.; Becker, K.M.; et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 2018, 27, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Turner, R. Point patterns of forest fire locations. Environ. Ecol. Stat. 2009, 16, 197–223. [Google Scholar] [CrossRef]
- Ngo Bieng, M.A.; Ginisty, C.; Goreaud, F. Point process models for mixed sessile forest stands. Ann. For. Sci. 2011, 68, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Fonton, N.H.; Atindogbe, G.; Hounkonnou, N.M.; Dohou, R.O. Plot size for modelling the spatial structure of sudanian woodland trees. Ann. For. Sci. 2011, 68, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Ngo Bieng, M.A.; Gidoin, C.; Avelino, J.; Cilas, C.; Deheuvels, O.; Wery, J. Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl. Ecol. 2013, 14, 329–336. [Google Scholar] [CrossRef]
- Baddeley, A.; Turner, R.; Rubak, E. Analysing replicated point patterns in spatstat. Cran Vignettes 2015, 35, 38. [Google Scholar]
- Ripley, B. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 172–212. [Google Scholar] [CrossRef]
- Sonwa, D.J.; Weise, S.F.; Schroth, G.; Janssens, M.J.J.; Shapiro, H.Y. Structure of cocoa farming systems in West and Central Africa: A review. Agrofor. Syst. 2018. [Google Scholar] [CrossRef]
- Daghela Bisseleua, H.B.; Fotio, D.; Yede; Missoup, A.D.; Vidal, S. Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers’ Net Returns in West Africa. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Wood, S.A.; Karp, D.S.; Declerck, F.; Kremen, C.; Naeem, S.; Palm, C.A. Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends Ecol. Evol. 2015, 30, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemagi, D.; Duguma, L.; Minang, P.A.; Nkeumoe, F.; Feudjio, M.; Tchoundjeu, Z. Intensification of cocoa agroforestry systems as a REDD+ strategy in Cameroon: Hurdles, motivations, and challenges. Int. J. Agric. Sustain. 2015, 13, 187–203. [Google Scholar] [CrossRef]
- Bernard, F.; Minang, P.A. Community forestry and REDD + in Cameroon: What future? Ecol. Soc. 2019, 24, 14. [Google Scholar] [CrossRef] [Green Version]
- Foundjem-Tita, D.; D’Haese, M.; Speelman, S.; Degrande, A.; Gyau, A.; Van Damme, P.; Tchoundjeu, Z.; Van Huylenbroeck, G. Would strictly enforced forestry regulations affect farmers’ stated intentions to plant indigenous fruits trees? Insights from Cameroon. Food Policy 2014, 49, 95–106. [Google Scholar] [CrossRef]
Plot Age Group | |||||
---|---|---|---|---|---|
≤10 years | 11–20 | 21–40 years | 41–60 years | >60 years | |
Tree density | |||||
AsT.ha | 251.4 (21.5) | 184.2 (84.9) | 345.8 (329.6) | 209.5 (129.5) | 253.3 (127.9) |
Coa1.ha | 275 (247.1) | 276.7 (116.9) | 415.8 (202.9) | 329.8 (240.0) | 217.3 (144.1) |
Coa2.ha | 752.4 (116.4) | 694.7 (247.5) | 450.1 (191.2) | 435.4 (147.5) | 397.0 (189.2) |
Coa3.ha | 92.3 (41.3) | 141.8 (68.9) | 153.1 (166.2) | 278.8 (59.5) | 222.3 (86.5) |
Coa4.ha | 1114.7 (120.8) | 1109.3 (263.1) | 1040.2 (229.1) | 1039.8 (335.7) | 836.7 (303.8) |
Trees.ha | 1366.0 (114.4) | 1293.5 (324.3) | 1386.0 (363.8) | 1249.4 (356.4) | 1090.0 (253.8) |
Tree BA.ha | 24.1 (20.3) | 33.4 (27.3) | 57.3 (51.1) | 182.0 (252.9) | 41.1 (42.3) |
Live wood biomass (L-AGB) | |||||
Co.AGB | 19.0 (4.5) | 18.9 (6.6) | 16. (7.6) | 22.4 (4.6) | 21.5 (7.6) |
NtF.AGB | 34.9 (31.5) | 81.3 (148.1) | 24.9 (25.0) | 53.9 (57.5) | 77.2 (50.5) |
Tmb.AGB | 86.4 (138.2) | 171.8 (204.1) | 442.9 (574.0) | 2138.1 (3198.0) | 137.8 (212.6) |
wAGB | 141.9 (147.5) | 272.1 (256.6) | 483.9 (563.1) | 2214.6 (3159.3) | 236.6 (224.6) |
Plot age group | |||||
---|---|---|---|---|---|
≤10 years | 11–20 years | 21–40 years | 41–60 years | >60 years | |
Tree density | |||||
AsT.ha | 152.5 (37.9) | 178.8 (92.9) | 204.3 (67.9) | 146.1 (45.5) | 162.1 (67.8) |
Coa1.ha | 152.5 (37.9) | 178.8 (92.9) | 204.3 (67.9) | 146.1 (45.5) | 162.1 (67.8) |
Coa2.ha | 464.3 (181.3) | 654.8 (191.5) | 433.8 (269.4) | 565.5 (204.3) | 410.7 (141.7) |
Coa3.ha | 31.4 (18.9) | 157.6 (104.0) | 239.8 (138.7) | 157.3 (122.8) | 324.3 (94.2) |
Coa4.ha | 1278.2 (157.1) | 1544.5 (588.2) | 995.4 (345.60) | 978.4 (230.6) | 970.3 (218.5) |
Trees.ha | 1430.7 (195.0) | 1723.3 (551.3) | 1199.7 (307.2) | 1124.5 (264.1) | 1132.4 (39.9) |
Tree BA.ha | 11.9 (2.1) | 17.2 (10.2) | 64.9 (85.1) | 27.5 (32.9) | 112.9 (186.5) |
Live wood biomass (L-AGB) | |||||
Co.AGB | 10.2 (2.3) | 23.2 (11.2) | 24.9 (5.3) | 19.8 (7.1) | 28.4 (6.3) |
NtF.AGB | 46.9 (40.1 ) | 33.9 (43.3 ) | 140.9 (83.5 ) | 59.7 (30.8 ) | 16.6 (14.4 ) |
Tmb.AGB | — | 55.5 (51.1) | 390.6 (763.1) | 65.8 (138.4) | 1044.9 (2097.7) |
wAGB | 57.1 (42.4) | 112.9 (70.5) | 556.5 (843.7) | 145.3 (131.7) | 1089.9 (2096.2) |
Plot Age Group | |||||
---|---|---|---|---|---|
≤10 years | 11–20 years | 21–40 years | 41–60 years | >60 years | |
fCAFS | |||||
Cocoa trees | 3.0 | 3.0 | 3.1 | 3.1 | 3.5 |
Non-cocoa trees | 6.3 | 7.4 | 5.4 | 6.9 | 6.3 |
All trees | 2.7 | 2.8 | 2.7 | 2.8 | 3.0 |
sCAFS | |||||
Cocoa trees | 2.8 | 2.5 | 3.2 | 3.2 | 3.2 |
Non-cocoa trees | 8.1 | 7.5 | 7.0 | 8.3 | 7.9 |
All trees | 2.6 | 2.4 | 2.9 | 3.0 | 3.0 |
Farm | Model | Parameters | Plot Age Group (years) | SD | CDF Test | ||||
---|---|---|---|---|---|---|---|---|---|
Type | Effects | ≤10 | 11–20 | 21–40 | 41–60 | >60 | D * (p-Value) | ||
fCAFS | Fixed | Coefficient | −3.6542 | 0.0069 | 0.3344 | 0.1753 | −0.1048 | 0.045 (0.525) | |
Random | Intercept | 0.03626 | 0.1741 | 0.2666 | 0.4666 | −0.1213 | 0.2338 | ||
DAsT | −0.009 | −0.047 | −0.073 | −0.128 | 0.033 | 0.0642 | |||
sCAFS | Fixed | Coefficient | −2.580 | −0.080 | −0.853 | −1.086 | −1.1244 | 0.0365 (0.223) | |
Random | Intercept | −1.39×10 | −2.62×10 | −1.38×10 | −3.62×10 | −1.65×10 | 3.080×10 | ||
DAsT | −4.12×10 | 4.06×10 | 1.74×10 | −9.11×10 | −4.10×10 | 2.747×10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Numbisi, F.N.; Alemagi, D.; Degrande, A.; Van Coillie, F. Farm Rejuvenation-Induced Changes in Tree Spatial Pattern and Live Biomass Species of Cocoa Agroforests in Central Cameroon: Insights for Tree Conservation Incentives in Cocoa Landscapes. Sustainability 2021, 13, 8483. https://doi.org/10.3390/su13158483
Numbisi FN, Alemagi D, Degrande A, Van Coillie F. Farm Rejuvenation-Induced Changes in Tree Spatial Pattern and Live Biomass Species of Cocoa Agroforests in Central Cameroon: Insights for Tree Conservation Incentives in Cocoa Landscapes. Sustainability. 2021; 13(15):8483. https://doi.org/10.3390/su13158483
Chicago/Turabian StyleNumbisi, Frederick N., Dieudonne Alemagi, Ann Degrande, and Frieke Van Coillie. 2021. "Farm Rejuvenation-Induced Changes in Tree Spatial Pattern and Live Biomass Species of Cocoa Agroforests in Central Cameroon: Insights for Tree Conservation Incentives in Cocoa Landscapes" Sustainability 13, no. 15: 8483. https://doi.org/10.3390/su13158483
APA StyleNumbisi, F. N., Alemagi, D., Degrande, A., & Van Coillie, F. (2021). Farm Rejuvenation-Induced Changes in Tree Spatial Pattern and Live Biomass Species of Cocoa Agroforests in Central Cameroon: Insights for Tree Conservation Incentives in Cocoa Landscapes. Sustainability, 13(15), 8483. https://doi.org/10.3390/su13158483