Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Materials
2.3. Methods
2.3.1. Ecological Comprehensive Sensitivity and Zone Identification
2.3.2. CA-Markov Model
2.3.3. Evaluation of ESV
3. Results
3.1. Ecological Sensitivity Zone Identification
3.1.1. The Evaluation of Soil Erosion Sensitivity
3.1.2. The Evaluation of Land Desertification Sensitivity
3.1.3. The Evaluation of Soil Salinization Sensitivity
3.1.4. The Comprehensive Evaluation and Zone Identification of Ecological Sensitivity
3.2. The Urban Expansion Simulation
3.2.1. The Model Validation and Assessment
3.2.2. The Simulation of Urban Expansion Based on Ecological Sensitivity
3.2.3. The Analysis of the Urban Expansion Simulation
3.3. Estimation of ESV Change
3.3.1. ESV Change from 2000 to 2018
3.3.2. Prediction of ESV Losses from 2018 to 2030
4. Discussion
4.1. The Rationality of Delimiting Ecological Sensitive Areas
4.2. The Accuracy of Simulated Urban Expansion
4.3. Estimation of ESV Dynamics and Prediction of Future ESV Losses as an Effective Tool for Ecological Safety Management
5. Conclusions and Outlook
- In the comprehensive ecological sensitivity assessment, we found that the ecological sensitive zone is about 20,639.71 km2 in the Three Gorges Reservoir area, accounting for 35.86% of the total study area. This part of the area is in Wushan, Fengjie and Yunyang.
- The results of the study show that the overall ESV in the Three Gorges Reservoir area showed an increasing trend from 2000 to 2018. The growth was about USD 3644.26 million. From the perspective of ESV change in districts and counties, we found that 16 districts and counties were decreasing in unit ESV, Dadukou and Jiangbei decreased most significantly. In four ecosystem services, regulating services provided the highest ESV.
- In the context of ecological priority and green development, the 2030 urban land was predicted and simulated. In 2018–2030, about 80,026.02 ha of new construction land will be added to the Three Gorges Reservoir area, and the overall ESV will lose USD 268.75 million. The largest losses are in Jiulongpo, Banan and Shapingba.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haeckel, E. The History of Creation; Taylor and Francis: London, UK, 1899. [Google Scholar]
- Pennekamp, F.; Pontarp, M.; Tabi, A.; Altermatt, F.; Alther, R.; Choffat, Y.; Fronhofer, E.A.; Ganesanandamoorthy, P.; Garnier, A.; Griffiths, J.I.; et al. Biodiversity increases and decreases ecosystem stability. Nature. 2018, 563, 109–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klain, S.C.; Satterfield, T.A.; Chan, K.M.A. What matters and why? Ecosystem services and their bundled qualities. Ecol. Econ. 2014, 107, 310–320. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Alcorlo, P.; Montes, C. Limitations of Protected Areas Zoning in Mediterranean Cultural Landscapes under the Ecosystem Services Approach. Ecosystems. 2014, 17, 1202–1215. [Google Scholar] [CrossRef]
- Li, R.Q.; Dong, M.; Cui, J.Y.; Zhang, L.L.; Cui, Q.G.; He, W.M. Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. Env. Monit. Assess. 2007, 128, 503–510. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Yang, Y.; Song, G.; Lu, S. Study on the ecological protection redline (EPR) demarcation process and the ecosystem service value (ESV) of the EPR zone: A case study on the city of Qiqihaer in China. Ecol. Indic. 2020, 109, 105754. [Google Scholar] [CrossRef]
- Bommarco, R.; Vico, G.; Hallin, S. Exploiting ecosystem services in agriculture for increased food security. Glob. Food Secur. 2018, 17, 57–63. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, G.; Zhang, L.; Chen, W.; Li, M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Bastian, O.; Haase, D.; Grunewald, K. Ecosystem properties, potentials and services—The EPPS conceptual framework and an urban application example. Ecol. Indic. 2012, 21, 7–16. [Google Scholar] [CrossRef]
- MEA (Middle East Airline). Ecosystems and Human Wellbeing: Biodiversity Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Anaya-Romero, M.; Muñoz-Rojas, M.; Ibáñez, B.; Marañón, T. Evaluation of forest ecosystem services in Mediterranean areas. A regional case study in South Spain. Ecosyst. Serv. 2016, 20, 82–90. [Google Scholar] [CrossRef]
- Groot, R.S.D. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; D’Arge, R.; DeGroot, R.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature. 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Qiu, J.; Zipper, S.C.; Motew, M.; Booth, E.G.; Kucharik, C.J.; Loheide, S.P. Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nat. Sustain. 2019, 2, 475–483. [Google Scholar] [CrossRef]
- Zhou, D.; Tian, Y.; Jiang, G. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 2018, 95, 152–164. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- La Notte, A.; Liquete, C.; Grizzetti, B.; Maes, J.; Egoh, B.N.; Paracchini, M.L. An ecological-economic approach to the valuation of ecosystem services to support biodiversity policy. A case study for nitrogen retention by Mediterranean rivers and lakes. Ecol. Indic. 2015, 48, 292–302. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Wainger, L.A.; King, D.M.; Mack, R.N.; Price, E.W.; Maslin, T. Can the concept of ecosystem services be practically applied to improve natural resource management decisions? Ecol. Econ. 2010, 69, 978–987. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science. 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- MEP; NDRC. Guidelines for the Delimitation of Red Lines for Ecological Protection; Ministry of Environmental Protection of the People’s Republic of China (MEP): Beijing, China; National Development and Reform Commission of the People’s Republic of China (NDRC): Beijing, China, 2017. (In Chinese)
- Ding, Q.; Shi, X.; Zhuang, D.; Wang, Y. Temporal and Spatial Distributions of Ecological Vulnerability under the Influence of Natural and Anthropogenic Factors in an Eco-Province under Construction in China. Sustainability 2018, 10, 3087. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.; Zhang, Z.; Gao, J.; Xie, Z.; Zhao, M.; Wang, E. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Meng, L.; Qin, X.; Qi, X. Measuring the area green efficiency and the influencing factors in urban agglomeration. J. Clean. Prod. 2019, 241, 118092. [Google Scholar] [CrossRef]
- Sun, Y.; Tong, L.; Liu, D. An Empirical Study of the Measurement of Spatial-Temporal Patterns and Obstacles in the Green Development of Northeast China. Sustainability. 2020, 12, 10190. [Google Scholar] [CrossRef]
- García, A.M.; Santé, I.; Boullón, M.; Crecente, R. Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain. Int. J. Geogr. Inf. Sci. 2013, 27, 1593–1611. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Kim, I.; Arnhold, S.; Ahn, S.; Le, Q.B.; Kim, S.J.; Park, S.J.; Koellner, T. Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environ. Model. Softw. 2019, 122, 103982. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, X.; Shi, Y. Evaluation of Ecological Environment Effect of Villages Land Use and Cover Change: A Case Study of Some Villages in Yudian Town, Guangshui City, Hubei Province. Land. 2021, 10, 251. [Google Scholar] [CrossRef]
- Chen, S.; Feng, Y.; Tong, X.; Liu, S.; Xie, H.; Gao, C.; Lei, Z. Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Sci. Total Environ. 2020, 712, 136509. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.B.; Murayama, Y. Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Appl. Geogr. 2010, 30, 70–83. [Google Scholar] [CrossRef]
- Shu, B.; Zhu, S.; Qu, Y.; Zhang, H.; Li, X.; Carsjens, G.J. Modelling multi-regional urban growth with multilevel logistic cellular automata. Comput. Environ. Urban Syst. 2020, 80, 101457. [Google Scholar] [CrossRef]
- Yang, X.; Chen, R.; Zheng, X.Q. Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomat. Nat. Hazards Risk. 2015, 7, 918–932. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Du, Z.; Zhang, H. Integrating the system dynamic and cellular automata models to predict land use and land cover change. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 568–579. [Google Scholar] [CrossRef]
- Adhikari, S.; Southworth, J. Simulating Forest Cover Changes of Bannerghatta National Park Based on a CA-Markov Model: A Remote Sensing Approach. Remote Sens. 2012, 4, 3215–3243. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Li, Y.; Li, B.; Han, W.; Liu, D.; Gan, X. Nitrogen and phosphorus losses by runoff erosion: Field data monitored under natural rainfall in Three Gorges Reservoir Area, China. Catena. 2016, 147, 797–808. [Google Scholar] [CrossRef]
- Lu, C.-J.; Luo, D.; Junaid, M.; Duan, J.-J.; Ding, S.-M.; Dai, A.-X.; Cao, T.-W.; Pei, D.-S. The Status of Pollutants in the Three Gorges Reservoir Area, China and its Ecological Health Assessment. Am. J. Environ. Sci. 2016, 12, 308–316. [Google Scholar] [CrossRef]
- Chu, S.; Chen, L. Evaluation of energy conservation and emission reduction in Anhui Province based on coefficient of variation method. China Popul. Resour. Environ. 2011, 21, 512–516. (In Chinese) [Google Scholar]
- Guan, Q.; Wang, L.; Clarke, K.C. An Artificial-Neural-Network-based, Constrained CA Model for Simulating Urban Growth. Cartogr. Geogr. Inf. Sci. 2005, 32, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-G.; Qiao, F.-W.; Zhou, L.; Che, L.; Bai, Y.-P.; Yang, X.-D. Delimitation of urban growth boundary in ecologically vulnerable areas in the Upper Yellow River: Take Linxia Hui Autonomous Prefecture as an example. J. Nat. Resour. 2021, 36, 162–175. (In Chinese) [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Shiferaw, H.; Bewket, W.; Alamirew, T.; Zeleke, G.; Teketay, D.; Bekele, K.; Schaffner, U.; Eckert, S. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci. Total Environ. 2019, 675, 354–366. [Google Scholar] [CrossRef]
- Howarth, R.B.; Farber, S. Special Issue: The Dynamics and Value of Ecosystem Services: Integrating Economic and Ecological Perspectives Accounting for the value of ecosystem services. Ecol. Econ. 2002, 41, 421–429. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Xie, G. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Z.; Xiao, H.; Miao, H.; Fu, B. Distribution and division of sensitivity to water-caused soil loss in China. Acta Ecol. Sin. 2001, 21, 14–19. (In Chinese) [Google Scholar]
- Tang, J.; Tang, X.; Qin, Y.; He, Q.; Yi, Y.; Ji, Z. Karst rocky desertification progress: Soil calcium as a possible driving force. Sci. Total Environ. 2019, 649, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lu, S.; Pan, N.; Jiao, W. Impacts of long-term reclaimed water irrigation on soil salinity accumulation in urban green land in Beijing. Water Resour. Res. 2013, 49, 7401–7410. [Google Scholar] [CrossRef]
- Xie, J.; Xu, W.; Zhang, M.; Qiu, C.; Liu, J.; Wisniewski, M.; Ou, T.; Zhou, Z.; Xiang, Z. The impact of the endophytic bacterial community on mulberry tree growth in the Three Gorges Reservoir Ecosystem, China. Environ. Microbiol. 2020, 23, 1858–1875. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Pecci, A.; Patil, G.; Rossi, O.; Rossi, P. Biodiversity protection funding preference: A case study of hotspot geoinformatics and digital governance for the Map of Italian Nature in the presence of multiple indicators of ecological value, ecological sensitivity and anthropic pressure for the Oltrepò Pavese and Ligurian-Emilian Apennine study area in Italy. Environ. Ecol. Stat. 2010, 17, 473–502. [Google Scholar] [CrossRef]
- Li, S.; Nie, X.; Zhang, A. Research progress on farmland ecological compensation mechanism based on ecosystem service evaluation. Resour. Sci. 2020, 42, 2251–2260. (In Chinese) [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Ku, C.-A. Incorporating spatial regression model into cellular automata for simulating land use change. Appl. Geogr. 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Tong, X.; Liu, Y.; Lei, Z.; Gao, C.; Chen, S. The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models. Sustainability. 2018, 10, 4002. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, Y.; Yang, H.; Min, J.; Wang, C.; Zhang, H. RS and GIS-based Assessment for Eco-environmental Sensitivity of the Three Gorges Reservoir Area of Chongqing. Acta Geogr. Sin. 2011, 66, 631–642. (In Chinese) [Google Scholar]
- Wu, D.; Huang, Z.; Xiao, W.; Zeng, L. Control of soil nutrient loss in a typical conversion model of farmland to forest in the Three Gorges Reservoir area. Environ. Sci. 2015, 36, 3825–3831. (In Chinese) [Google Scholar]
- Yang, B.; Zhiyun, O.; Hua, Z.; Weihua, X.; Bo, J.; Yu, F. Evaluation of the forest ecosystem services in Haihe River Basin, China. Acta Ecol. Sin. 2011, 31, 2029–2039. (In Chinese) [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, A.H.; Sowmyashree, M.V. Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. J. Environ. Manag. 2015, 148, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elmabod, S.K.; Fitch, A.C.; Zhang, Z.; Ali, R.R.; Jones, L. Rapid urbanisation threatens fertile agricultural land and soil carbon in the Nile delta. J. Environ. Manag. 2019, 252, 109668. [Google Scholar] [CrossRef] [PubMed]
Sensitivity Degree | Ri | SGi | LSi | Ci |
---|---|---|---|---|
Insensitive (1) | <25 | Paddy soil, urban area, rock and river | <20 | >0.49 |
Mildly sensitive (2) | 25–100 | Limestone soil, rock-soil and mountain meadow soil | 20–50 | 0.39–0.49 |
Moderately sensitive (3) | 100–400 | Dark brown soil and yellow-cinnamon soil | 50–100 | 0.28–0.39 |
Highly sensitive (4) | 400–600 | Yellow loam, yellow-brown soil and skeleton soil | 100–300 | 0.16–0.28 |
Extremely sensitive (5) | >600 | Purple soil | >300 | <0.16 |
Sensitivity Degree | Ii | Wi | SLi |
---|---|---|---|
Insensitive (1) | <0.96 | <2 | ≤5 |
Mildly sensitive (2) | 0.96–1.01 | 2–4 | 5–8 |
Moderately sensitive (3) | 1.01–1.08 | 4–6 | 8–15 |
Highly sensitive (4) | 1.08–1.17 | 6–8 | 15–25 |
Extremely sensitive (5) | >1.17 | >8 | >25 |
Sensitivity Degree | Ei | GSi | GDi | LUCCi |
---|---|---|---|---|
Insensitive (1) | <0.6 | <0.1 | >20 | Water body |
Mildly sensitive (2) | 0.6–0.7 | 0.1–0.2 | 18–20 | Impervious surface |
Moderately sensitive (3) | 0.7–0.8 | 0.2–0.3 | 16–18 | Forest and grassland |
Highly sensitive (4) | 0.8–0.9 | 0.3–0.4 | 14–16 | Farmland |
Extremely sensitive (5) | >0.9 | >0.4 | <14 | Unused land |
Primary Service | Secondary Service | Farmland | Forest | Grassland | Water Body | Unused Land | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dry Land | Paddy Field | Coniferous Forest | Mixed Forest | Broadleaved Forest | Bush | Meadow | Wetland | Lake and River | Barren | ||
Provisioning services | Food | 0.85 | 1.36 | 0.22 | 0.31 | 0.29 | 0.19 | 0.22 | 0.51 | 0.80 | 0.00 |
Materials | 0.40 | 0.09 | 0.52 | 0.71 | 0.66 | 0.43 | 0.33 | 0.50 | 0.23 | 0.00 | |
Water | 0.02 | −2.63 | 0.27 | 0.37 | 0.34 | 0.22 | 0.18 | 2.59 | 8.29 | 0.00 | |
Regulating services | Air quality regulation | 0.67 | 1.11 | 1.70 | 2.35 | 2.17 | 1.41 | 1.14 | 1.90 | 0.77 | 0.02 |
Climate regulation | 0.36 | 0.57 | 5.07 | 7.03 | 6.50 | 4.23 | 3.02 | 3.60 | 2.29 | 0.00 | |
Waste treatment | 0.10 | 0.17 | 1.49 | 1.99 | 1.93 | 1.28 | 1.00 | 3.60 | 5.55 | 0.10 | |
Water flow regulation | 0.27 | 2.72 | 3.34 | 3.51 | 4.74 | 3.35 | 2.21 | 24.23 | 102.24 | 0.03 | |
Erosion prevention | 1.03 | 0.01 | 2.06 | 2.86 | 2.65 | 1.72 | 1.39 | 2.31 | 0.93 | 0.02 | |
Maintenance of soil fertility | 0.12 | 0.19 | 0.16 | 0.22 | 0.20 | 0.13 | 0.11 | 0.18 | 0.07 | 0.00 | |
Habitat services | 0.13 | 0.21 | 1.88 | 2.60 | 2.41 | 1.57 | 1.27 | 7.87 | 2.55 | 0.02 | |
Entertainment services | 0.06 | 0.09 | 0.82 | 1.14 | 1.06 | 0.69 | 0.56 | 4.73 | 1.89 | 0.01 | |
Total | 4.01 | 3.89 | 17.53 | 23.09 | 22.95 | 15.22 | 11.43 | 52.02 | 125.61 | 0.2 |
Sensitivity Classification | Soil Erosion | Land Desertification | Soil Salinization | The Comprehensive Evaluation | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Extremely sensitive | 6494.08 | 11.28 | 10,587.74 | 18.40 | 5145.91 | 8.94 | 6279.62 | 10.91 |
Highly sensitive | 11,442.09 | 19.88 | 10,246.66 | 17.80 | 16,129.51 | 28.02 | 14,360.09 | 24.95 |
Moderately sensitive | 13,232.75 | 22.99 | 13,845.73 | 24.06 | 16,224.49 | 28.19 | 17,261.63 | 29.99 |
Mildly sensitive | 17,265.48 | 30.00 | 13,213.63 | 22.96 | 14,444.79 | 25.10 | 15,234.81 | 26.47 |
Insensitive | 9120.03 | 15.85 | 9660.65 | 16.79 | 5609.71 | 9.75 | 4418.26 | 7.68 |
Land Use Type | 2000 | 2010 | 2018 | |||
---|---|---|---|---|---|---|
ESV (Million USD) | Percentage (%) | ESV (Million USD) | Percentage (%) | ESV (Million USD) | Percentage (%) | |
Dry land | 3188.74 | 8.32 | 3135.26 | 7.75 | 3105.17 | 7.40 |
Paddy field | 1229.56 | 3.21 | 1196.58 | 2.96 | 1139.29 | 2.71 |
Coniferous forest | 7960.03 | 20.77 | 7959.81 | 19.68 | 7171.30 | 17.09 |
Mixed forest | 719.17 | 1.88 | 883.25 | 2.18 | 876.58 | 2.09 |
Broadleaved forest | 10,893.48 | 28.43 | 11,314.77 | 27.97 | 16,575.17 | 39.50 |
Bush | 5923.07 | 15.46 | 6150.63 | 15.20 | 3372.12 | 8.04 |
Meadow | 4252.15 | 11.10 | 3578.59 | 8.85 | 3413.38 | 8.13 |
Wetland | 537.39 | 1.40 | 459.82 | 1.14 | 515.56 | 1.23 |
Lake and river | 3616.79 | 9.44 | 5775.83 | 14.28 | 5796.12 | 13.81 |
Barren | 0.10 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 |
Total | 38,320.49 | --- | 40,454.61 | --- | 41,964.75 | --- |
Region (ha) | Farmland | Forest | Grassland | Water Body | Unused Land | |||||
---|---|---|---|---|---|---|---|---|---|---|
Dry Land | Paddy Field | Coniferous Forest | Mixed Forest | Broadleaved Forest | Bush | Meadow | Wetland | Lake and River | Barren | |
Badong | 138.6 | 143.19 | 216.81 | 76.05 | 54.36 | 1.89 | 6.21 | 0 | 0 | 43.2 |
Xingshan | 47.79 | 61.29 | 42.93 | 73.89 | 15.66 | 13.95 | 1.26 | 0 | 0 | 51.12 |
Yiling | 209.88 | 767.88 | 318.69 | 71.82 | 402.21 | 271.26 | 4.14 | 0 | 0 | 95.58 |
Zigui | 22.41 | 108.09 | 201.87 | 13.23 | 45.72 | 21.15 | 2.79 | 0 | 0 | 24.75 |
Banan | 5083.38 | 3623.40 | 302.04 | 83.79 | 434.88 | 29.25 | 55.44 | 0 | 6.03 | 285.48 |
Beibei | 3111.93 | 2213.37 | 113.49 | 293.22 | 139.5 | 64.17 | 0.18 | 0 | 45.9 | 151.92 |
Changshou | 679.77 | 1546.38 | 45 | 0 | 87.12 | 20.07 | 27.09 | 0.99 | 0 | 18.54 |
Dadukou | 1135.71 | 679.86 | 175.32 | 26.64 | 232.47 | 0 | 0 | 0 | 0 | 48.87 |
Fuling | 1281.42 | 1466.01 | 337.32 | 14.4 | 153.36 | 1.71 | 509.67 | 0 | 0 | 160.47 |
Jiangbei | 1221.75 | 840.24 | 168.93 | 214.2 | 38.43 | 0 | 0 | 0 | 0 | 376.65 |
Jiangjin | 2434.32 | 986.67 | 321.3 | 57.42 | 134.91 | 304.02 | 176.49 | 0 | 0 | 73.8 |
Jiulongpo | 3026.34 | 2533.14 | 327.24 | 116.19 | 1177.83 | 152.01 | 49.95 | 0 | 0 | 66.06 |
Nanan | 1906.20 | 1587.96 | 227.7 | 8.64 | 125.19 | 9.36 | 0 | 0 | 0 | 171 |
Shapingba | 2778.84 | 2978.82 | 225.63 | 1.35 | 1130.31 | 8.01 | 6.3 | 0 | 0 | 178.83 |
Wanzhou | 1035.72 | 1462.14 | 191.88 | 109.26 | 14.31 | 34.56 | 313.65 | 0 | 0 | 161.91 |
Yubei | 4681.71 | 3830.94 | 282.87 | 49.05 | 347.04 | 11.25 | 64.8 | 1.44 | 9.45 | 121.86 |
Yuzhong | 0 | 0 | 0 | 9.18 | 0 | 0 | 0 | 0 | 0 | 91.62 |
Fengdu | 663.21 | 533.97 | 77.49 | 6.93 | 59.67 | 39.87 | 57.78 | 0 | 0 | 58.68 |
Fengjie | 196.56 | 235.71 | 86.85 | 0.54 | 51.93 | 8.19 | 96.03 | 0 | 0 | 98.91 |
Kaizhou | 1342.89 | 1261.80 | 78.3 | 268.65 | 10.44 | 1.98 | 203.85 | 0 | 0 | 62.28 |
Shizhu | 234.36 | 266.4 | 40.05 | 0 | 20.43 | 3.24 | 73.35 | 0 | 0 | 30.87 |
Wushan | 231.75 | 78.03 | 4.23 | 1.89 | 119.43 | 5.58 | 16.29 | 0 | 0 | 54.18 |
Wuxi | 232.38 | 101.07 | 13.41 | 0 | 22.5 | 2.34 | 133.83 | 0 | 0 | 14.85 |
Wulong | 1284.03 | 434.97 | 484.38 | 0 | 207.63 | 174.96 | 156.69 | 0 | 0 | 95.22 |
Yunyang | 377.01 | 245.79 | 193.05 | 14.49 | 11.16 | 16.74 | 250.47 | 0 | 0 | 271.8 |
Zhong | 545.58 | 394.11 | 276.21 | 57.42 | 0.18 | 15.48 | 39.87 | 4.05 | 0 | 49.86 |
Total | 33,903.54 | 28,381.23 | 4752.99 | 1568.25 | 5036.67 | 1211.04 | 2246.13 | 6.48 | 61.38 | 2858.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Hua, L.; Zhang, X.; Yuan, X.; Li, J. Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China. Sustainability 2021, 13, 8490. https://doi.org/10.3390/su13158490
Peng H, Hua L, Zhang X, Yuan X, Li J. Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China. Sustainability. 2021; 13(15):8490. https://doi.org/10.3390/su13158490
Chicago/Turabian StylePeng, Hongjie, Lei Hua, Xuesong Zhang, Xuying Yuan, and Jianhao Li. 2021. "Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China" Sustainability 13, no. 15: 8490. https://doi.org/10.3390/su13158490
APA StylePeng, H., Hua, L., Zhang, X., Yuan, X., & Li, J. (2021). Evaluation of ESV Change under Urban Expansion Based on Ecological Sensitivity: A Case Study of Three Gorges Reservoir Area in China. Sustainability, 13(15), 8490. https://doi.org/10.3390/su13158490