Applications of Biocatalysts for Sustainable Oxidation of Phenolic Pollutants: A Review
Abstract
:1. Introduction
2. PRPP Wastewater Characteristics and Disposal Standards
3. Impacts of PPRP Wastewater on Environmental Health
4. Treatment Technologies
Enzymatic Treatment
5. Oxidoreductase Enzymes and Their Mechanisms of Action
5.1. Biochemical Properties of Polyphenol Oxidase (PPO)
5.2. Homogeneous Enzymatic Reactions for the Remediation of Phenolic Wastewaters
5.3. Heterogeneous Enzymatic Reactions for the Remediation of Phenolic Wastewaters
5.4. Treatment of Real Wastewater
5.5. Enzymatic Oxidation Kinetic
5.6. Recent Advances
6. Unresolved Challenges, Concluding Remarks and Future Outlooks
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helmy, Q.; Kardena, E. Petroleum oil and gas industry waste treatment; common practice in indonesia. J. Pet. Environ. Biotechnol. 2015, 6, 1. [Google Scholar]
- de Mello, J.M.M.; de Lima Brandão, H.; de Souza, A.A.U.; da Silva, A.; de Souza, S.M.D.A.G.U. Biodegradation of BTEX compounds in a biofilm reactor—Modeling and simulation. J. Pet. Sci. Eng. 2010, 70, 131–139. [Google Scholar] [CrossRef]
- Cholakov, G.S. Control of pollution in the petroleum industry. Pollut. Control Technol. 2010, 3, 1–10. [Google Scholar]
- Coelho, A.; Castro, A.V.; Dezotti, M.; Sant’Anna, G.L. Treatment of petroleum refinery sourwater by advanced oxidation processes. J. Hazard. Mater. 2006, 137, 178–184. [Google Scholar] [CrossRef]
- Diya’uddeen, B.H.; Daud, W.M.A.W.; Abdul Aziz, A.R. Treatment technologies for petroleum refinery effluents: A review. Process. Saf. Environ. Prot. 2011, 89, 95–105. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Short-Term Energy Outlook (STEO) Forecast Highlights; EIA: Washington, DC, USA, 2020; (September issue). [Google Scholar]
- Tengrui, L.; Al-Harbawi, A.F.; Bo, L.M.; Jun, Z.; Long, X.Y. Characteristics of nitrogen removal from old landfill leachate by sequencing batch biofilm reactor. Am. J. Appl. Sci. 2007, 4, 211–214. [Google Scholar] [CrossRef]
- Khaksar, A.M.; Nazif, S.; Taebi, A.; Shahghasemi, E. Treatment of phenol in petrochemical wastewater considering turbidity factor by backlight cascade photocatalytic reactor. J. Photochem. Photobiol. A Chem. 2017, 348, 161–167. [Google Scholar] [CrossRef]
- Benyahia, F.; Abdulkarim, M.; Embaby, A.; Rao, M. Refinery wastewater treatment: A true technological challenge. In Proceedings of the The Seventh Annual UAE University Research Conference, UAE University, Asharij, United Arab Emirates, 22–24 April 2006. [Google Scholar]
- Ishak, S.; Malakahmad, A.; Isa, M.H. Refinery wastewater biological treatment: A short review. J. Sci. Ind. Res. 2012, 71, 251–256. [Google Scholar]
- Attiogbe, F.; Glover-Amengor, M.; Nyadziehe, K. Correlating biochemical and chemical oxygen demand of effluents–A case study of selected industries in Kumasi, Ghana. West Afr. J. Appl. Ecol. 2007, 11. [Google Scholar] [CrossRef]
- Uzoekwe, S.; Oghosanine, F. The effect of refinery and petrochemical effluent on water quality of Ubeji Creek Warri, Southern Nigeria. Ethiop. J. Environ. Stud. Manag. 2011, 4, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Qin, J.; Zhang, Z.; Li, Q.; Huang, J.; Peng, X.; Qing, L.; Liang, G.; Liang, L.; Huang, Y.; et al. Concentrations and potential health risks of methyl tertiary-butyl ether (MTBE) in air and drinking water from Nanning, South China. Sci. Total Environ. 2016, 541, 1348–1354. [Google Scholar] [CrossRef]
- Wagner, M.; Nicell, J.A. Peroxidase-catalyzed removal of phenols from a petroleum refinery wastewater. Water Sci. Technol. 2001, 43, 253–260. [Google Scholar] [CrossRef]
- Al Hashemi, W.; Maraqa, M.A.; Rao, M.V.; Hossain, M.M. Characterization and removal of phenolic compounds from condensate-oil refinery wastewater. Desalination Water Treat. 2015, 54, 660–671. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, R.; Sharma, R.S.; Mishra, V. Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom. J. Hazard. Mater. 2017, 334, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Ali, H.I.; Taylor, K.E.; Biswas, N.; Bewtra, J.K. Enzyme-catalyzed removal of phenol from refinery wastewater: Feasibility studies. Water Environ. Res. 2001, 73, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-F.; Zeng, G.-M.; Zhong, H.; Yuan, X.-Z.; Fu, H.-Y.; Zhou, M.-F.; Ma, X.-L.; Li, H.; Li, J.-B. Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution. World J. Microbiol. Biotechnol. 2012, 28, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, Z.; Zeng, G.; Liu, X.; Liu, Z.; Chen, M.; Liu, L.; Li, J.; Xie, G. Effect of triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloids Surf. B Biointerfaces 2012, 97, 7–12. [Google Scholar] [CrossRef]
- Shahedi, A.; Darban, A.K.; Taghipour, F.; Jamshidi-Zanjani, A. A review on industrial wastewater treatment via electrocoagulation processes. Curr. Opin. Electrochem. 2020, 22, 154–169. [Google Scholar] [CrossRef]
- Tian, X.; Song, Y.; Shen, Z.; Zhou, Y.; Wang, K.; Jin, X.; Han, Z.; Liu, T. A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment. J. Clean. Prod. 2020, 245, 118692. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Chiong, T.; Lau, S.; Khor, E.; Danquah, M. Enzymatic approach to phenol removal from wastewater using peroxidases. OA Biotechnol. 2014, 10, 3–9. [Google Scholar]
- Aitken, M.D.; Massey, I.J.; Chen, T.; Heck, P.E. Characterization of reaction products from the enzyme catalyzed oxidation of phenolic pollutants. Water Res. 1994, 28, 1879–1889. [Google Scholar] [CrossRef]
- Nawaz, M.S.; Ahsan, M. Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alex. Eng. J. 2014, 53, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Varga, B.; Somogyi, V.; Meiczinger, M.; Kováts, N.; Domokos, E. Enzymatic treatment and subsequent toxicity of organic micropollutants using oxidoreductases-a review. J. Clean. Prod. 2019, 221, 306–322. [Google Scholar] [CrossRef]
- Mukherjee, S.; Basak, B.; Bhunia, B.; Dey, A.; Mondal, B. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater. Rev. Environ. Sci. Bio/Technol. 2013, 12, 61–73. [Google Scholar] [CrossRef]
- Ruggaber Timothy, P.; Talley Jeffrey, W. Enhancing bioremediation with enzymatic processes: A review. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2006, 10, 73–85. [Google Scholar] [CrossRef]
- Chapleur, O.; Madigou, C.; Civade, R.; Rodolphe, Y.; Mazéas, L.; Bouchez, T. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities. Biodegradation 2016, 27, 15–27. [Google Scholar] [CrossRef]
- Kumar, S.; Dangi, A.K.; Shukla, P.; Baishya, D.; Khare, S.K. Thermozymes: Adaptive strategies and tools for their biotechnological applications. Bioresour. Technol. 2019, 278, 372–382. [Google Scholar] [CrossRef]
- Al-Khalid, T.; El-Naas, M.H. Organic contaminants in refinery wastewater: Characterization and novel approaches for biotreatment. In Recent Insights in Petroleum Science and Engineering; Zoveidavianpoor, M., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere 2019, 217, 576–583. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Juang, D.-F.; Yang, L.; Kuo, W.-C.; Wu, Y.-M. Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi. Int. J. Environ. Sci. Technol. 2014, 11, 1661–1668. [Google Scholar] [CrossRef] [Green Version]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Majone, M.; Aulenta, F.; Dionisi, D.; D’Addario, E.N.; Sbardellati, R.; Bolzonella, D.; Beccari, M. High-rate anaerobic treatment of fischer–tropsch wastewater in a packed-bed biofilm reactor. Water Res. 2010, 44, 2745–2752. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ghoshal, A.K. Biodegradation of an actual petroleum wastewater in a packed bed reactor by an immobilized biomass of Bacillus cereus. J. Environ. Chem. Eng. 2017, 5, 1696–1702. [Google Scholar] [CrossRef]
- Jafarinejad, S.; Jiang, S.C. Current technologies and future directions for treating petroleum refineries and Petrochemical Plants (PRPP) wastewaters. J. Environ. Chem. Eng. 2019, 7, 103326. [Google Scholar] [CrossRef]
- Vendramel, S.; Bassin, J.P.; Dezotti, M.; Sant’Anna, G.L. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor. Environ. Technol. 2015, 36, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.; Joshi, R.; Srivastava, V.K.; Ngo, H.H.; Guo, W. Treatment of wastewater from petroleum industry: Current practices and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 27172–27180. [Google Scholar] [CrossRef]
- Ma, F.; Guo, J.; Zhao, L.; Chang, C.; Cui, D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour. Technol. 2009, 100, 597–602. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Zuhair, S.; Alhaija, M.A. Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J. Hazard. Mater. 2010, 173, 750–757. [Google Scholar] [CrossRef]
- Aljuboury, D.A.D.A.; Palaniandy, P.; Aziz, H.B.A.; Feroz, S. Treatment of petroleum wastewater using combination of solar photo-two catalyst TiO2 and photo-fenton process. J. Environ. Chem. Eng. 2015, 3, 1117–1124. [Google Scholar] [CrossRef]
- Saber, A.; Hasheminejad, H.; Taebi, A.; Ghaffari, G. Optimization of fenton-based treatment of petroleum refinery Wastewater with scrap iron using response surface methodology. Appl. Water Sci. 2014, 4, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Carvajal, A.; Akmirza, I.; Navia, D.; Pérez, R.; Muñoz, R.; Lebrero, R. Anoxic denitrification of BTEX: Biodegradation kinetics and pollutant interactions. J. Environ. Manag. 2018, 214, 125–136. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Kakar, D.; Mehrvar, M. Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes: Towards a cleaner production in the petroleum refining and petrochemical industries. J. Clean. Prod. 2018, 186, 609–617. [Google Scholar] [CrossRef]
- Pradeep, N.; Anupama, S.; Navya, K.; Shalini, H.; Idris, M.; Hampannavar, U. Biological removal of phenol from wastewaters: A mini review. Appl. Water Sci. 2015, 5, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Xiu, M.; Pan, L.; Jin, Q. Bioaccumulation and oxidative damage in juvenile scallop chlamys farreri exposed to benzo[a]pyrene, benzo[b]fluoranthene and chrysene. Ecotoxicol. Environ. Saf. 2014, 107, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, F. Polycyclic aromatic hydrocarbons in the yellow river estuary: Levels, sources and toxic potency assessment. Mar. Pollut. Bull. 2017, 116, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Morales, R.; Rodríguez-Delgado, M.; Gomez-Mariscal, K.; Orona-Navar, C.; Hernandez-Luna, C.; Torres, E.; Parra, R.; Cárdenas-Chávez, D.; Mahlknecht, J.; Ornelas-Soto, N. Biotransformation of endocrine-disrupting compounds in groundwater: Bisphenol A, nonylphenol, ethynylestradiol and triclosan by a laccase cocktail from pycnoporus sanguineus CS43. Water Air Soil Pollut. 2015, 226, 251. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Taya, K.; Nagaoka, K.; Yoshida, M.; Watanabe, G. 4-Nitrophenol (PNP) inhibits the expression of estrogen receptor β and disrupts steroidogenesis during the ovarian development in female rats. Environ. Pollut. 2017, 229, 1–9. [Google Scholar] [CrossRef]
- Ge, T.; Han, J.; Qi, Y.; Gu, X.; Ma, L.; Zhang, C.; Naeem, S.; Huang, D. The toxic effects of chlorophenols and associated mechanisms in fish. Aquat. Toxicol. 2017, 184, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, E.O.; Odjadjare, E.E.; Chigor, V.N.; Igbinosa, I.H.; Emoghene, A.O.; Ekhaise, F.O.; Igiehon, N.O.; Idemudia, O.G. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 460215. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Kitamura, S.-I.; Nakayama, K.; Matsuoka, S.; Sakaguchi, H. Effects of heavy oil in the developing spotted halibut, Verasper variegatus. Mar. Pollut. Bull. 2008, 57, 524–528. [Google Scholar] [CrossRef]
- Chang, M.-C.; Wang, T.-M.; Yeung, S.-Y.; Jeng, P.-Y.; Liao, C.-H.; Lin, T.-Y.; Lin, C.-C.; Lin, B.-R.; Jeng, J.-H. Antiplatelet effect by P-Cresol, a uremic and environmental toxicant, is related to inhibition of reactive oxygen species, ERK/P38 signaling and thromboxane A2 production. Atherosclerosis 2011, 219, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Michałowicz, J.; Włuka, A.; Cyrkler, M.; Maćczak, A.; Sicińska, P.; Mokra, K. Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (In Vitro study). Environ. Toxicol. Pharmacol. 2018, 61, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendi, A.; Qari, H.; Al-Badry Basahi, J.M.; Godon, J.J.; Dhavamani, J. Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. Int. Biodeterior. Biodegrad. 2017, 121, 44–54. [Google Scholar] [CrossRef]
- Dierkes, G.; Weiss, T.; Modick, H.; Käfferlein, H.U.; Brüning, T.; Koch, H.M. N-Acetyl-4-Aminophenol (paracetamol), N-Acetyl-2-Aminophenol and Acetanilide in Urine Samples from the General Population, Individuals Exposed to Aniline and paracetamol users. Int. J. Hyg. Environ. Health 2014, 217, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Renuka, S.; Poopal, R.K.; Ramesh, M.; Clara-Bindu, F. Responses of labeo rohita fingerlings to N-Acetyl-p-Aminophenol toxicity. Ecotoxicol. Environ. Saf. 2018, 157, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Weatherly, L.M.; Shim, J.; Hashmi, H.N.; Kennedy, R.H.; Hess, S.T.; Gosse, J.A. antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes. J. Appl. Toxicol. 2016, 36, 777–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jambor, T.; Lukáčová, J.; Tvrdá, E.; Forgács, Z.; Lukáč, N. In Vitro effect of 4-Nonylphenol on camp stimulated androstenedione production and viability of mice leydig cells. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Hanafy, M.; Nabih, H.I. Treatment of oily wastewater using dissolved air flotation technique. Energy Sources Part A Recover. Util. Environ. Eff. 2007, 29, 143–159. [Google Scholar] [CrossRef]
- Aljuboury, D.; Palaniandy, P.; Abdul Aziz, H.; Feroz, S. Treatment of petroleum wastewater by conventional and new technologies-a review. Glob. NEST J. 2017, 19, 439–452. [Google Scholar]
- Khatri, I.; Singh, S.; Garg, A. Performance of electro-fenton process for phenol removal using iron electrodes and activated carbon. J. Environ. Chem. Eng. 2018, 6, 7368–7376. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kazemi, H.; Mirbagheri, S.A.; Rockaway, T.D. An optimized biological approach for treatment of petroleum refinery wastewater. J. Environ. Chem. Eng. 2016, 4, 3401–3408. [Google Scholar] [CrossRef]
- Liang, J.; Mai, W.; Tang, J.; Wei, Y. Highly effective treatment of petrochemical wastewater by a super-sized industrial scale plant with expanded granular sludge bed bioreactor and aerobic activated sludge. Chem. Eng. J. 2019, 360, 15–23. [Google Scholar] [CrossRef]
- Kujawski, W.; Warszawski, A.; Ratajczak, W.; Porębski, T.; Capała, W.; Ostrowska, I. Removal of phenol from wastewater by different separation techniques. Desalination 2004, 163, 287–296. [Google Scholar] [CrossRef]
- Levchuk, I.; Bhatnagar, A.; Sillanpää, M. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Sci. Total. Environ. 2014, 476–477, 415–433. [Google Scholar] [CrossRef]
- Poirier, S.; Bize, A.; Bureau, C.; Bouchez, T.; Chapleur, O. Community shifts within anaerobic digestion microbiota facing phenol inhibition: Towards early warning microbial indicators? Water Res. 2016, 100, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Jorfi, S.; Kujlu, R.; Ghafari, S.; Soltani, R.D.C.; Haghighifard, N.J. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater. J. Environ. Manag. 2017, 191, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, A.; Surampalli, R.Y. Comparative performance of UASB and anaerobic hybrid reactors for the treatment of complex phenolic wastewater. Bioresour. Technol. 2012, 123, 352–359. [Google Scholar] [CrossRef]
- Guo, X.J.; Lu, Z.Y.; Wang, P.; Li, H.; Huang, Z.Z.; Lin, K.F.; Liu, Y.D. Diversity and degradation mechanism of an anaerobic bacterial community treating phenolic wastewater with sulfate as an electron acceptor. Environ. Sci. Pollut. Res. 2015, 22, 16121–16132. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ye, Z.; Tong, K.; Zhang, Y. Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochem. Eng. J. 2013, 72, 48–53. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E.; Di Fabio, S.; Frison, N.; Cecchi, F.; Fatone, F. Treatment of petrochemical wastewater by employing membrane bioreactors: A case study of effluents discharged to a sensitive water recipient. Desalin. Water Treat. 2015, 53, 3397–3406. [Google Scholar] [CrossRef]
- Yang, Q.; Xiong, P.; Ding, P.; Chu, L.; Wang, J. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Bioresour. Technol. 2015, 196, 169–175. [Google Scholar] [CrossRef]
- Li, J.; Sun, S.; Yan, P.; Fang, L.; Yu, Y.; Xiang, Y.; Wang, D.; Gong, Y.; Gong, Y.; Zhang, Z. Microbial communities in the functional areas of a biofilm reactor with anaerobic–aerobic process for oily wastewater treatment. Bioresour. Technol. 2017, 238, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Sarmin, S.; Ethiraj, B.; Islam, M.A.; Ideris, A.; Yee, C.S.; Khan, M.R. Bio-electrochemical power generation in petrochemical wastewater fed microbial fuel cell. Sci. Total Environ. 2019, 695, 133820. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. In Phenolic Compounds-Natural Sources, Importance and Applications; Soto-Hernandez, M., Palma-Tenango, M., del Rosario Garcia-Mateos, M., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Shariati, S.R.P.; Bonakdarpour, B.; Zare, N.; Ashtiani, F.Z. The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater. Bioresour. Technol. 2011, 102, 7692–7699. [Google Scholar] [CrossRef]
- Ahmadi, M.; Zoroufchi Benis, K.; Faraji, M.; Shakerkhatibi, M.; Aliashrafi, A. Process performance and multi-kinetic Modeling of a membrane bioreactor treating actual oil refinery wastewater. J. Water Process. Eng. 2019, 28, 115–122. [Google Scholar] [CrossRef]
- Moslehyani, A.; Ismail, A.F.; Othman, M.H.D.; Matsuura, T. Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater. Desalination 2015, 363, 99–111. [Google Scholar] [CrossRef]
- Chowdhury, P.; Nag, S.; Ray, A.K. Degradation of phenolic compounds through UV and visible-light-driven photocatalysis: Technical and economic aspects. In Phenolic Compounds-Natural Sources, Importance and Applications; Soto-Hernandez, M., Palma-Tenango, M., del Rosario Garcia-Mateos, M., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Pajoumshariati, S.; Zare, N.; Bonakdarpour, B. Considering membrane sequencing batch reactors for the biological treatment of petroleum refinery wastewaters. J. Membr. Sci. 2017, 523, 542–550. [Google Scholar] [CrossRef]
- Jami, M.S.; Husain, I.A.; Kabashi, N.A.; Abdullah, N. Multiple inputs artificial neural network model for the prediction of wastewater treatment plant performance. Aust. J. Basic Appl. Sci. 2012, 6, 62–69. [Google Scholar]
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.; Kargari, A.; Sanaeepur, H.; Abbassian, K.; Najafi, A.; Mofarrah, E. Phenol removal from industrial wastewaters: A short review. Desalination Water Treat. 2015, 53, 2215–2234. [Google Scholar] [CrossRef]
- Meng, S.; Bi, Y.; Yan, T.; Zhang, Y.; Wu, T.; Shao, Y.; Wei, D.; Du, B. Room-temperature fabrication of bismuth Oxybromide/Oxyiodide photocatalyst and efficient degradation of phenolic pollutants under visible light. J. Hazard. Mater. 2018, 358, 20–32. [Google Scholar] [CrossRef]
- Mohan, B.S.; Ravi, K.; Anjaneyulu, R.B.; Sree, G.S.; Basavaiah, K. Fe2O3/RGO nanocomposite photocatalyst: Effective degradation of 4-Nitrophenol. Phys. B Condens. Matter 2019, 553, 190–194. [Google Scholar] [CrossRef]
- Keramati, M.; Ayati, B. Petroleum wastewater treatment using a combination of electrocoagulation and photocatalytic process with immobilized ZnO nanoparticles on concrete surface. Process. Saf. Environ. Prot. 2019, 126, 356–365. [Google Scholar] [CrossRef]
- Shokri, A.; Mahanpoor, K.; Soodbar, D. Evaluation of a modified TiO2 (GO–B–TiO2) photo catalyst for degradation of 4-Nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design. J. Environ. Chem. Eng. 2016, 4, 585–598. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, X.; Zhou, J.; Li, R.; Yang, S.; Wang, B.; Deng, R. Treatment of oily sludge by two-stage wet air oxidation. J. Energy Inst. 2019, 92, 1451–1457. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, M.; Xu, Z.; Zhang, D.; Li, L. Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst. Sep. Purif. Technol. 2019, 211, 269–278. [Google Scholar] [CrossRef]
- Chen, C.; Yu, J.; Yoza, B.A.; Li, Q.X.; Wang, G. A novel “wastes-treat-wastes” technology: Role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J. Environ. Manag. 2015, 152, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Mohanakrishna, G.; Abu-Reesh, I.M.; Al-Raoush, R.I. Biological anodic oxidation and cathodic reduction reactions for improved bioelectrochemical treatment of petroleum refinery wastewater. J. Clean. Prod. 2018, 190, 44–52. [Google Scholar] [CrossRef]
- Zazou, H.; Oturan, N.; Sönmez Çelebi, M.; Hamdani, M.; Oturan, M.A. Cold incineration of 1,2-Dichlorobenzene in aqueous solution by electrochemical advanced oxidation using DSA/carbon felt, Pt/carbon felt and BDD/carbon felt cells. Sep. Purif. Technol. 2019, 208, 184–193. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Amin, N.K.; El-Ashtoukhy, E.-S.Z. Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater. 2009, 163, 711–716. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, X.; Ma, Q.; Wang, B. Electrochemical catalytic treatment of phenol wastewater. J. Hazard. Mater. 2009, 165, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Karigar, C.S.; Rao, S.S. Role of microbial enzymes in the bioremediation of pollutants: A review. Enzym. Res. 2011, 2011, 805187. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Dangi, A.K.; Shukla, P. Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manag. 2018, 210, 10–22. [Google Scholar] [CrossRef]
- Stadlmair, L.F.; Letzel, T.; Drewes, J.E.; Grassmann, J. Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection. Chemosphere 2018, 205, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Demarche, P.; Junghanns, C.; Nair, R.R.; Agathos, S.N. Harnessing the power of enzymes for environmental stewardship. Biotechnol. Adv. 2012, 30, 933–953. [Google Scholar] [CrossRef]
- Valero, E.; González-Sánchez, M.-I.; Pérez-Prior, M.-T. Removal of organic pollutants from industrial wastewater by treatment with oxidoreductase enzymes. In Environment, Energy and Climate Change I: Environmental Chemistry of Pollutants and Wastes; Jiménez, E., Cabañas, B., Lefebvre, G., Eds.; Springer: New York, NY, USA, 2015; pp. 317–339. ISBN 978-3-319-12907-5. [Google Scholar]
- Carlsson, G.H.; Nicholls, P.; Svistunenko, D.; Berglund, G.I.; Hajdu, J. Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. Biochemistry 2005, 44, 635–642. [Google Scholar] [CrossRef]
- Abdollahi, K.; Ince, C.; Condict, L.; Hung, A.; Kasapis, S. Combined spectroscopic and molecular docking study on the pH dependence of molecular interactions between β-Lactoglobulin and ferulic acid. Food Hydrocoll. 2020, 101, 105461. [Google Scholar] [CrossRef]
- Sullivan, M.L. Beyond Brown: Polyphenol oxidases as enzymes of plant specialized metabolism. Front. Plant Sci. 2015, 5, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretzler, M.; Bijelic, A.; Rompel, A. Heterologous expression and characterization of functional mushroom tyrosinase (Ab PPO4). Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Asadgol, Z.; Forootanfar, H.; Rezaei, S.; Mahvi, A.H.; Faramarzi, M.A. Removal of phenol and bisphenol-A catalyzed by laccase in aqueous Solution. J. Environ. Health Sci. Eng. 2014, 12, 93. [Google Scholar] [CrossRef]
- Hakulinen, N.; Kiiskinen, L.-L.; Kruus, K.; Saloheimo, M.; Paananen, A.; Koivula, A.; Rouvinen, J. Crystal structure of a laccase from melanocarpus albomyces with an intact trinuclear copper site. Nat. Struct. Biol. 2002, 9, 601–605. [Google Scholar] [CrossRef]
- Xu, R.; Si, Y.; Wu, X.; Li, F.; Zhang, B. Triclosan removal by laccase immobilized on mesoporous nanofibers: Strong adsorption and efficient degradation. Chem. Eng. J. 2014, 255, 63–70. [Google Scholar] [CrossRef]
- Ricquebourg, S.L.; Robert-Da Silva, C.M.-F.; Rouch, C.C.; Cadet, F.R. Theoretical support for a conformational change of polyphenol oxidase induced by metabisulfite. J. Agric. Food Chem. 1996, 44, 3457–3460. [Google Scholar] [CrossRef]
- Wang, S.; Fang, H.; Yi, X.; Xu, Z.; Xie, X.; Tang, Q.; Ou, M.; Xu, X. Oxidative removal of phenol by HRP-immobilized beads and its environmental toxicology assessment. Ecotoxicol. Environ. Saf. 2016, 130, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Escalona, I.; de Grooth, J.; Font, J.; Nijmeijer, K. Removal of BPA by enzyme polymerization using NF membranes. J. Membr. Sci. 2014, 468, 192–201. [Google Scholar] [CrossRef]
- Ely, C.; Magalhães, M.D.L.B.; Soares, C.H.L. Skoronski everton optimization of phenol removal from biorefinery effluent using horseradish peroxidase. J. Environ. Eng. 2017, 143, 04017075. [Google Scholar] [CrossRef]
- Donadelli, J.A.; García Einschlag, F.S.; Laurenti, E.; Magnacca, G.; Carlos, L. Soybean peroxidase immobilized onto silica-coated superparamagnetic iron oxide nanoparticles: Effect of silica layer on the enzymatic activity. Colloids Surf. B: Biointerfaces 2018, 161, 654–661. [Google Scholar] [CrossRef]
- Li, J.; Peng, J.; Zhang, Y.; Ji, Y.; Shi, H.; Mao, L.; Gao, S. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification. J. Hazard. Mater. 2016, 310, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Kurnik, K.; Treder, K.; Twarużek, M.; Grajewski, J.; Tretyn, A.; Tyburski, J. Potato pulp as the peroxidase source for 2,4-dichlorophenol removal. Waste Biomass Valoriz. 2018, 9, 1061–1071. [Google Scholar] [CrossRef] [Green Version]
- Ai, J.; Zhang, W.; Liao, G.; Xia, H.; Wang, D. Immobilization of horseradish peroxidase enzymes on hydrous-titanium and application for phenol removal. RSC Adv. 2016, 6, 38117–38123. [Google Scholar] [CrossRef]
- Abdollahi, K.; Yazdani, F.; Panahi, R. Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: Synthesis and characterization of the recyclable nanobiocatalyst. Int. J. Biol. Macromol. 2017, 94, 396–405. [Google Scholar] [CrossRef]
- Beck, S.; Berry, E.; Duke, S.; Milliken, A.; Patterson, H.; Prewett, D.L.; Rae, T.C.; Sridhar, V.; Wendland, N.; Gregory, B.W.; et al. Characterization of trametes versicolor laccase-catalyzed degradation of estrogenic pollutants: Substrate limitation and product identification. Int. Biodeterior. Biodegrad. 2018, 127, 146–159. [Google Scholar] [CrossRef]
- Steevensz, A.; Al-Ansari, M.M.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Comparison of soybean peroxidase with laccase in the removal of phenol from synthetic and refinery wastewater samples. J. Chem. Technol. Biotechnol. 2009, 84, 761–769. [Google Scholar] [CrossRef]
- Daâssi, D.; Prieto, A.; Zouari-Mechichi, H.; Martínez, M.J.; Nasri, M.; Mechichi, T. Degradation of bisphenol A by different fungal laccases and identification of its degradation products. Int. Biodeterior. Biodegrad. 2016, 110, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Gaitan, I.J.; Medina, S.C.; González, J.C.; Rodríguez, A.; Espejo, Á.J.; Osma, J.F.; Sarria, V.; Alméciga-Díaz, C.J.; Sánchez, O.F. Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour. Technol. 2011, 102, 3632–3635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Xu, Z.; Chen, H.; Yang, Y. Degradation of chlorophenols catalyzed by laccase. Int. Biodeterior. Biodegrad. 2008, 61, 351–356. [Google Scholar] [CrossRef]
- Chakroun, H.; Bouaziz, M.; Dhouib, A.; Sayadi, S. Enzymatic oxidative transformation of phenols by Trametes trogii Laccases. Environ. Technol. 2012, 33, 1977–1985. [Google Scholar] [CrossRef] [PubMed]
- Tušek, A.J.; Tišma, M.; Bregović, V.; Ptičar, A.; Kurtanjek, Ž.; Zelić, B. Enhancement of phenolic compounds oxidation using laccase from trametes versicolor in a microreactor. Biotechnol. Bioprocess Eng. 2013, 18, 686–696. [Google Scholar] [CrossRef]
- Abdollahi, K.; Yazdani, F.; Panahi, R. Data in support of covalent attachment of tyrosinase onto cyanuric chloride Crosslinked magnetic nanoparticles. Data Brief 2016, 9, 1098–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Liu, Y.; Chen, S.; Le, X.; Zhou, X.; Zhao, Z.; Ou, Y.; Yang, J. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol a removal. Int. J. Biol. Macromol. 2016, 84, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Songulashvili, G.; Jimenéz-Tobón, G.A.; Jaspers, C.; Penninckx, M.J. Immobilized laccase of cerrena unicolor for elimination of endocrine disruptor micropollutants. Fungal Biol. 2012, 116, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, J.; Głodek, M.; Koter, I.; Ośmiałowski, B.; Knozowska, K.; Al-Gharabli, S.; Dumée, L.F.; Kujawski, W. Molecular decoration of ceramic supports for highly effective enzyme immobilization—material approach. Materials 2021, 14, 201. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Hai, F.I.; Dosseto, A.; Richardson, C.; Price, W.E.; Nghiem, L.D. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresour. Technol. 2016, 210, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdollahi, K.; Yazdani, F.; Panahi, R.; Mokhtarani, B. Biotransformation of phenol in synthetic wastewater using the functionalized magnetic nano-biocatalyst particles carrying tyrosinase. 3 Biotech 2018, 8, 419. [Google Scholar] [CrossRef]
- Gassara, F.; Brar, S.K.; Verma, M.; Tyagi, R.D. Bisphenol a degradation in water by ligninolytic enzymes. Chemosphere 2013, 92, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Puig, R.; Junghanns, C.; Demarche, P.; Moreira, M.T.; Feijoo, G.; Lema, J.M.; Agathos, S.N. Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: Production, partial characterization and application for the elimination of endocrine disruptors. Bioresour. Technol. 2011, 102, 6593–6599. [Google Scholar] [CrossRef]
- Abdollahi, K.; Yazdani, F.; Panahi, R. Fabrication of the robust and recyclable tyrosinase-harboring biocatalyst using ethylenediamine functionalized superparamagnetic nanoparticles: Nanocarrier characterization and immobilized enzyme properties. J. Biol. Inorg. Chem. 2019, 24, 943–959. [Google Scholar] [CrossRef]
- Xu, R.; Chi, C.; Li, F.; Zhang, B. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. Bioresour. Technol. 2013, 149, 111–116. [Google Scholar] [CrossRef]
- Menale, C.; Nicolucci, C.; Catapane, M.; Rossi, S.; Bencivenga, U.; Mita, D.G.; Diano, N. Optimization of operational conditions for biodegradation of chlorophenols by laccase-polyacrilonitrile beads system. J. Mol. Catal. B Enzym. 2012, 78, 38–44. [Google Scholar] [CrossRef]
- Nicolucci, C.; Rossi, S.; Menale, C.; Godjevargova, T.; Ivanov, Y.; Bianco, M.; Mita, L.; Bencivenga, U.; Mita, D.G.; Diano, N. Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Biodegradation 2011, 22, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Z.; Chen, H.; Zong, Y. Removal of 2,4-Dichlorophenol by chitosan-immobilized laccase from coriolus versicolor. Biochem. Eng. J. 2009, 45, 54–59. [Google Scholar] [CrossRef]
- Dahili, L.A.; Kelemen-Horváth, I.; Feczkó, T. 2,4-Dichlorophenol removal by purified horseradish peroxidase enzyme and crude extract from horseradish immobilized to nano spray dried ethyl cellulose particles. Process. Biochem. 2015, 50, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
- Chang, Q.; Tang, H. Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2, 4-Dichlorophenol. Molecules 2014, 19, 15768–15782. [Google Scholar] [CrossRef]
- Ji, C.; Nguyen, L.N.; Hou, J.; Hai, F.I.; Chen, V. Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep. Purif. Technol. 2017, 178, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Aptitude of oxidative enzymes for treatment of wastewater pollutants: A laccase perspective. Molecules 2019, 24, 2064. [Google Scholar] [CrossRef] [Green Version]
- Chiong, T.; Lau, S.; Khor, E.; Danquah, M. Peroxidase extraction from jicama skin peels for phenol removal. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 36, p. 012048. [Google Scholar]
- Kameda, E.; Langone, M.; Coelho, M. Tyrosinase extract from agaricus bisporus mushroom and its in natura tissue for specific phenol removal. Environ. Technol. 2006, 27, 1209–1215. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Akbulut, A.; Arica, M.Y. Immobilization of tyrosinase on modified diatom biosilica: Enzymatic removal of phenolic compounds from aqueous solution. J. Hazard. Mater. 2013, 244, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xu, Z.; Duan, Y.; Zhu, Y.; Ou, M.; Xu, X. Immobilization of tyrosinase on polyacrylonitrile beads: Biodegradation of phenol from aqueous solution and the relevant cytotoxicity assessment. RSC Adv. 2017, 7, 28114–28123. [Google Scholar] [CrossRef] [Green Version]
- Girelli, A.M.; Mattei, E.; Messina, A. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography. Anal. Chim. Acta 2006, 580, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Takahashi, A.; Kashiwada, A.; Yamada, K. Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Environ. Technol. 2016, 37, 1733–1744. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Q.; Wang, Y.; Zhang, Y.; Zhang, B.; Zhang, H. Immobilization of laccase on chitosan–halloysite hybrid porous microspheres for phenols removal. Desalin. Water Treat. 2015, 55, 1293–1301. [Google Scholar] [CrossRef]
- Niladevi, K.N.; Prema, P. Immobilization of laccase from streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J. Microbiol. Biotechnol. 2008, 24, 1215–1222. [Google Scholar] [CrossRef]
- Wang, S.; Fang, H.; Wen, Y.; Cai, M.; Liu, W.; He, S.; Xu, X. Applications of HRP-immobilized catalytic beads to the removal of 2,4-Dichlorophenol from wastewater. RSC Adv. 2015, 5, 57286–57292. [Google Scholar] [CrossRef]
- Kurnik, K.; Treder, K.; Skorupa-Kłaput, M.; Tretyn, A.; Tyburski, J. Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water Air Soil Pollut. 2015, 226, 254. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Qin, X.; Xia, L. Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem. Eng. J. 2017, 119, 92–100. [Google Scholar] [CrossRef]
- Wu, Y.; Teng, Y.; Li, Z.; Liao, X.; Luo, Y. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol. Biochem. 2008, 40, 789–796. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Iqbal, M.; Hu, H.; Zhang, X. Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int. J. Biol. Macromol. 2016, 89, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Na, S.-Y.; Lee, Y. Elimination of trace organic contaminants during enhanced wastewater treatment with horseradish peroxidase/hydrogen peroxide (HRP/H2O2) catalytic process. Catal. Today 2017, 282, 86–94. [Google Scholar] [CrossRef]
- Edwards, W.; Bownes, R.; Leukes, W.D.; Jacobs, E.P.; Sanderson, R.; Rose, P.D.; Burton, S.G. A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents. Enzym. Microb. Technol. 1999, 24, 209–217. [Google Scholar] [CrossRef]
- Le, T.T.; Murugesan, K.; Lee, C.-S.; Vu, C.H.; Chang, Y.-S.; Jeon, J.-R. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresour. Technol. 2016, 216, 203–210. [Google Scholar] [CrossRef]
- Dezott, M.; Innocentini-Mei, L.H.; Durán, N. Silica Immobilized enzyme catalyzed removal of chlorolignins from eucalyptus kraft effluent. J. Biotechnol. 1995, 43, 161–167. [Google Scholar] [CrossRef]
- Alneyadi, A.H.; Ashraf, S.S. Differential enzymatic degradation of thiazole pollutants by two different peroxidases–a comparative study. Chem. Eng. J. 2016, 303, 529–538. [Google Scholar] [CrossRef]
- Steevensz, A.; Madur, S.; Feng, W.; Taylor, K.E.; Bewtra, J.K.; Biswas, N. Crude soybean hull peroxidase treatment of phenol in synthetic and real wastewater: Enzyme economy enhanced by Triton X-100. Enzym. Microb. Technol. 2014, 55, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Spina, F.; Cordero, C.; Schilirò, T.; Sgorbini, B.; Pignata, C.; Gilli, G.; Bicchi, C.; Varese, G.C. Removal of micropollutants by fungal laccases in model solution and municipal wastewater: Evaluation of estrogenic activity and ecotoxicity. J. Clean. Prod. 2015, 100, 185–194. [Google Scholar] [CrossRef]
- Papamichael, E.M.; Stamatis, H.; Stergiou, P.-Y.; Foukis, A.; Gkini, O.A. Enzyme kinetics and modeling of enzymatic systems. In Advances in Enzyme Technology; Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 71–104. ISBN 978-0-444-64114-4. [Google Scholar]
- Talens-Perales, D.; Marín-Navarro, J.; Polaina, J. Enzymes: Functions and characteristics. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 532–538. ISBN 978-0-12-384953-3. [Google Scholar]
- Moo-Young, M. Comprehensive Biotechnology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Sun, W.; Wendt, M.; Klebe, G.; Röhm, K.-H. On the interpretation of tyrosinase inhibition kinetics. J. Enzym. Inhib. Med. Chem. 2014, 29, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, P.T.; Li, L.O. Kinetics of phenol oxidation by peroxidase. Appl. Biochem. Biotechnol. 1996, 60, 203–215. [Google Scholar] [CrossRef]
- Dahili, L.A.; Nagy, E.; Feczkó, T. 2, 4-Dichlorophenol enzymatic removal and its kinetic study using horseradish peroxidase crosslinked to nano spray-dried poly (lactic-co-glycolic acid) fine particles. J. Microbiol. Biotechnol. 2017, 27, 768–774. [Google Scholar] [CrossRef]
- Pinto, P.A.; Fraga, I.; Bezerra, R.M.F.; Dias, A.A. Phenolic and non-phenolic substrates oxidation by laccase at variable Oxygen concentrations: Selection of bisubstrate kinetic models from polarographic data. Biochem. Eng. J. 2020, 153, 107423. [Google Scholar] [CrossRef]
- Corvini, P.F.; Shahgaldian, P. LANCE: Laccase-nanoparticle conjugates for the elimination of micropollutants (endocrine disrupting chemicals) from wastewater in bioreactors. Rev. Environ. Sci. Bio/Technol. 2010, 9, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Lambertz, C.; Ece, S.; Fischer, R.; Commandeur, U. Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineered 2016, 7, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Li, W.; Xiao, F.; Wang, D.; Wang, Z. Influence of NOM and SS on the BPA removal via peroxidase catalyzed reactions: Kinetics and pathways. Sep. Purif. Technol. 2017, 173, 244–249. [Google Scholar] [CrossRef]
- Ferasat, Z.; Panahi, R.; Mokhtarani, B. Natural polymer matrix as safe flocculant to remove turbidity from kaolin suspension: Performance and governing mechanism. J. Environ. Manag. 2020, 255, 109939. [Google Scholar] [CrossRef] [PubMed]
- Farasat, Z.; Panahi, R.; Mokhtarani, B. Timecourse study of coagulation-flocculation process using aluminum sulfate. Water Conserv. Manag. 2017, 1, 7–9. [Google Scholar] [CrossRef]
- Gołub, A.; Piekutin, J. Removal of inorganic impurities from wastewater after production of soda ash on selected sorbents. Sci. Rep. 2020, 10, 4624. [Google Scholar] [CrossRef] [Green Version]
- Soltani Firooz, N.; Panahi, R.; Mokhtarani, B.; Yazdani, F. Direct introduction of amine groups into cellulosic paper for covalent immobilization of tyrosinase: Support characterization and enzyme properties. Cellulose 2017, 24, 1407–1416. [Google Scholar] [CrossRef]
Parameter | Typical Value Range(s) | Environmental Standards * | References |
---|---|---|---|
BOD (mg/L) | 718 90–685 3378 8000 | 30 | [10,37] |
TSS (mg/L) | 28.9–950 2580 | 30 | [31,37,38] |
Conductivity (ms/cm) | 5.2–6.8 | - | [31] |
COD (mg/L) | 3600–5300 300–800 550–1600 7896 | 125 | [10,31,37] |
Total phenol (mg/L) | 10–233 | 0.35 | [10,31,39] |
pH | 6.5–10.8 | 6–9 | [37,38,40] |
Heavy metals (mg/L) | 0.01–100 | - | [10,37] |
Sulfide (mg/L) | 142 1222 15–30 | 0.5 | [39,41] |
Temperature | 23.9 °C ** | <3 °C at edge of mixing | [15,37] |
Benzene (mg/L) | - | 0.1 | [39] |
Mercury (mg/L) | - | ~0.03 | [37] |
SO4 (mg/L) | 14.5–16 | - | [31] |
o-Cresol (mg/L) | 14–16.5 | - | [31] |
Phenol (mg/L) | 11–14 | - | [31] |
Total dissolved solid (mg/L) | 3800–6200 1200–1500 | 1500–2000 | [31,42] |
n-Hexane (mg/L) | 1.8–1.85 | - | [31] |
Grease and oil (mg/L) | 12.7–3000 | 10 | [10,39,43] |
Total organic carbon (mg/L) | 220–265 119 398 | 50–75 | [42,43] |
Ammonia (mg/L) | 4.1–33.4 69 | 15 | [40] |
2,5 and 2,4- Dichlorophenol (mg/L) | 28–32 | - | [31] |
Wastewater Pollutants | Adverse Health Effects | References |
---|---|---|
Bisphenols |
| [49] |
Toluene |
| [44] |
Nitrophenols |
| [50] |
Benzene |
| [44] |
Polycyclic aromatic hydrocarbons |
| [47] |
Chlorophenols |
| [51,52] |
Heavy oil |
| [53] |
Cresols |
| [54] |
Phenols |
| [55,56] |
Xylene |
| [44] |
Aminophenols |
| [57,58] |
Ethylbenzene |
| [44] |
Triclosan |
| [59] |
Alkylphenols |
| [60] |
Treatment Techniques | Targeted Pollutants | Wastewater Origin | Treatment Time (h) | Major Drawbacks | References |
---|---|---|---|---|---|
Activated sludge process | COD | Petroleum refinery | 4.19 | Aerobic or Anaerobic bioremediation:
| [29,68] |
Activated sludge process | COD | Petrochemical plant | 24–96 | [69] | |
Upflow anaerobic sludge blanket | Toxic phenolics | Synthetic | 7.92–18 | [70] | |
Anaerobic expanded granular sludge bed bioreactor | COD and petrochemical pollutants | Petrochemical plant | 62.8 | [65] | |
Anaerobic packed-bed biofilm reactor | COD | Synthetic from a Fisher-Tropsch process | 33–100 | [35] | |
Upflow anaerobic sludge blanket | Phenols | Synthetic | 48–72 | [71] | |
Biological aerated filter and upflow anaerobic sludge blanket | Ammonium and COD | Heavy oil | 12 | [72] | |
Membrane bioreactor | Heavy metals | Petrochemical plant | >24 | [73] | |
Microaerobic hydrolysis-acidification-anoxic-oxic processes | COD and ammonium | Petrochemical plant | 20 | [74] | |
Anaerobic-aerobic biofilm reactor | Total nitrogen and COD | Petroleum refinery | 36–50 | [75] | |
Microbial fuel cell | COD | Petrochemical plant | 264 | [76] | |
Immersed membrane process | Grease and oil | Petroleum refinery | - | Membrane-based separation techniques:
| [77] |
Membrane sequencing batch reactors | Hydrocarbon pollutants | Petroleum refinery- synthetic effluent | 8–24 | [78] | |
Membrane sequencing batch reactors | COD | Petroleum refinery | 24 | [79] | |
Polyvinylidene fluoride (PVDF)/ multi-walled carbon nanotube (MWCNT) nanocomposite membranes | Grease and oil—organic pollutants | Petroleum refinery | 6 | [80,81] | |
Membrane sequencing batch reactors | Phenol and COD | Petroleum refinery | 8 | [82] | |
Polyaluminium chloride for coagulation treatment | COD, TOC and Turbidity | Petrochemical plant | 0.5 | Coagulants treatment:
| [83] |
Adsorption by organoclay | Organic substances | Petroleum refinery | - | Adsorption:
| [84] |
Ozone-Photocatalytic oxidation (O3/UV/TiO2) | Phenol, Sulfide, ammonia and COD | Petroleum refinery | 1 | Photo-oxidation:
| [81,85] |
Bismuth oxybromide/oxyiodide photocatalysts | Phenolic pollutants and TOC | Synthetic | 1.33 | [86] | |
Phenol-formaldehyde resin-coupled TiO2 photocatalysts | Phenol | Synthetic | 7.5 | [21] | |
Fe2O3/RGO nanocomposite photocatalysts | 4-Nitrophenol | Synthetic | 0.83 | [87] | |
TiO2@graphene nanocomposites | Phenol | Synthetic | 60 | [21] | |
ZnO nanoparticles—photocatalysis treatment | COD | Petroleum refinery-oily effluent | 3 | [88] | |
Boron-graphene oxide-TiO2 photocatalysts | 4-Nitrophenol and COD | Petrochemical plant | 3 | [89] | |
Photochemical treatment (UV/H2O2) | TOC | Petrochemical plant | 4 | [45] | |
Two-stage wet-air oxidation | COD, grease and oil | Oily sludge frompetrochemical plant | 2.5 | Wet air oxidation:
| [84,85,90] |
Fenton process | Phenol, COD and TOC | Petroleum refinery | 10 | Chemical Oxidation:
| [84,85] |
Electro-Fenton treatment | TOC, phenol and COD | Synthetic | 0.5 | [63] | |
Iron-nickel foam (Catalytic ozonation) | COD and dissolved total organic carbon (DOC) | Petrochemical | 2 | [91] | |
Fe/ZrO2 and Fe/sulfonated- ZrO2 catalysts | Phenol | Synthetic | 6 | [21] | |
MoO3/V2O5/MCM-41 catalysts | Dibenzothiophene | Synthetic | 1.25 | [21] | |
Catalytic cracking catalysts (Catalytic ozonation) | COD | Petrochemical plant | 0.5 | [92] | |
Bioelectrochemical systems | COD and diesel range organics | Petroleum refinery | 96 | Electrochemical oxidation:
| [85,93] |
Electrochemical advanced oxidation | 1,2-Dichlorobenzene and TOC | Synthetic | 3 | [94] | |
Electrochemical treatment | Phenol | Petroleum refinery | 2 | [95] | |
Electrochemical catalytictreatment | Phenol and COD | Synthetic | 0.67 | [96] | |
Electrochemical oxidation treatment | COD and organic pollutants | Petrochemical plant | 8 | [21] | |
Electro-Fenton process | COD | Petrochemical plant | ~1.31 | [21] |
Biocatalysts | Forms of the Enzyme * | Targeted Pollutants | Enzyme Carriers | Reaction Time (h) | Reference |
---|---|---|---|---|---|
Horseradish peroxidase | I | 2,4-Dichlorophenol (97.7%) | Nano-spray dried ethyl cellulose particles | 2 | [138] |
Horseradish peroxidase | I | 2,4-Dichlorophenol (80%) | Modified magnetic nanoparticles | 4.17 | [139] |
Laccase | I | Carbamazepine (10%) Bisphenol A (~100%) | Titania nanoparticles | 24 | [140] |
Laccase | I | Bisphenol A (85–88%) | Metal-ion-chelated magnetic microspheres | 12 | [126] |
Horseradish peroxidase | F | 2-Methoxyphenol Phenol (99%) | - | 0.58 | [112] |
Horseradish peroxidase | I | Phenol (~92%) | Hydrous titanium | 0.25 | [116] |
Laccase | F | Bisphenol A (59.7%) Phenol (80%) | - | 0.5 | [106] |
Soybean hulls peroxidase | F | Triclosan (98%) | - | 0.5 | [114] |
Laccase | F | Bisphenol A (100%) | - | 1 | [141] |
Glucose oxidase and versatile peroxidase | I | Nonylphenol (∼100%) Bisphenol A (~96%) Triclosan (∼26%) | Enzymes aggregates | 0.17 | [132] |
Horseradish peroxidase | I | Phenol (99.9%) | Polyacrylonitrile (PAN)- based beads | 5 | [110] |
Jicama Skin Peels Peroxidase | F | Phenol (~97%) | - | 24 | [142] |
Laccase | F & I | Bisphenol A (100%) Bisphenol F (100%) Bisphenol S (40%) | Hippospongia communis spongin-based scaffold | 24 (I*)M 10 (F*) | [99] |
Tyrosinase | F | Phenol (90%) | 3 | [143] | |
Tyrosinase | I | Phenol (87%) Para-cresol (74%) Phenyl acetate (91%) | Modified diatom biosilica | 12 | [144] |
Tyrosinase | F & I | Phenol (>90% by F and >85% by I) | PAN-based beads | 6 | [145] |
Tyrosinase | I | Phenol (100%) | Aminopropyl-controlled pore glass | 2.5–5 | [146] |
Laccase | F | Bisphenol A (>97%) | 1 | [147] | |
Laccase | I | 2,4-Dichlorophenol (76%) | Chitosan–halloysite hybrid porous microspheres | 4 | [148] |
Laccase | I | Bisphenol A (90%) Nonylphenol (30%) | Silica beads | 1 | [127] |
Laccase | I (entrapment) | Phenol (95%) | Alginate beads | 0.5 | [149] |
Horseradish peroxidase | F & I | 2,4-Dichlorophenol (>90% by F and ~80% by I) | Activated beads | 7.5 | [150] |
Biocatalyst | Source of the Effluent | Country | Reference |
---|---|---|---|
Laccase | Liquefied petroleum gas station | China | [153] |
Immobilized and free manganese peroxidase | Textile factory effluent | Pakistan | [154] |
Horseradish peroxidase | Municipal wastewater effluents | South Korea | [155] |
Immobilized tyrosinase | Industrial effluent (coal-gas conversion plant) | South Africa | [156] |
Soybean peroxidase | Refinery wastewaters | Canada | [119] |
Laccase | Chemical plant wastewater | South Korea | [157] |
Immobilized lignin peroxidase | Industrial wastewater discharged by a paper industry | Brazil | [158] |
Immobilized soybean peroxidase | Coffee processing wastewater | Brazil | [159] |
Soybean peroxidase | Alkyd resin manufacturing wastewater containing phenol | Canada | [160] |
Laccase | Municipal wastewater | Italy | [161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, S.; Abdollahi, K.; Panahi, R.; Rahmanian, N.; Shakeri, M.; Mokhtarani, B. Applications of Biocatalysts for Sustainable Oxidation of Phenolic Pollutants: A Review. Sustainability 2021, 13, 8620. https://doi.org/10.3390/su13158620
Salehi S, Abdollahi K, Panahi R, Rahmanian N, Shakeri M, Mokhtarani B. Applications of Biocatalysts for Sustainable Oxidation of Phenolic Pollutants: A Review. Sustainability. 2021; 13(15):8620. https://doi.org/10.3390/su13158620
Chicago/Turabian StyleSalehi, Sanaz, Kourosh Abdollahi, Reza Panahi, Nejat Rahmanian, Mozaffar Shakeri, and Babak Mokhtarani. 2021. "Applications of Biocatalysts for Sustainable Oxidation of Phenolic Pollutants: A Review" Sustainability 13, no. 15: 8620. https://doi.org/10.3390/su13158620
APA StyleSalehi, S., Abdollahi, K., Panahi, R., Rahmanian, N., Shakeri, M., & Mokhtarani, B. (2021). Applications of Biocatalysts for Sustainable Oxidation of Phenolic Pollutants: A Review. Sustainability, 13(15), 8620. https://doi.org/10.3390/su13158620