Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study
Abstract
:1. Introduction
2. Biogas and Biomethane in Portugal
3. Case Study
3.1. Évora
3.2. The Évora Wastewater Treatment Plant
3.3. The Évora Regasification Unit
3.4. Scenarios Considered
- Scenario 1: this case was selected as the baseline scenario for the proper comparison with the two actions expressed above. Therefore, in this scenario, no CO2 is sold, and no incentives for producing biomethane were considered. The different revenues and costs necessary to install and run the biogas upgrading unit are herein analyzed.
- Scenario 2: this case examines the dependence of the economic viability indicators on the prices for selling CO2. A discussion on the CO2 price needed to make the project profitable in comparison with the realistic CO2 selling price is also included.
- Scenario 3: the last scenario considered in this work includes both the effect of biomethane incentives offered by the government and the sale of CO2. Furthermore, a comparison between the biomethane incentives needed to make the project profitable with and without selling the CO2 was carried out.
4. Methods
Variable | Value | Reference |
---|---|---|
pNG (EUR/MWh) | 27.3 | [12] |
Cu,inv,1 (EUR/m3) | 6000 | [27,49,54] |
Cu,inv,2 (EUR/km) | 237,500 | [28] |
nl (y) | 15 | [55] |
rint (%) | 3 | [50] |
pom,1 (%) | 10 | [28] |
pom,2 (%) | 10 | [56] |
pdf (%) | 20 | [28] |
pins (%) | 1 | [49] |
Cu,e (kWh/m3) | 0.29 | [54] |
pe (EUR/kWh) | 0.144 | [57] |
Clab,u (EUR/year/worker) | 11,549 | [27] |
nop (worker) | 1 | [49] |
nwh (h/year) | 8000 | [58] |
rd (%) | 6 | - |
Qbiogas (m3/month) | 24,917 | [44] |
Qe,CHP (kWh/month) | 38,564 | [44] |
Qu,CHP (EUR/KWh) | 0.01125 | [44] |
5. Results
5.1. Baseline Scenario Results
5.2. Impact of Selling CO2 on the Profitability of the Biomethane Unit Proposed
5.3. Impact of Incentives for Producing Biomethane on the Profitability of the Biomethane Unit Proposed
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
Abbreviation | Name |
CHP | Combined heat and power |
COVID-19 | Disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
EOR | Enhanced oil recovery |
GHG | Greenhouse gas |
LNG | Liquefied natural gas |
O&M | Operation and maintenance |
WWTP | Wastewater treatment plant |
Nomenclature
Symbol | Name | Units |
BOD5 | Biochemical Oxygen Demand | mg/L |
Cdf | Depreciation Cost | EUR |
Ce | Electricity Cost | EUR |
Cil | Interest of Loan Cost | EUR |
Cins | Insurance Cost | EUR |
Cinv | Investment Cost | EUR |
Clab | Labor Cost | EUR |
Clabu | Unitary Labor Cost | EUR/worker |
Cloan | Cost of Loan | EUR |
Com | Maintenance & Overhead Cost | EUR |
Cu,CHP | Unitary Cost for Combined Heat and Power | EUR/kWh |
Cu,e | Unitary Cost for Electricity | EUR/kWh |
Cu,inv | Unitary Investment Cost | EUR/m3 |
CueBU | Unitary Electricity Consumption for Biogas Upgrading | kWh/m3 biogas |
DPBT | Discounted Payback Time | years |
IRR | Internal Rate of Return | % |
It | Cash Inflow at year t | EUR |
N | Number of Years | years |
nl | Loan Years | years |
nop | Number of workers | workers |
NPV | Net Present Value | EUR |
nwh | Working hours | h/y |
Ot | Cash Outflow at year t | EUR |
Depreciation Percentage | % | |
pe | Electricity Price | EUR/kWh |
PI | Profitability Index | EUR/EUR |
pins | Insurance Percentage | % |
pmo | Maintenance & Overhead Percentage | % |
png | Natural Gas Price | EUR/MWh |
pCO2 | Carbon Dioxide Price | EUR/t |
ppremium | Incentives price | EUR/MWh |
Qbiogas | Biogas Flow | m3/h |
Qbiomethane | Biomethane Flow | m3/h |
QCO2 | Carbon Dioxide Flow | m3/h |
Qe,CHP | Average Electricity Produced by Combined Heat and Power | kWh/month |
Rbiomethane | Biomethane Revenues | EUR |
RCHP avoided cost | Avoided Cost for Combined Heat and Power | EUR |
RCO2 | Carbon Dioxide Revenues | EUR |
rd | Discount Rate | % |
rint | Interest rate | % |
t | Time | years |
References
- Pestana, C.; Barros, L.; Scuri, S.; Barreto, M. Can HCI Help Increase People’s Engagement in Sustainable Development? A Case Study on Energy Literacy. Sustainability 2021, 13, 7543. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Sebastia-Saez, D.; Pastor-Pérez, L.; Ramirez-Reina, T. Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom. Renew. Sustain. Energy Rev. 2021, 144, 110939. [Google Scholar] [CrossRef]
- Maraqa, M.A.; Albuquerque, F.D.B.; Alzard, M.H.; Chowdhury, R.; Kamareddine, L.A.; El Zarif, J. GHG Emission Reduction Opportunities for Road Projects in the Emirate of Abu Dhabi: A Scenario Approach. Sustainability 2021, 13, 7367. [Google Scholar] [CrossRef]
- Tsiakiri, E.P.; Mpougali, A.; Lemonidis, I.; Tzenos, C.A.; Kalamaras, S.D.; Kotsopoulos, T.A.; Samaras, P. Estimation of Energy Recovery Potential from Primary Residues of Four Municipal Wastewater Treatment Plants. Sustainability 2021, 13, 7198. [Google Scholar] [CrossRef]
- Rosas, J.G.; Gómez, N.; Cara-Jiménez, J.; González-Arias, J.; Olego, M.Á.; Sánchez, M.E. Evaluation of joint management of pine wood waste and residual microalgae for agricultural application. Sustainability 2020, 13, 53. [Google Scholar] [CrossRef]
- International Energy Agency. Renewables Information: Overview. 2019. Available online: https://iea.blob.core.windows.net/assets/6959bcb0-d298-404c-80e1-2afaa784798e/Renewables_Information_2019_Overview.pdf (accessed on 4 July 2021).
- D’Adamo, I.; Rosa, P. How do you see infrastructure? Green energy to provide economic growth after COVID-19. Sustainability 2020, 12, 4738. [Google Scholar] [CrossRef]
- González-Arias, J.; Carnicero, A.; Sánchez, M.E.; Martínez, E.J.; López, R.; Cara-Jiménez, J. Management of off-specification compost by using co-hydrothermal carbonization with olive tree pruning. Assessing energy potential of hydrochar. Waste Manag. 2021, 124, 224–234. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, L.; Nithya, K.; Loh, K.C.; Dai, Y.; He, Y.; Wah Tong, Y. Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste. Appl. Energy 2019, 249, 28–36. [Google Scholar] [CrossRef]
- Ali, S.M.H.; Lenzen, M.; Sack, F.; Yousefzadeh, M. Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids. Appl. Energy 2020, 268, 114960. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Eurostat. 2020. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 4 March 2020).
- Ning, C.; You, F. Data-driven Wasserstein distributionally robust optimization for biomass with agricultural waste-to-energy network design under uncertainty. Appl. Energy 2019, 255, 113857. [Google Scholar] [CrossRef]
- Schopf, K.; Judex, J.; Schmid, B.; Kienberger, T. Modeling the bioenergy potential of municipal wastewater treatment plants. Water Sci. Technol. 2018, 77, 2613–2623. [Google Scholar] [CrossRef] [PubMed]
- Mills, N.; Pearce, P.; Farrow, J.; Thorpe, R.B.; Kirkby, N.F. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag. 2014, 34, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Vasco-Correa, J.; Khanal, S.; Manandhar, A.; Shah, A. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 2018, 247, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Vilches, L.F.; Navarrete, B.; Zhang, Z. Biogas upgrading by cryogenic techniques. Environ. Chem. Lett. 2019, 17, 1251–1261. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; le Saché, E.; Pastor-Pérez, L.; Reina, T.R. Membrane-based technologies for biogas upgrading: A review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
- Hobson, J. CH4 and N2O Emissions from Waste Water Handling. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change (IPCC) Publications: Geneve, Switzerland, 2000. [Google Scholar]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Ramirez-Reina, T.; Zhang, Z.; Vilches, L.; Navarrete, B. Understanding the effect of Ca and Mg ions from wastes in the solvent regeneration stage of a biogas upgrading unit. Sci. Total Environ. 2019, 691, 93–100. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kumar, J.; Vu, M.T.; Mohammed, J.A.H.; Pathak, N.; Commault, A.S.; Sutherland, D.; Zdarta, J.; Tyagi, V.K.; Nghiem, L.D. Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Sci. Total Environ. 2020, 765, 142753. [Google Scholar] [CrossRef] [PubMed]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valoriz. 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Calderón, C.; Colla, M.; Jossart, J.-M.; Hemelleers, N.; Martin, A.; Aveni, N.; Caferri, C. European Bioenergy Outlook 2019; Biogas: Brussels, Belgium, 2019. [Google Scholar]
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.D.; Lonza, L. Review of technologies for biomethane production and assessment of EU transport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Reina, T.R.; Rodríguez-Galán, M.; Navarrete, B.; Vilches, L.F. Synergizing carbon capture and utilization in a biogas upgrading plant based on calcium chloride: Scaling-up and profitability analysis. Sci. Total Environ. 2021, 758, 143645. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Ramirez-Reina, T.; Vilches, L.; Navarrete, B. Understanding the influence of the alkaline cation K+ or Na+ in the regeneration efficiency of a biogas upgrading unit. Int. J. Energy Res. 2019, 43, 1578–1585. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Miliacca, M. A profitability analysis of small-scale plants for biomethane injection into the gas grid. J. Clean. Prod. 2018, 184, 179–187. [Google Scholar] [CrossRef]
- Ferella, F.; Cucchiella, F.; D’Adamo, I.; Gallucci, K. A techno-economic assessment of biogas upgrading in a developed market. J. Clean. Prod. 2019, 210, 945–957. [Google Scholar] [CrossRef]
- Venkatesh, G.; Elmi, R.A. Economic-environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway). Energy 2013, 58, 220–235. [Google Scholar] [CrossRef]
- Collet, P.; Flottes, E.; Favre, A.; Raynal, L.; Pierre, H.; Capela, S.; Peregrina, C. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Appl. Energy 2017, 192, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Michailos, S.; Walker, M.; Moody, A.; Poggio, D.; Pourkashanian, M. Biomethane production using an integrated anaerobic digestion, gasification and CO2 biomethanation process in a real waste water treatment plant: A techno-economic assessment. Energy Convers. Manag. 2020, 209, 112663. [Google Scholar] [CrossRef]
- EBA. European Biogas Association Statistical Report for Year 2019; European Biogas Association: Brussels, Belgium, 2020. [Google Scholar]
- GIE. EBA European Biomethane Map. Available online: https://www.europeanbiogas.eu/eba-gie-biomethane-map/ (accessed on 4 July 2021).
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Terlouw, W.; Peters, D.; van Tilburg, J.; Schimmel, M.; Berg, T.; Cilhar, J.; Rehman Mir, G.U.; Spöttle, M.; Staats, M.; Lejaretta, A.V.; et al. Gas for Climate. The Optimal Role for Gas in a Net-Zero Emissions Energy System; Navigant Consulting Inc.: Utrecht, The Netherlands, 2019; Volume 231. [Google Scholar]
- Cabrita, I.; Silva, L.M.; Marques, I.P.R.; Di Berardino, S.; Gírio, F.M. Avaliação do Potencial e Impacto do Biometano em Portugal; LNEG: Lisbon, Portugal, 2015. [Google Scholar]
- European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, 2018, 1–128. [Google Scholar]
- Europe Union. Orientations towards the First Strategic Plan for Horizon Europe. 2019. Available online: https://ec.europa.eu/info/sites/default/files/research_and_innovation/strategy_on_research_and_innovation/documents/ec_rtd_orientations-he-strategic-plan_122019.pdf (accessed on 4 July 2021).
- Cabrita, I.; Pinto, F.; Lopes, H.; Oliveira, F.; Marques, I.P. Resíduos Industrias; INETI, DGEG: Lisbon, Portugal, 2000. [Google Scholar]
- Ferreira, M.; Marques, I.P.; Malico, I. Biogas in Portugal: Status and public policies in a European context. Energy Policy 2012, 43, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Kampman, B.; Leguijt, C.; Scholten, T.; Tallat-Kelpsaite, J.; Brückmann, R.; Maroulis, G.; Lesschen, J.P.; Meesters, K.; Sikirica, N.; Elbersen, B. Optimal Use of Biogas from Waste Streams—An Assessment of the Potential of Biogas from Digestion in the EU beyond 2020; European Commission: Luxembourg, 2017. [Google Scholar] [CrossRef]
- PNEC Plano Nacional de Energia e Clima. Available online: https://apambiente.pt/_zdata/Alteracoes_Climaticas/Mitigacao/PNEC/PNECPT_TemplateFinal201930122019.pdf (accessed on 23 January 2020).
- DGEG. Consumo de Gás Natural no Mercado Interno em 2018 (Provisório). Available online: http://www.dgeg.gov.pt/ (accessed on 4 July 2021).
- Monte, M.M.D. Contributo para o Estudo da Valorização Energética de Biogás em Estações de Tratamento de Águas Residuais. Master’s Thesis, Nova University of Lisbon, Lisbon, Portugal, 2010. [Google Scholar]
- Assembleia da República. Diário da República; Lei n.o 88/2017; Assembleia da República: Lisbon, Portugal, 2017; pp. 3190–3228. [Google Scholar]
- CertiTecna. Avaliação de Compatibilidade de Localização; Dianagás; Unidade Autónoma de Gás Natural (UAG); CertiTecna: Lisbon, Portugal, 2016. [Google Scholar]
- Costa, C.M.d.E. Estudo de Melhorias em ETAR com Produção de Biogás e Geração de Eletricidade ETAR Municipal de Abrantes. Master’s Thesis, Universidade da Beira Interior, Covilhã, Portugal, 2014. [Google Scholar]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Vilches, L.F.; Navarrete, B. Review: Recent advances in biogas purifying technologies. Int. J. Green Energy 2019, 16, 401–412. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I. Technical and economic analysis of biomethane: A focus on the role of subsidies. Energy Convers. Manag. 2016, 119, 338–351. [Google Scholar] [CrossRef]
- European Central Bank (ECB). Survey on the Access to Finance of Enterprises in the Euro Area—April to September 2019; ECB: Frankfurt am Main, Germany, 2019. [Google Scholar]
- Segurança Social Segurança Social. Available online: www.seg-social.pt/ (accessed on 4 July 2021).
- Baena-Moreno, F.M.; Malico, I.; Rodríguez-Galán, M.; Serrano, A.; Fermoso, F.G.; Navarrete, B. The importance of governmental incentives for small biomethane plants in South Spain. Energy 2020, 206, 118158. [Google Scholar] [CrossRef]
- Kraussler, M.; Pontzen, F.; Müller-Hagedorn, M.; Nenning, L.; Luisser, M.; Hofbauer, H. Techno-economic assessment of biomass-based natural gas substitutes against the background of the EU 2018 renewable energy directive. Biomass Convers. Biorefinery 2018, 8, 935–944. [Google Scholar] [CrossRef] [Green Version]
- Bortoluzzi, G.; Gatti, M.; Sogni, A.; Consonni, S. Biomethane production from agricultural resources in the Italian scenario: Techno-Economic analysis of water wash. Chem. Eng. Trans. 2014, 37, 259–264. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Ferella, F. A socio-economic analysis of biomethane in the transport sector: The case of Italy. Waste Manag. 2019, 95, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Profitability analysis for biomethane: A strategic role in the Italian transport sector. Int. J. Energy Econ. Policy 2015, 5, 440–449. [Google Scholar]
- PORDATA. Electricity Prices for Households and Industrial Users (Euro/ECU). Available online: https://www.pordata.pt/en/Europe/Electricity+prices+for+households+and+industrial+users+(Euro+ECU)-1477 (accessed on 18 July 2019).
- Skorek-Osikowska, A.; Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential. Energy 2020, 200, 117452. [Google Scholar] [CrossRef]
- International Energy Agency. Putting CO2 to Use. Creating Value from Emissions; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Universal Industrial Gases CO2 Industrial Uses. Available online: http://www.uigi.com/carbondioxide.html (accessed on 4 July 2021).
- Baena-moreno, F.M.; Rodríguez-galán, M.; Vega, F.; Alonso-fariñas, B.; Arenas, L.F.V.; Navarrete, B. Carbon capture and utilization technologies: A literature review and recent advances. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1403–1433. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Z. Advances in carbon capture, utilization and storage. Appl. Energy 2020, 278, 115627. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent advances in carbon dioxide utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. CO₂ and Greenhouse Gas Emissions Resource; Our World in Data: Oxford, UK, 2020. [Google Scholar]
- Marc, A.; Carole, M. Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy; Ifri: Paris, France, 2019. [Google Scholar]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Sustainable Italian cities: The added value of biomethane from organic waste. Appl. Sci. 2019, 9, 2221. [Google Scholar] [CrossRef] [Green Version]
- Horschig, T.; Adams, P.W.R.; Gawel, E.; Thrän, D. How to decarbonize the natural gas sector: A dynamic simulation approach for the market development estimation of renewable gas in Germany. Appl. Energy 2018, 213, 555–572. [Google Scholar] [CrossRef]
- Entidade Reguladora dos Serviços Energéticos ERSE. Available online: https://www.erse.pt/ (accessed on 5 March 2020).
- GALP. Available online: https://galpgasnaturaldistribuicao.pt/ (accessed on 5 March 2020).
- Sonorgás. Available online: https://www.sonorgas.pt/ (accessed on 5 March 2020).
- Debone, D.; da Costa, M.; Miraglia, S. 90 Days of COVID-19 Social Distancing and Its Impacts on Air Quality and Health in Sao Paulo, Brazil. Sustainability 2020, 12, 7440. [Google Scholar] [CrossRef]
- Moslem, S.; Campisi, T.; Szmelter-Jarosz, A.; Duleba, S.; Nahiduzzaman, K.; Tesoriere, G. Best–Worst Method for Modelling Mobility Choice after COVID-19: Evidence from Italy. Sustainability 2020, 12, 6824. [Google Scholar] [CrossRef]
- Giudice, F.; Caferra, R.; Morone, P. COVID-19, the Food System and the Circular Economy: Challenges and Opportunities. Sustainability 2020, 12, 7939. [Google Scholar] [CrossRef]
Indicator (Units) | Value |
---|---|
NPV (k EUR) | −1325 |
DPBT (years) | >20 |
IRR (%) | n.d. |
PI (-) | −2.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baena-Moreno, F.M.; Malico, I.; Marques, I.P. Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study. Sustainability 2021, 13, 8933. https://doi.org/10.3390/su13168933
Baena-Moreno FM, Malico I, Marques IP. Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study. Sustainability. 2021; 13(16):8933. https://doi.org/10.3390/su13168933
Chicago/Turabian StyleBaena-Moreno, Francisco M., Isabel Malico, and Isabel Paula Marques. 2021. "Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study" Sustainability 13, no. 16: 8933. https://doi.org/10.3390/su13168933
APA StyleBaena-Moreno, F. M., Malico, I., & Marques, I. P. (2021). Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study. Sustainability, 13(16), 8933. https://doi.org/10.3390/su13168933