A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production
Abstract
:1. Introduction
2. Microalgae Fuels Production Process
2.1. Cultivation
2.1.1. Open Ponds System
2.1.2. Tubular PBRs
2.1.3. Flat-Panel PBRs
2.1.4. Column PBRs
2.1.5. Plastic Bag PBRs
2.1.6. Hybrid Cultivation System
2.2. Harvesting
2.2.1. Sedimentation
2.2.2. Filtration
2.2.3. Centrifugation
2.2.4. Flotation
2.2.5. Flocculation
2.3. Drying
3. Literature Review Results
3.1. The Energy Consumption Ratio of Cultivation
Site Location | Microalgae Species | Cultivation System | Energy Consumption Ratio a | Biomass Concentration (kg/m3) | Areal biomass Production (kg/m2/d) | Notes | References |
---|---|---|---|---|---|---|---|
— | Chlorella vulgaris | Tubular PBR | 0.61 b | 8.00 | 0.02 | Low biomass production | [39] |
— | Chlorella vulgaris | Tubular PBR | 0.24 b | 20.00 | 0.03 | High biomass production | [39] |
— | Chlorella vulgaris | Open raceway pond | 0.02 b | 1.00 | 0.06 | Low biomass production | [39] |
— | Chlorella vulgaris | Open raceway pond | 0.03 b | 0.48 | 0.44 | High biomass production | [39] |
— | Chlorella vulgaris | Bubble column PBR | 0.10 b | 0.75 | 0.01 | Low biomass production | [39] |
— | Chlorella vulgaris | Bubble column PBR | 0.02 b | 2.59 | 0.04 | High biomass production | [39] |
Concepcion, Chile | microalga P. tricornutum, | Bubble column PBR | 0.01 c | 0.96 | 0.02 d | — | [46] |
Phoenix, AZ, US | Scenedesmus dimorphus | Open raceway pond | 0.06 | 0.47 | 0.05 | — | [41] |
Phoenix, AZ, US | Scenedesmus dimorphus | Flat-Panel PBR | 0.05 | 4.00 | 0.07 | — | [41] |
Bissau, Guinea | — | Open raceway pond | 0.06 | — | 0.02 e | — | [85] |
Huelva, Spain | — | Open raceway pond | 0.07 | — | 0.02 e | — | [85] |
Uppsala, Sweden | — | Open raceway pond | 0.19 | — | 0.01 e | — | [85] |
Bissau, Guinea | — | Tubular PBR | 0.32 | — | 0.03 e | — | [85] |
Huelva, Spain | — | Tubular PBR | 0.36 | — | 0.02 e | — | [85] |
Uppsala, Sweden | — | Tubular PBR | 0.74 | — | 0.01 e | — | [85] |
Tuscany, Italy | Tetraselmis suecica | Plastic bag PBR | 0.68 b | — | 0.15 f | — | [50] |
— | Chlorella vulgaris | Open raceway pond | 0.03 b | — | 0.02 | Waste water | [86] |
— | Chlorella vulgaris | Open raceway pond | 0.02 b | — | 0.02 | Fresh water | [86] |
Texas/Hawaii, US | Staurosira sp. | PBR + Open raceway pond | 0.41 b | 0.36 | 0.02 | Low-N, paddle-wheel pond circulation 24 h/day | [54] |
Texas/Hawaii, US | Staurosira sp. | PBR + Open raceway pond | 0.15 b | 0.36 | 0.02 | Low-N, airlift pond circulation 16 h/day | [54] |
Texas/Hawaii, US | Staurosira sp. | PBR + Open raceway pond | 0.09 b | 0.62 | 0.03 | High-N, airlift pond circulation 16 h/day | [54] |
Texas/Hawaii, US | Desmodesmus sp. | PBR + Open raceway pond | 0.13 b | 0.45 | 0.02 | High-N, airlift pond circulation 16 h/day | [54] |
Texas/Hawaii, US | Desmodesmus sp. | PBR + Open raceway pond | 0.09 b | 0.45 | 0.02 | High-N, airlift pond circulation 12 h/day | [54] |
Fort Saskatchewan | — | Open raceway pond | 0.04 b | — | — | [87] | |
Fort Saskatchewan | — | Column PBR | 0.13 b | — | — | [87] | |
— | Nannochloropsis sp. | Open raceway pond | 0.12 | 0.35 | 0.01 | [22] | |
— | Nannochloropsis sp. | Tubular PBR | 5.04 | 1.02 | 0.03 | [22] | |
— | Nannochloropsis sp. | Flat-Panel PBR | 0.22 | 2.7 | 0.03 | [22] |
3.2. The Energy Consumption Ratio of Harvesting
4. Challenges and Future Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Key World Energy Statistics; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Töbelmann, D.; Wendler, T. The impact of environmental innovation on carbon dioxide emissions. J. Clean. Prod. 2020, 244, 118787. [Google Scholar] [CrossRef]
- Koonin, S.E. Getting Serious About Biofuels. Science 2006, 311, 435. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.B.; Ahluwalia, A.S. Microalgae: A promising tool for carbon sequestration. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 73–95. [Google Scholar] [CrossRef]
- Xu, X.; Gu, X.; Wang, Z.; Shatner, W.; Wang, Z. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew. Sustain. Energy Rev. 2019, 110, 65–82. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009, 36, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Song, K.; Zhang, P.; Su, Y.; Cheng, J.; Chen, X. Progress of microalgae biofuel’s commercialization. Renew. Sustain. Energy Rev. 2017, 74, 402–411. [Google Scholar] [CrossRef]
- Saranya, G.; Ramachandra, T.V. Energy Conversion and Management: X 8 (2020) 100065 Life Cycle Assessment of Biodiesel from Estuarine Microalgae; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Barros, A.I.; Goncalves, A.L.; Simoes, M.; Pires, J.C.M. Harvesting techniques applied to microalgae: A review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef] [Green Version]
- Sirajunnisa, A.R.; Surendhiran, D. Algae—A quintessential and positive resource of bioethanol production: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 248–267. [Google Scholar] [CrossRef]
- Lee, O.K.; Lee, E.Y. Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 2016, 92, 70–75. [Google Scholar] [CrossRef]
- Suganya, T.; Varman, M.; Masjuki, H.H.; Renganathan, S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 2016, 55, 909–941. [Google Scholar] [CrossRef]
- Veillette, M.; Giroir-Fendler, A.; Faucheux, N.; Heitz, M. Biodiesel from microalgae lipids: From inorganic carbon to energy production. Biofuels 2018, 9, 175–202. [Google Scholar] [CrossRef]
- Saad, M.G.; Dosoky, N.S.; Zoromba, M.S.; Shafik, H.M. Algal Biofuels: Current Status and Key Challenges. Energies 2019, 12, 1920. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Zhu, L.; Li, S.; Hu, T.; Li, B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour. Technol. 2020, 301, 122804. [Google Scholar] [CrossRef]
- Kandiyoti, R.; Herod, A.; Bartle, K.; Morgan, T. Fossil fuels and renewables. In Solid Fuels and Heavy Hydrocarb. Liquids, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Adeniyi, O.M.; Azimov, U.; Burluka, A. Algae biofuel: Current status and future applications. Renew. Sustain. Energy Rev. 2018, 90, 316–335. [Google Scholar] [CrossRef]
- Daneshvar, E.; Yong, S.O.; Tavakoli, S.; Sarkar, B.; Bhatnagar, A. Insights into upstream processing of microalgae: A review. Bioresour. Technol. 2021, 329, 124870. [Google Scholar] [CrossRef]
- Cesário, M.T.; Da Fonseca, M.M.R.; Marques, M.M.; de Almeida, M.C.M.D. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol. Adv. 2018, 36, 798–817. [Google Scholar] [CrossRef]
- Hossain, N.; Zaini, J.; Mahlia, T. Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country. Renew. Sustain. Energy Rev. 2019, 115, 109371. [Google Scholar] [CrossRef]
- Jorquera, O.; Kiperstok, A.; Sales, E.A.; Embiruçu, M.; Ghirardi, M.L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 2010, 101, 1406–1413. [Google Scholar] [CrossRef]
- Rashid, N.; Rehman, S.U.; Han, J.I. Rapid harvesting of freshwater microalgae using chitosan. Process. Biochem. 2013, 48, 1107–1110. [Google Scholar] [CrossRef]
- Issarapayup, K.; Powtongsook, S.; Pavasant, P. Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. J. Biotechnol. 2009, 142, 227–232. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Light management technologies for increasing algal photobioreactor efficiency. Algal Res. 2019, 39, 101433. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation. Algal Res. 2020, 45, 101731. [Google Scholar] [CrossRef]
- Milledge, J.J.; Heaven, S. Energy Balance of Biogas Production from Microalgae: Effect of Harvesting Method, Multiple Raceways, Scale of Plant and Combined Heat and Power Generation. J. Mar. Sci. Eng. 2017, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.F.; Ribeiro, L.A.; Batista, A.P.; Marques, P.; Nobre, B.P.; Palavra, A.; Silva, P.; Gouveia, L.; Silva, C. A biorefinery from Nannochloropsis sp. microalga—Energy and CO2 emission and economic analyses. Bioresour. Technol. 2013, 138, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Wong, C.Y.; Lee, K.T. Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chin. J. Chem. Eng. 2018, 26, 17–30. [Google Scholar] [CrossRef]
- Faried, M.; Samer, M.; Abdelsalam, E.M.; Yousef, R.; Attia, Y.; Ali, A.S. Biodiesel production from microalgae: Processes, technologies and recent advancements. Renew. Sustain. Energy Rev. 2017, 79, 893–913. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M.; Casini, D.; Tredici, M.R.; Rodolfi, L.; Bassi, N.; Zittelli, G.C.; Bondioli, P. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Appl. Energy 2013, 102, 101–111. [Google Scholar] [CrossRef]
- Senior, J.; Saenger, N.; Müller, G. New hydropower converters for very low-head differences. J. Hydraul. Res. 2010, 48, 703–714. [Google Scholar] [CrossRef]
- Razon, L.F.; Tan, R.R. Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl. Energy 2011, 88, 3507–3514. [Google Scholar] [CrossRef]
- Chang, D.K.; Jin, Y.A.; Tai, H.P.; Sang, J.S. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem. Eng. J. 2006, 31, 234–238. [Google Scholar]
- Gupta, P.L.; Lee, S.M.; Choi, H.J. A mini review: Photobioreactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 2015, 31, 1409–1417. [Google Scholar] [CrossRef]
- Ting, H.; Lu, H.; Ma, S.; Zhang, Y.; Na, D. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review. Int. J. Agric. Biol. Eng. 2017, 10, 1–29. [Google Scholar]
- Bei, W.; Lan, C.Q.; Horsman, M. Closed photobioreactors for production of microalgal biomasses. Biotechnol. Adv. 2012, 30, 904–912. [Google Scholar]
- Hai, T.; Ahlers, H.; Gorenflo, V.; Steinbüchel, A. Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Appl. Microbiol. Biotechnol. 2000, 53, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Dasan, Y.K.; Lam, M.K.; Yusup, S.; Lim, J.W.; Lee, K.T. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Sci. Total Environ. 2019, 688, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Feng, F.; Wan, M.; Ying, J.; Li, Y.; Qu, X.; Pan, R.; Shen, G.; Li, W. Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics. Bioresour. Technol. 2015, 182, 151–159. [Google Scholar] [CrossRef]
- Brentner, L.B.; Eckelman, M.J.; Zimmerman, J.B. Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel. Environ. Sci. Technol. 2011, 45, 7060–7067. [Google Scholar] [CrossRef]
- Ozkan, A.; Kinney, K.; Katz, L.; Berberoglu, H. Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour. Technol. 2012, 114, 542–548. [Google Scholar] [CrossRef]
- Mirón, A.; García, M.; Camacho, F.G.; Grima, E.M.; Chisti, Y. Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: Studies in fed-batch culture. Enzym. Microb. Technol. 2002, 31, 1015–1023. [Google Scholar] [CrossRef]
- Huang, J.; Ying, J.; Fan, F.; Yang, Q.; Wang, J.; Li, Y. Development of a novel multi-column airlift photobioreactor with easy scalability by means of computational fluid dynamics simulations and experiments. Bioresour. Technol. 2016, 222, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Soman, A.; Shastri, Y. Optimization of novel photobioreactor design using computational fluid dynamics. Appl. Energy 2015, 140, 246–255. [Google Scholar] [CrossRef]
- Branco-Vieira, M.; Costa, D.B.; Mata, T.M.; Martins, A.A.; Caetano, N.S. Environmental assessment of industrial production of microalgal biodiesel in Central-south Chile. J. Clean. Prod. 2020, 266, 121756. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, J.S.; Chang, H.Y.; Chen, T.Y.; Wu, J.H.; Lee, W.L. Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium. Biochem. Eng. J. 2013, 77, 74–81. [Google Scholar] [CrossRef]
- Abomohra, A.E.-F.; El-Sheekh, M.; Hanelt, D. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy 2014, 64, 237–244. [Google Scholar] [CrossRef]
- Kim, Z.H.; Park, H.; Hong, S.J.; Lim, S.M.; Lee, C.G. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing. Bioprocess Biosyst. Eng. 2016, 39, 713–723. [Google Scholar] [CrossRef]
- Tredici, M.R.; Bassi, N.; Prussi, M.; Biondi, N.; Rodolfi, L.; Zittelli, G.C.; Sampietro, G. Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio. Appl. Energy 2015, 154, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Lam, T.P.; Lee, T.M.; Chen, C.-Y.; Chang, J.-S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour. Technol. 2018, 252, 180–187. [Google Scholar] [CrossRef]
- Adesanya, V.O.; Cadena, E.; Scott, S.A.; Smith, A.G. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresour. Technol. 2014, 163, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Beal, C.M.; Gerber, L.N.; Sills, D.L.; Huntley, M.E.; Machesky, S.C.; Walsh, M.J.; Tester, J.W.; Archibald, I.; Granados, J.; Greene, C.H. Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Res. 2015, 10, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Kunjapur, A.M.; Eldridge, R.B. Photobioreactor design for commercial biofuel production from microalgae. Ind. Eng. Chem. Res. 2010, 49, 3516–3526. [Google Scholar] [CrossRef]
- Aliyu, A.; Lee, J.; Harvey, A.P. Microalgae for biofuels via thermochemical conversion processes: A review of cultivation, harvesting and drying processes, and the associated opportunities for integrated production. Bioresour. Technol. Rep. 2021, 14, 100676. [Google Scholar] [CrossRef]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef] [PubMed]
- Schiel, D.R.; Gunn, T.D. Effects of sediment on early life history stages of habitat-dominating fucoid algae. J. Exp. Mar. Biol. Ecol. 2019, 516, 44–50. [Google Scholar] [CrossRef]
- Garzon-Sanabria, A.J.; Davis, R.T.; Nikolov, Z.L. Harvesting Nannochloris oculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresour. Technol. 2012, 118, 418–424. [Google Scholar] [CrossRef]
- Pragya, N.; Pandey, K.K.; Sahoo, P.K. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew. Sustain. Energy Rev. 2013, 24, 159–171. [Google Scholar] [CrossRef]
- Bhave, R.; Kuritz, T.; Powell, L.; Adcock, D. Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products. Environ. Sci. Technol. 2012, 46, 5599–5606. [Google Scholar] [CrossRef]
- Da Nquah, M.K.; Li, A.; Uduman, N.; Moheimani, N.; Forde, G.M. Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol. 2009, 84, 1078–1083. [Google Scholar] [CrossRef]
- Roy, M.; Mohanty, K. A comprehensive review on microalgal harvesting strategies: Current status and future prospects. Algal Res. 2019, 44, 101683. [Google Scholar] [CrossRef]
- Verma, N.M.; Mehrotra, S.; Shukla, A.; Mishra, B.N. Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. Afr. J. Biotechnol. 2010, 9, 1402–1411. [Google Scholar]
- Thomassen, G.; Vila, U.E.; Dael, M.V.; Lemmens, B.; Passel, S.V. A techno-economic assessment of an algal-based biorefinery. Clean Technol. Environ. Policy 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Xin, C.; Addy, M.M.; Zhao, J.; Cheng, Y.; Cheng, S.; Mu, D.; Liu, Y.; Ding, R.; Chen, P.; Ruan, R. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study. Bioresour. Technol. 2016, 211, 584–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhang, X. Microalgal harvesting using foam flotation: A critical review. Biomass Bioenergy 2019, 120, 176–188. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, C.; Li, L.; Guo, Z.; He, G.; Yu, X.; Liu, R.; Han, H.; Deng, L.; Fu, W. Morpholine-Based Gemini Surfactant: Synthesis and Its Application for Reverse Froth Flotation of Carnallite Ore in Potassium Fertilizer Production. J. Agric. Food Chem. 2018, 66, 13126–13132. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yeh, K.L.; Aisyah, R.; Lee, D.J.; Chang, J.S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, A.; Shobana, S.; Bakonyi, P.; Nemestóthy, N.; Xia, A.; Banu, J.R.; Kumar, G. A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol. Rep. 2019, 21, e00302. [Google Scholar] [CrossRef]
- Lei, X.; Zheng, W.; Ding, H.; Zhu, X.; Chen, Q.; Xu, H.; Zheng, T.; Tian, Y. Effective harvesting of the marine microalga Thalassiosira pseudonana by Marinobacter sp. FL06. Bioresour. Technol. 2018, 269, 127–133. [Google Scholar] [CrossRef]
- Lv, J.; Guo, B.; Feng, J.; Liu, Q.; Nan, F.; Liu, X.; Xie, S. Integration of wastewater treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX. J. Clean. Prod. 2019, 240, 118211. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Thangavel, M.; Nirupama, M. A comprehensive review on harvesting of microalgae for biodiesel—Key challenges and future directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [Google Scholar]
- Show, K.Y.; Lee, D.J.; Chang, J.S. Algal biomass dehydration. Bioresour. Technol. 2013, 135, 720–729. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, Z.; Ma, X. Energy analysis and environmental impacts of microalgal biodiesel in China. Energy Policy 2012, 45, 142–151. [Google Scholar]
- Aziz, M.; Oda, T.; Kashiwagi, T. Integration of energy-efficient drying in microalgae utilization based on enhanced process integration—ScienceDirect. Energy 2014, 70, 307–316. [Google Scholar] [CrossRef]
- Passell, H.; Dhaliwal, H.; Reno, M.; Ben, W.; Amotz, A.B.; Ivry, E.; Gay, M.; Czartoski, T.; Laurin, L.; Ayer, N. Algae biodiesel life cycle assessment using current commercial data. J. Environ. Manag. 2013, 129, 103–111. [Google Scholar] [CrossRef]
- Sagar, V.R.; Kumar, P.S. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratti, C.J. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Posten, C. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 2010, 9, 165–177. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering 2017, 3, 318–329. [Google Scholar] [CrossRef]
- Hu, Q.; Kurano, N.; Kawachi, M.; Iwasaki, I.; Miyachi, S. Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl. Microbiol. Biotechnol. 1998, 49, 655–662. [Google Scholar] [CrossRef]
- Ugwu, C.; Aoyagi, H.; Uchiyama, H. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 2008, 99, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Jonker, J.; Faaij, A. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl. Energy 2013, 102, 461–475. [Google Scholar] [CrossRef]
- Raghuvanshi, S.; Bhakar, V.; Chava, R.; Sangwan, K.S. Comparative Study Using Life Cycle Approach for the Biodiesel Production from Microalgae Grown in Wastewater and Fresh Water. Procedia CIRP 2018, 69, 568–572. [Google Scholar] [CrossRef]
- Pankratz, S.; Kumar, M.; Oyedun, A.O.; Gemechu, E.; Kumar, A. Environmental performances of diluents and hydrogen production pathways from microalgae in cold climates: Open raceway ponds and photobioreactors coupled with thermochemical conversion. Algal Res. 2020, 47, 101815. [Google Scholar] [CrossRef]
- Beal, C.M.; Hebner, R.E.; Webber, M.E.; Ruoff, R.S.; Seibert, A.F. The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility. BioEnergy Res. 2011, 5, 341–362. [Google Scholar] [CrossRef]
- Gupta, A.K.; Hall, C.A. A Review of the Past and Current State of EROI Data. Sustainability 2011, 3, 1796–1809. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, D.L.; Sales, E.; Kiperstok, A. Energy production from microalgae biomass: Carbon footprint and energy balance. J. Clean. Prod. 2015, 96, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Franchetti, M. Life cycle energy demand from algal biofuel generated from nutrients present in the dairy waste. Sustain. Prod. Consum. 2017, 9, 22–27. [Google Scholar] [CrossRef]
- Bva, B.; Dc, C.; Tmm, A.; Aam, A.; Mavf, B.; Nsca, D. A life cycle inventory of microalgae-based biofuels production in an industrial plant concept. Energy Rep. 2020, 6, 397–402. [Google Scholar]
- Banu, J.R.; Preethi; Kavitha, S.; Gunasekaran, M.; Kumar, G. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour. Technol. 2020, 302, 122822. [Google Scholar] [CrossRef] [PubMed]
- Assuno, J.; Malcata, F.X. Enclosed “non-conventional” photobioreactors for microalga production: A review. Algal Res. 2020, 52, 102–107. [Google Scholar]
- Qiang, H.; Faiman, D.; Richmond, A. Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. J. Ferment. Bioeng. 1998, 85, 230–236. [Google Scholar] [CrossRef]
- Vicente, G.; Bautista, L.F.; Gutiérrez, F.J.; Rodríguez, R.; Martínez, V.; Rodríguez-Frómeta, R.A.; Ruiz-Vázquez, R.M.; Torres-Martínez, S.; Garre, V. Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel. Energy Fuels 2010, 24, 3173–3178. [Google Scholar] [CrossRef]
- Kita, K.; Okada, S.; Sekino, H.; Imou, K.; Yokoyama, S.; Amano, T. Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl. Energy 2010, 87, 2420–2423. [Google Scholar] [CrossRef]
- Ap, A.; Sn, B.; Rrb, C.; Pct, D.; Sn, B.; Sd, E.; Ah, F.; Vkpd, G.; Gk, H. Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel—A review. Sci. Total Environ. 2020, 749, 142218. [Google Scholar]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Louveau, J.; Pruvost, J.; Moheimani, N. Energy efficiency analysis of outdoor standalone photovoltaic-powered photobioreactors coproducing lipid-rich algal biomass and electricity. Appl. Energy 2020, 275, 115403. [Google Scholar] [CrossRef]
- Hulatt, C.J.; Thomas, D. Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour. Technol. 2011, 102, 5775–5787. [Google Scholar] [CrossRef]
- Morales, M.; Hélias, A.; Bernard, O. Optimal integration of microalgae production with photovoltaic panels: Environmental impacts and energy balance. Biotechnol. Biofuels 2019, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
Closed PBR System | Types | Advantages | Disadvantages | Applications |
---|---|---|---|---|
Tubular PBR |
|
| Suitable for outdoor cultivation. | |
Flat-Panel PBR |
|
| Suitable for small-scale/laboratory cultivation. | |
Column PBR |
|
| Suitable for small-scale /laboratory cultivation. | |
Plastic bag PBR |
|
| For large scale CO2 fixation and sewage treatment. | |
Open PBR system | Open Pond |
|
| Current commercial production of microalgae. |
Harvesting Technique | Advantages | Disadvantages |
---|---|---|
Sedimentation |
|
|
Centrifugation |
|
|
Filtration |
|
|
Flotation |
|
|
Flocculation |
|
|
Microalgae Species | Cultivation System | Harvesting Technology | Pre-Harvesting Microalgae Concentration (kg/m3) | Energy Consumption Ratio a | Notes | References |
---|---|---|---|---|---|---|
Microalga P. Tricornutum, | Bubble column PBR | Centrifugation | 0.96 | 0.274 bc | [46] | |
Chlorella Vulgaris | Open raceway pond | Flocculation(Alum) + Settling + Centrifugation | 0.48 | 0.058 b | Scenario 1: Low biomass production | [39] |
Chlorella Vulgaris | Open raceway pond | Flocculation(Alum) + Settling + Centrifugation | 1 | 0.033 b | Scenario 2: High biomass production | [39] |
Chlorella Vulgaris | Bubble column PBR | Flocculation(Alum) + Settling + Centrifugation | 0.75 | 0.007 b | Scenario 3: Low biomass production | [39] |
Chlorella Vulgaris | Bubble column PBR | Flocculation(Alum) + Settling + Centrifugation | 2.59 | 0.002 b | Scenario 4: High biomass production | [39] |
Chlorella Vulgaris | Tubular PBR | Flocculation(Alum) + Settling + Centrifugation | 8 | 0.003 b | Scenario 3: Low biomass production | [39] |
Chlorella vulgaris | Tubular PBR | Flocculation(Alum) + settling + centrifugation | 20 | 0.002 b | Scenario 4: High biomass production | [39] |
Scenedesmus dimorphus | — | Centrifugation | — | 0.325 b | [41] | |
Scenedesmus dimorphus | — | Chamber press filtration | — | 0.286 b | [41] | |
Scenedesmus dimorphus | — | Chamber press filtration | — | 0.286 b | [41] | |
Scenedesmus dimorphus | — | Flocculation(Alum/ph-lime/chitosan) | — | 0.033 b | [41] | |
— | Open raceway pond | Centrifugation | 0.2 | 0.330 | [85] | |
— | Open raceway pond | Settling + centrifugation | 0.2 | 0.027 | [85] | |
Scenedesmus dimorphus | — | Chamber press filtration | — | 0.286 b | [41] | |
Scenedesmus dimorphus | — | Flocculation(Alum/ph-lime/chitosan) | — | 0.033 b | [41] | |
— | Open raceway pond | Centrifugation | 0.2 | 0.330 | [85] | |
— | Open raceway pond | Settling + centrifugation | 0.2 | 0.027 | [85] | |
— | Tubular PBR | Centrifugation | 4 | 0.067 | [85] | |
— | Tubular PBR | Settling + centrifugation | 4 | 0.027 | [85] | |
Tetraselmis suecica | Plastic bag PBR | Centrifugation | — | 0.176 b | [50] | |
Chlorella sp. | Flat-Panel PBR | Flocculation + settling + centrifugation | 2 | 0.009 bd | [66] | |
Staurosira sp. | PBR + Open raceway pond | Settling + centrifuge | 0.36 | 0.081 b | Low-N, paddle-wheel pond circulation 24 h/day | [54] |
Staurosira sp. | PBR + Open raceway pond | Settling + filter press | 0.36 | 0.00 3 b | Low-N, airlift pond circulation 16 h/day | [54] |
Staurosira sp. | PBR + Open raceway pond | Settling + filter press | 0.618 | 0.002 b | High-N, airlift pond circulation 16 h/day | [54] |
— | PBR | Ultra/micro filtration membrane + centrifugation | — | 0.011 b | [87] | |
— | Open raceway pond | Ultra/micro filtration membrane + centrifugation | — | 0.062 b | [87] | |
Chlorella vulgaris | Open raceway pond | Flocculation + centrifugation | — | 0.088 b | Waste water | [86] |
Chlorella vulgaris | Open raceway pond | Flocculation + centrifugation | — | 0.139 b | Fresh water | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Chen, Y.; Zhang, Q. A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production. Sustainability 2021, 13, 8873. https://doi.org/10.3390/su13168873
Chen M, Chen Y, Zhang Q. A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production. Sustainability. 2021; 13(16):8873. https://doi.org/10.3390/su13168873
Chicago/Turabian StyleChen, Minghao, Yixuan Chen, and Qingtao Zhang. 2021. "A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production" Sustainability 13, no. 16: 8873. https://doi.org/10.3390/su13168873
APA StyleChen, M., Chen, Y., & Zhang, Q. (2021). A Review of Energy Consumption in the Acquisition of Bio-Feedstock for Microalgae Biofuel Production. Sustainability, 13(16), 8873. https://doi.org/10.3390/su13168873