Future of Insecticide Seed Treatment
Abstract
:1. Introduction
2. Advantages and Disadvantages of Insecticide Seed Treatment
2.1. Advantages of Insecticide Seed Treatment
2.2. Disadvantages of Insecticide Seed Treatment
2.3. Consequences of the Ban on Neonicotinoids for Seed Treatment
3. Candidates for the Replacement of Neonicotinoids
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hunger Map. 2020. Available online: https://docs.wfp.org/api/documents/WFP-0000118395/download/?_ga=2.87864792.1554561096.1626091298-159185562.1626091298 (accessed on 10 June 2021).
- Campos, E.V.R.; Proença, L.F.; Oliveira, J.L.; Bakshic, M.; Abhilashc, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Bažok, R.; Cvjetković, B.; Ostojić, Z. Revolucija i evolucija kemijske metode zaštite bilja. Glas. Biljn. Zaštite 2020, 20, 346–377. [Google Scholar]
- Müller, C. Impacts of sublethal insecticide exposure on insects—Facts and knowledge gaps. Basic Appl. Ecol. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Pelosi, C.; Bertrand, C.; Daniele, G.; Coeurdassier, M.; Benoit, P.; N’elieu, S.; Lafay, F.; Bretagnolle, V.; Gaba, S.; Vulliet, E.; et al. Residues of currently used pesticides in soils and earthworms: A silent threat? Agric. Ecosyst. Environ. 2021, 305, 107167. [Google Scholar] [CrossRef]
- Friedle, C.; Wallner, K.; Rosenkranz, P.; Martens, D.; Vetter, W. Pesticide residues in daily bee pollen samples (April–July) from an intensive agricultural region in Southern Germany. Environ. Sci. Pollut. Res. 2020, 28, 22789–22803. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.V.; Fleisher, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Area wide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Siomi, H.; Siomi, M.C. On the road to reading the RNA-interference code. Nature 2009, 457, 396–404. [Google Scholar] [CrossRef]
- Čačija, M.; Kadoić Balaško, M.; Lemić, D.; Virić Gašparić, H.; Skendžić, S.; Bažok, R. Primjena RNAi tehnologije u zaštiti bilja. Glas. Biljn. Zaštite 2019, 19, 583–587. [Google Scholar]
- Bolognesi, R.; Ramaseshadri, P.; Anderson, J.; Bachman, P.; Clinton, W.; Flannagan, R.; Ilagan, O.; Lawrence, C.; Levine, S.; Moar, W.; et al. Characterizing the Mechanism of Action of Double Stranded RNA Activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE 2012, 7, e47534. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, M.; Hamzavi, F. Application of nanoparticles in pest management programs—A review. In Green Agro-Industry Investment for our Future. In Proceedings of the International Conference on Green Agro-Industry (ICGAI), Yogyakarta, Indonesia, 12–14 November 2013; Ortuoste, J.D., Hanapi, S., Gumbira Sa’id, E., Setyo Wardoyo, W., Roostika Partoyo, R., Poerwanto, M.E., Brotodjojo, R., Eds.; Faculty of Agriculture Universitas Pembangunan Nasional “Veteran”: Yogyakarta, Indonesia, 2013; pp. 386–393. [Google Scholar]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazzaca, G.; Hassan, A.A.; Kim, K.H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release 2018, 294, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Mossa, A. Green Pesticides: Essential Oils as Biopesticides in Insect-pest Management. Int. J. Environ. Sci. Technol. 2016, 9, 354–378. [Google Scholar] [CrossRef] [Green Version]
- Igrc Barčić, J.; Maceljski, M. Ekološka Zaštita Bilja od Štetnika; Zrinski: Čakovec, Croatia, 2001. [Google Scholar]
- Dobrinčić, R. Prednosti i nedostaci tretiranja sjemena ratarskih kultura insekticidima. Glas. Biljn. Zaštite 2002, 2, 37–41. [Google Scholar]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Mužinić, V.; Želježić, D. Non-target toxicity of novel insecticides. Arh. Hig. Rada Toksikol. 2018, 69, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Official Journal of Europen Union, Commission Implementing Regulation (EU) 2018/783 of 29 May 2018. Available online: https://eur-lex.europa.eu/legal-content/HR/TXT/PDF/?uri=CELEX:32018R0783&qid=1613759219801&from=HR (accessed on 19 February 2021).
- Official Journal of Europen Union, Commission Implementing Regulation (EU) 2018/784 of 29 May 2018. Available online: https://eur-lex.europa.eu/legal-content/HR/TXT/PDF/?uri=CELEX:32018R0784&qid=1613760743727&from=HR (accessed on 19 February 2021).
- Official Journal of Europen Union, Commission Implementing Regulation (EU) 2018/785 of 29 May 2018. Available online: https://eur-lex.europa.eu/legal-content/HR/TXT/PDF/?uri=CELEX:32018R0785&qid=1613760877413&from=HR (accessed on 19 February 2021).
- Official Journal of Europen Union, Commission Implementing Regulation (EU) 2020/23 of 13 January 2020. Available online: https://eur-lex.europa.eu/legal-content/HR/TXT/PDF/?uri=CELEX:32020R0023&qid=1613761027091&from=HR (accessed on 19 February 2021).
- Bažok, R.; Lemić, D. Posljedice zabrane neonikotinoida na poljoprivrednu proizvodnju Republike Hrvatske. Glas. Biljn. Zaštite 2018, 18, 407–412. [Google Scholar]
- Triboni, J.B.; Del Bem, L., Jr.; Raetano, C.G.; Negrisoli, M.M. Effect of seed treatment with insecticides on the control of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in soybean. Arq. Inst. Biol. 2019, 86, 1–6. [Google Scholar] [CrossRef]
- CropLife Fundation. The Role of Seed Treatment in Modern U.S. Crop Production. A Review of Benefits. Available online: http://www.croplifeamerica.org/sites/default/files/Seed%20Treatment%20Report_Final%20PDF_11%2019%2013.pdf (accessed on 21 January 2020).
- Gurian-Sherman, D. Alternatives to Neonicotinoid Insecticide-Coated Corn Seed: Agroecological Methods Are Better for Farmers and the Environment. Center for Food Safety. 2017. Available online: www.centerforfoodsafety.org/reports (accessed on 20 April 2020).
- Bažok, R.; Buketa, M.; Lopatko, D.; Ljikar, K. Suzbijanje štetnika šećerne repe nekad i danas. Glas. Biljn. Zaštite 2012, 12, 414–428. [Google Scholar]
- Hajneman, I.; Sreš, A. Bayerovo znanje—kvalitetna dorada sjemena. Sjemenrastvo 2010, 27, 165–171. [Google Scholar]
- Bažok, R.; Kos, T.; Drmić, Z. Važnost trčaka (Coleoptera: Carabidae) za biološku stabilnost poljoprivrednih staništa, osobito u uzgoju šećerne repe. Glas. Biljn. Zaštite 2015, 15, 264–276. [Google Scholar]
- Ostojić, Z. Ispitivanja Fitotoksičnosti Nekih Insekticida Koji se Koriste za Tretiranje Tla. Master’s Thesis, Faculty of Agriculture University of Zagreb, Zagreb, Croatia, 15 May 1976. [Google Scholar]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Cresswell, J.E. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 2011, 20, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Krupke, C.H.; Holland, J.D.; Long, E.Y.; Eitzer, B.D. Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit. J. Appl. Ecol. 2017, 54, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Labrie, G.; de Gagnon, A.; Vanasse, A.; Latraverse, A.; Tremblay, G. Impacts of neonicotinoid seed treatments on soil-dwelling pest populations and agronomic parameters in corn and soybean in Quebec (Canada). PLoS ONE 2020, 15, e0229136. [Google Scholar] [CrossRef]
- Veres, A.; Wyckhuys, K.A.G.; Kiss, J.; Toth, F.; Burgio, G.; Pons, X.; Avilla, C.; Vidal, S.; Razinger, J.; Bažok, R.; et al. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environ. Sci. Pollut. Res. 2020, 27, 29867–29899. [Google Scholar] [CrossRef] [PubMed]
- Krupke, C.H.; Tooker, J.F. Beyond the Headlines: The Influence of Insurance Pest Management on an Unseen, Silent Entomological Majority. Front. Sustain. Food Syst. 2020, 4, 595855. [Google Scholar] [CrossRef]
- Tooker, J.; Douglas, M.R.; Krupke, C.H. Neonicotinoid Seed Treatments: Limitations and Compatibility with Integrated Pest Management. Agric. Environ. Lett. 2017, 2, ael2017.08.0026. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.R.; Rohr, J.R.; Tooker, J.F. Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. J. Appl. Ecol. 2015, 52, 250–260. [Google Scholar] [CrossRef]
- Douglas, M.R.; Sponsler, D.B.; Lonsdorf, E.V.; Grozinger, C.M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 2020, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Kynetec. AgroTrak Survey. Kynetec Group, Newbury, United Kingdom. Available online: https://www.kynetec.com/solutions/agriculture (accessed on 12 May 2021).
- Hitaj, C.; Smith, D.J.; Code, A.; Wechsler, S.; Esker, P.D.; Douglas, M. Sowing Uncertainty: What We Do and Don’t Know about the Planting of Pesticide-Treated Seed? BioScience 2020, 70, 390–403. [Google Scholar] [CrossRef] [Green Version]
- Furlan, L.; Contiero, B.; Chiarini, F.; Colauzzi, M.; Sartori, E.; Benvegnù, I.; Fracasso, F.; Giandon, P. Risk assessment of maize damage by wireworms (Coleoptera: Elateridae) as the first step in implementing IPM and in reducing the environmental impact of soil insecticides. Environ. Sci. Pollut. Res. 2017, 24, 236–251. [Google Scholar] [CrossRef] [Green Version]
- Furlan, L.; Vasileiadisos, V.P.; Chiarini, F.; Huiting, H.; Leskovšek, R.; Razinger, J.; Holb, I.J.; Sartori, E.; Urek, G.; Verschwele, A.; et al. Risk assessment of soil-pest damage to grain maize in Europe within the framework of Integrated Pest Management. Crop Prot. 2017, 97, 52–59. [Google Scholar] [CrossRef]
- Smith, J.L.; Baute, T.S.; Schaafsma, A.W. Quantifying Early-Season Pest Injury and Yield Protection of Insecticide Seed Treatments in Corn and Soybean Production in Ontario, Canada. J. Econ. Entomol. 2020, 113, 2197–2212. [Google Scholar] [CrossRef]
- Valavanidis, A. Neonicotinoid Insecticides. Banned by the European Union in 2018 after Scientific Studies Concluded That Harm Honey Bees. Sci. Rev. 2018, 37, 1–20. [Google Scholar]
- Bredeson, M.; Lundgren, J. Thiamethoxam Seed Treatments Have No Impact on Pest Numbers or Yield in Cultivated Sunflowers. J. Econ. Entomol. 2015, 108, 2665–2671. [Google Scholar] [CrossRef] [PubMed]
- Sgolastra, F.; Porrini, C.; Maini, S.; Bortolotti, L.; Medrzycki, P.; Mutinelli, F.; Lodesani, M. Healthy honey bees and sustainable maize production: Why not? Bull. Insectol. 2017, 70, 156–160. [Google Scholar]
- Hladik, L.M.; Main, R.A.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauer, M.; Hansen, A.L.; Manderyck, B.; Ollson, A.; Raaijmakers, E.; Hanse, B.; Stockfisch, N.; Märländer, B. Neonicotinoids in sugar beet cultivation in Central and NorthernEurope: Efficacy and environmental impact of neonicotinoid seed treatments and alternative measures. Crop Prot. 2016, 93, 132–142. [Google Scholar] [CrossRef]
- Lundgren, J.G.; Fausti, S.W. Trading biodiversity for pest problems. Sci. Adv. 2015, 1, e1500558. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.; Lewis, M.T.; Dively, G.P.; Hamby, K.A. Ecological impacts of pesticide seed treatments on arthropod communities in a grain crop rotation. J. Appl. Ecol. 2020, 57, 936–951. [Google Scholar] [CrossRef]
- Thompson, D.A.; Lehmler, H.J.; Kolpin, D.W.; Hladik, M.L.; Vargo, J.D.; Schilling, K.E.; LeFevre, G.F.; Peeples, T.F.; Poch, M.C.; LaDuca, L.E.; et al. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environ. Sci. Process. Impacts 2020, 22, 1315–1346. [Google Scholar] [CrossRef]
- David, D.; George, I.A.; Peter, J.V. Toxicology of the newer neonicotinoid insecticides: Imidacloprid poisoning in a human. Clin. Toxicol. 2007, 45, 485–486. [Google Scholar] [CrossRef] [PubMed]
- Phua, D.H.; Lin, C.C.; Wu, M.L.; Deng, J.F.; Yang, C.C. Neonicotinoid insecticides: An emerging cause of acute pesticide poisoning. Clin. Toxicol. 2009, 47, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.C.; Lin, H.J.; Liao, Y.Y.; Guo, H.R.; Chen, K.T. Acute poisoning with neonicotinoid insecticides: A case report and literature review. Basic Clin. Pharmacol. Toxicol. 2013, 112, 282–286. [Google Scholar] [CrossRef]
- Viric Gasparic, H.; Grubelic, M.; Dragovic Uzelac, V.; Bazok, R.; Cacija, M.; Drmic, Z.; Lemic, D. Neonicotinoid Residues in Sugar Beet Plants and Soil under Different Agro-Climatic Conditions. Agriculture 2020, 10, 484. [Google Scholar] [CrossRef]
- Mörtl, M.; Vehovszky, A.; Klátyik, S.; Takács, E.; Györi, J.; Székács, A. Neonicotinoids: Spreading, Translocation and Aquatic Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 2006. [Google Scholar] [CrossRef] [Green Version]
- Bažok, R. Pregled sredstava za zaštitu bilja u Hrvatskoj za 2021. godinu-zoocidi. Glas. Biljn. Zaštite 2021, 21, 13–116. [Google Scholar]
- Vojvodić, M.; Virić Gašparić, H.; Čačija, M.; Lemić, D.; Bažok, R. Zabrana neonikotinoida u ratarskim kulturama, uzroci i posljedice. Glas. Biljn. Zaštite 2021, 21, 456–470. [Google Scholar]
- Dewar, M.A. The adverse impact of the neonicotinoid seed treatment ban on crop protection in oilseed rape in the United Kingdom. Pest Manag. Sci. 2017, 73, 1305–1309. [Google Scholar] [CrossRef] [Green Version]
- Matyjaszczyk, E.; Sobczak, J.; Szulc, M. Is the possibility of replacing seed dressings containing neonicotinoids with other means of protection viable in major Polish agricultural crops? J. Plant Prot. Res. 2015, 55, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Virić Gašparić, H.; Bažok, R. Tržište zoocida nekad i danas: Što se promijenilo u posljednjih 30 godina? Glas. Biljn. Zaštite 2018, 18, 550–557. [Google Scholar]
- Lagundžija, D. Uporaba Organofosfornih Insekticida u Hrvatskoj u Razdoblju od 1987 do 2017. Master’s Thesis, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia, 15 September 2019. [Google Scholar]
- Bažok, R. Pregled sredstava za zaštitu bilja u Hrvatskoj za 2013. godinu-zoocidi. Glas. Biljn. Zaštite 2013, 13, 13–61. [Google Scholar]
- FIS Portal. Popis Registriranih Sredstava za Zaštitu Bilja. Available online: https://fis.mps.hr/trazilicaszb/ (accessed on 9 April 2021).
- EU Pesticides Database Active Substances. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-db_en (accessed on 6 April 2021).
- Cordova, D.; Benner, E.A.; Sacher, M.D.; Rauh, J.J.; Sopa, J.S.; Lahm, G.P.; Selby, T.P.; Stevenson, T.M.; Flexner, L.; Gutteridge, S.; et al. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Phys. 2006, 84, 196–214. [Google Scholar] [CrossRef]
- Nieuwenhoven, A. Cyantranilprole Insecticide Seed Treatment: A New and Unique Tool for Integrated Pest Management in Oilseed Rape in Europe. Du Pont. Available online: https://www.eppo.int/media/uploaded_images/MEETINGS/Meetings_2017/ipm/22-Nieuwenhoven.pdf (accessed on 17 March 2021).
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole. EFSA J. 2014, 12, 3814. [Google Scholar] [CrossRef]
- Kolupaeva, V.N.; Kokoreva, A.A.; Belik, A.A.; Pletenev, P.A. Study of the behavior of the new insecticide cyantraniliprole in large lysimeters of the Moscow State University. Open Agric. 2019, 4, 599–607. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, C.; Ding, J.; Zhao, Y.; Lin, J.; Liu, F.; Mu, W. Cyantraniliprole seed treatment efficiency against Agrotis ipsilon (Lepidoptera: Noctuidae) and residue concentrations in corn plants and soil. Pest Manag. Sci. 2019, 75, 1464–1472. [Google Scholar] [CrossRef]
- Corteva Agroscience. Lumivia® Insecticide. Available online: https://www.corteva.us/products-and-solutions/seed-treatments/lumivia.html (accessed on 14 April 2021).
- TopCrop Manager. PMRA Approves Lumivia Seed Treatment. Available online: https://www.topcropmanager.com/pmra-approves-lumivia-seed-treatment-19460/ (accessed on 14 April 2021).
- Van Herk, W.G.; Vernon, R.S.; Bobbi, V.; Snow, S.; Fortier, J.; Fortin, C. Contact behaviour and mortality of wireworms exposed to six classes of insecticide applied to wheat seed. J. Pest Sci. 2015, 88, 717–739. [Google Scholar] [CrossRef]
- Van Herk, W.G.; Labun, T.J.; Vernon, R.S. Efficacy of diamide, neonicotinoid, pyrethroid, and phenyl pyrazole insecticide seed treatments for controlling the sugar beet wireworm, Limonius californicus (Coleoptera: Elateridae), in spring wheat. J. Entomol. Soc. Br. Columbia 2018, 115, 86–100. [Google Scholar]
- Bažok, R.; Vojvodić, M.; Figurić, I.; Virić Gašparić, H.; Lemić, D.; Drmić, Z.; Čačija, M. Kandidati za zamjenu neonikotinoida za tretiranje sjemena. Glas. Biljn. Zaštite 2018, 18, 70–71. [Google Scholar]
- Rani, D.S.; Rao, P.M.; Krishnamma, K. Efficacy of chlorantraniliprole 625 g/L FS (Lumivia) for the management of stem borer and leaf folder in direct seeded rice. Int. J. Chem. Stud. 2020, 8, 1673–1680. [Google Scholar] [CrossRef]
- Wilson, B.; Villegas, J.M.; Way, M.O.; Pearson, R.A.; Stout, M.J. Cyantraniliprole: A new insecticidal seed treatment for U.S. rice. Crop Prot. 2021, 140, 105410. [Google Scholar] [CrossRef]
- Lanka, S.K.; Ottea, J.A.; Beuzelin, J.M.; Stout, M.J. Effects of Chlorantraniliprole and Thiamethoxam Rice Seed Treatments on Egg Numbers and First Instar Survival of Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). J. Econ. Entomol. 2013, 106, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, J.M.; Wilson, B.E.; Stout, M.J. Efficacy of reduced rates of chlorantraniliprole seed treatment on insect pests of irrigated drill-seeded rice. Pest Manag. Sci. 2019, 75, 3193–3199. [Google Scholar] [CrossRef] [PubMed]
- Pes, P.M.; Melo, A.A.; Stacke, R.S.; Zanella, R.; Perini, C.R.; Silva, F.M.A.; Guedes, J.C.V. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 2020, 15, e0229151. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.L.; Gontijo, P.C.; Samia, R.R.; Carvalho, G.A. Long-term effects of chlorantraniliprole reduced risk insecticide applied as seed treatment on lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Chemosphere 2019, 219, 678–683. [Google Scholar] [CrossRef]
- Nault, B.A.; Straubb, R.W.; Taylor, A.G. Performance of novel insecticide seed treatments for managing onion maggot (Diptera: Anthomyiidae) in onion fields. Crop Prot. 2006, 25, 58–65. [Google Scholar] [CrossRef]
- Cleveland, C.B.; Mayes, M.A.; Cryer, S.A. An ecological risk assessment for spinosad use on cotton. Pest Manag. Sci. 2001, 58, 70–84. [Google Scholar] [CrossRef]
- Morandin, L.A.; Winston, M.L.; Franklin, M.T.; Abbott, V.A. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson). Pest Manag. Sci. 2005, 61, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Bažok, R.; Šatvar, M.; Radoš, I.; Drmić, Z.; Lemić, D.; Čačija, M.; Virić Gašparić, H. Comparative efficacy of classical and biorational insecticides on sugar beet weevil (Bothynoderes punctiventris Germar, Coleoptera: Curculionidae). Plant Prot. Sci. 2016, 52, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Deak, L. Učinak Ekološki Prihvatljivih Insekticida na Repinu Pipu. Diploma Thesis, Faculty of Agriculture, Univerity of Zagreb, Zagreb, Croatia, 20 September 2019. [Google Scholar]
- Barić, B.; Pajač Živković, I. Načela Integrirane Zaštite Bilja; Sveučilište u Zagrebu, Agronomski Fakultet: Zagreb, Croatia, 2020; p. 73. [Google Scholar]
- Sharma, K.K.; Singh, U.S.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture—A review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef]
- Dougoud, J.; Toepfer, S.; Bateman, M.; Jenner, W.H. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 2019, 39, 37. [Google Scholar] [CrossRef] [Green Version]
- Campos, E.V.R.; de Oliveira, J.L.; Pascoli, M.; de Lima, R.; Fraceto, L.F. Neem Oil and Crop Protection: From Now to the Future. Front. Plant Sci. 2016, 7, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Singh, A. Biopesticides: Present Status and the Future Prospects. J. Fertil. Pestic. 2015, 6, 100–129. [Google Scholar] [CrossRef]
- Hundleby, P.A.C.; Harwood, W.A. Impacts of the EU GMO regulatory framework for plant genome editing. Food Energy Secur. 2018, 8, e00161. [Google Scholar] [CrossRef] [Green Version]
- Nyadar, P.M.; Zaitsev, A.S.; Tajudeen, A.A.; Shumskykh, M.N.; Oberemok, V.V. Biological control of gypsy moth (lymantria dispar): An rnai-based approach and a case for dna insecticide. Arch. Biol. Sci. 2016, 68, 677–683. [Google Scholar] [CrossRef]
Group | Active Ingredient | Preparation | Crops on Which It Was Allowed | Restrictions 2021 | |
---|---|---|---|---|---|
2013 | 2014 | ||||
Carbamates | Methiocarb | Mesurol FS 500 | Sunflower, oilseed rape and corn | No permission | |
Pyrethroids | Tefluthrin | Force 20 SC | Corn and sugar beet | Corn, sugar beet, sunflower, wheat and barley | |
Neonicotinoids | Imidacloprid | Macho 70WS | Corn and potatoes | No permission | |
Gaucho FS 600 | Corn and sugar beet | No permission | |||
Macho 60 FS | |||||
Gaucho FS 600 Rot | Potatoes, corn, sunflower and cereals | Potatoes and winter cereals; | Treated seeds and tubers may only be sown (planted) in a protected area that is a permanent greenhouse, and the crop must remain in a protected area that is a permanent greenhouse throughout its life * | ||
Imidacloprid + pencycuron | Prestige FS 290 | Potatoes | No permission | ||
Thiamethoxam | Cruiser 70 WS | Sugar and fodder beet | Sugar and fodder beet | Treated seeds may only be sown (planted) only in a protected area that is a permanent greenhouse, and the crop must remain in a protected area that is a permanent greenhouse throughout its life | |
Cruiser FS 350 | Sugar beet, corn, sunflower, winter wheat and winter barley | Sugar beet, winter wheat and winter barley | |||
Thiamethoxam + metalaxyl + fludioxonil | Cruiser OSRMaxim Top | Oilseed rape | Oilseed rape | ||
Clothianidin | Poncho FS 600 Rot | Corn and sugar beet | Sugar beet | ||
Neonicotinoids + pyrethroids | Imidacloprid + eta-cyfluthrin | Chinook FS 200 | Oilseed rape | No permission | |
Phenylpyrazoles | Fipronil | Cosmos 50 FS | Corn and sunflower | No permission |
Active Ingredient | Treated Crop | Targeted Pest | Experimental Design (Laboratory—L, Field—F) | Results Achieved | Source |
---|---|---|---|---|---|
Ch, Cy | Soybean | Fall armyworm Spodoptera frugiperda (J.E.Smith) | L | Insecticides resulted in rapid death of caterpillars, which reduced the leaf area eaten by the caterpillars and thus increased soybean yields | Triboni et al., 2019 [23] |
Ch | Wheat | Wireworms Agriotes spp. | L | Treatment of wheat seed with chlorantraniliprole did not result in satisfactory efficacy on wireworms | van Herk et al., 2015 [74] |
Cy | Wheat | Sugar beet wireworm Limonius californicus (Mannerheim) | F | Cyantraniliprole, applied at a dosage of 10 to 40 g a.i./ha, provided initial crop density protection but did not protect plants over a prolonged period and had no effect on population reduction | van Herk et al., 2018 [75] |
Ch | Sugar beet | Sugar beet weevil Bothynoderes punctiventris (Germar); sugar beet flea beetle Chaetocnema tibiallis (Illiger) | L | Chlorantraniliprole, administered at doses of 0.2, 0.4 and 0.6 mg/seed, did not provide adequate protection against the sugar beet weevil (maximum effect of the highest dose less than 40%); the same doses provided satisfactory protection against the sugar beet flea beetle. | Bažok et al., 2018 [76] |
Ch | Rice | Scirpophaga incertulas (Walker); Cnaphalocrocis medinalis (Guenee) | F | The applied dose of 90 g a.i./ha effectively suppressed pests up to 70 days after sowing rice under direct sowing conditions | Rani et al., 2020 [77] |
Ch, Cy | Rice | Lissorhoptrus oryzophilus (Kuschel); Eoreuma loftini (Dyar) | F | Seeds treated with chlorantraniliprole and the combination of cyantraniliprole with thiamethoxam gave the best protection against L. oryzophilus; only the treatment of seeds with chlorantraniliprole gave satisfactory protection against E. loftini | Wilson et al., 2021 [78] |
Ch | Rice | Rice water weevil Lissorhoptrus oryzophilus (Kuschel) | L | Reduced oviposition was noted after adults were exposed to treated plants, which is considered a sublethal effect; no effect on adult survival was noted even four days after feeding | Lanka et al., 2013 [79] |
Ch | Rice | Rice water weevil Lissorhoptrus oryzophilus (Kuschel); fall armyworm Spodoptera frugiperda (J.E.Smith); sugarcane borer Diatraea saccharalis F. | F | Rice seed treated with chlorantraniliprole may provide adequate protection against these pests even at reduced doses | Vilegas et al., 2019 [80] |
Cy | Maize | Black cutworm Agrotis ipsilon (Hufnagel) | F | Seed treatment with cyantraniliprole at a dose of 2 g a.i./kg seed significantly reduced infestation compared with seed treatment with chlorantraniliprole and clothianidin in corn fields; the effect of cyantraniliprole was more sustained in spring than in summer; and residues of cyantraniliprole and the metabolite J9Z38 in maize stalks and soil were degraded more slowly in spring than in summer | Zhang et al., 2019 [71] |
Ch | Maize | Wireworms Agriotes spp. | L | Chlorantraniliprole, administered at doses of 0.2, 0.4 and 0.6 mg/seed, did not provide adequate protection | Bažok et al., 2018 [76] |
Ch, Cy | Maize | Fall armyworm Spodoptera frugiperda (J.E.Smith) | L | Better protection of young, higher leaves compared to foliar insecticides | Pes et al., 2020 [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojvodić, M.; Bažok, R. Future of Insecticide Seed Treatment. Sustainability 2021, 13, 8792. https://doi.org/10.3390/su13168792
Vojvodić M, Bažok R. Future of Insecticide Seed Treatment. Sustainability. 2021; 13(16):8792. https://doi.org/10.3390/su13168792
Chicago/Turabian StyleVojvodić, Milorad, and Renata Bažok. 2021. "Future of Insecticide Seed Treatment" Sustainability 13, no. 16: 8792. https://doi.org/10.3390/su13168792
APA StyleVojvodić, M., & Bažok, R. (2021). Future of Insecticide Seed Treatment. Sustainability, 13(16), 8792. https://doi.org/10.3390/su13168792