Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector
Abstract
:1. Introduction
2. Methodology
2.1. Research Design
2.2. LCIA Methods and Impact Categories
2.3. Datasets for Comparison
2.4. Development of Conversion Factors
3. Results
3.1. Conversion Cards
3.2. Climate Change (Global Warming)
3.3. Acidification
3.4. Ozone Depletion
3.5. Eutrophication
3.6. Energy Depletion
3.7. Resource Depletion
3.8. Smog
3.9. Water Depletion
3.10. Human Toxicity (Cancer)
3.11. Human Toxicity (Non-Cancer)
3.12. Particulate Matter
3.13. Ecotoxicity
3.14. Land Use
3.15. Ionizing Radiation
4. Case Studies
4.1. Aircretes
4.2. Buildings
5. Discussion
5.1. Applications
5.2. Limitations
6. Concluding Remarks
- The differences in the results from LCIA methods are caused by the characterization factors, rather than the metrics.
- Although the same metrics are adopted for some LCIA methods, a fair comparison cannot be guaranteed. A comparison based only on the same metrics but ignoring the underlying mechanisms is misleading.
- A small difference in characterization factors of LCIA methods can generate entirely different results, consequently leading to the uncorrelation between LCIA methods.
- High correlations are observed for climate change, acidification, eutrophication, and resource depletion.
- For some impact categories, the inconsistency is caused by certain characterization factors, such as climate change of ILCD, smog of ReCiPe, etc. In such cases, adjustments of regression models can be made to facilitate the comparison.
- Despite different metrics are adopted in acidification, the LCIA methods are highly correlated.
- Some impact categories cannot be compared, since the entire list of characterization factors are not correlated, such as human toxicity of IMPACT2002+, CML and EDIP.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISO. ISO 14040: International Standard. In Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. ISO 14044: International Standard. In Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Guinée, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess 2001, 7, 311–313. [Google Scholar] [CrossRef]
- Hauschild, M.; Potting, J. Spatial Differentiation in Life Cycle Assessment—The EDIP 2003 Metholodgy; Institute for Product Development, Technical University of Denmark: Odense, Denmark, 2003. [Google Scholar]
- EC. Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment Methods; Joint Research Centre, Institute for Environment and Sustainability, European Commission: Luxembourg, 2012. [Google Scholar]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Bare, J. TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol. Environ. Policy 2011, 13, 687–696. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Goedkoop, M.; Guinée, J.; Heijungs, R.; Huijbregts, M.; Jolliet, O.; Margni, M.; De Schryver, A.; Humbert, S.; Laurent, A.; et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 2013, 18, 683–697. [Google Scholar] [CrossRef]
- Bach, V.; Finkbeiner, M. Approach to qualify decision support maturity of new versus established impact assessment methods—demonstrated for the categories acidification and eutrophication. Int. J. Life Cycle Assess. 2016, 22, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Vandenbergh, T.; Pyl, L. BIM-based life cycle assessment and life cycle costing of an office building in Western Europe. Build. Environ. 2020, 169, 106568. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; Moya, L. Comparative BIM-based Life Cycle Assessment of Uruguayan timber and concrete-masonry single-family houses in design stage. J. Clean. Prod. 2020, 277, 121958. [Google Scholar] [CrossRef]
- Dreyer, L.C.; Niemann, A.L.; Hauschild, M.Z. Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99. Int. J. Life Cycle Assess. 2003, 8, 191–200. [Google Scholar] [CrossRef]
- Pant, R.; Van Hoof, G.; Schowanek, D.; Feijtel, T.C.J.; De Koning, A.; Hauschild, M.; Olsen, S.I.; Pennington, D.W.; Rosenbaum, R. Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment. Int. J. Life Cycle Assess. 2004, 9, 295. [Google Scholar] [CrossRef]
- Pizzol, M.; Christensen, P.; Schmidt, J.; Thomsen, M. Impacts of “metals” on human health: A comparison between nine different methodologies for Life Cycle Impact Assessment (LCIA). J. Clean. Prod. 2011, 19, 646–656. [Google Scholar] [CrossRef]
- Zhou, J.; Chang, V.W.-C.; Fane, A.G. Environmental life cycle assessment of reverse osmosis desalination: The influence of different life cycle impact assessment methods on the characterization results. Desalination 2011, 283, 227–236. [Google Scholar] [CrossRef]
- Cavalett, O.; Chagas, M.F.; Seabra, J.E.A.; Bonomi, A. Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int. J. Life Cycle Assess. 2013, 18, 647–658. [Google Scholar] [CrossRef]
- Owsianiak, M.; Laurent, A.; Bjørn, A.; Hauschild, M.Z. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: A case study-based comparison. Int. J. Life Cycle Assess. 2014, 19, 1007–1021. [Google Scholar] [CrossRef]
- Ng, S.T.; Dong, Y.H.; Kumaraswamy, M.M. Critical analysis of the life cycle impact assessment methods. Environ. Eng. Manag. J. 2016, 15, 879–890. [Google Scholar] [CrossRef]
- Lieberei, J.; Gheewala, S.H. Resource depletion assessment of renewable electricity generation technologies—Comparison of life cycle impact assessment methods with focus on mineral resources. Int. J. Life Cycle Assess. 2016, 22, 185–198. [Google Scholar] [CrossRef]
- Sonderegger, T.; Dewulf, J.; Fantke, P.; De Souza, D.M.; Pfister, S.; Stoessel, F.; Verones, F.; Vieira, M.; Weidema, B.; Hellweg, S. Towards harmonizing natural resources as an area of protection in life cycle impact assessment. Int. J. Life Cycle Assess. 2017, 22, 1912–1927. [Google Scholar] [CrossRef] [Green Version]
- Turk, J.; Oven, P.; Poljanšek, I.; Lešek, A.; Knez, F.; Rebec, K.M. Evaluation of an environmental profile comparison for nanocellulose production and supply chain by applying different life cycle assessment methods. J. Clean. Prod. 2020, 247, 119107. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. On the environmental impacts of 3D printing technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Atia, N.G.; Bassily, M.A.; Elamer, A.A. Do life-cycle costing and assessment integration support decision-making towards sustainable development? J. Clean. Prod. 2020, 267, 122056. [Google Scholar] [CrossRef]
- Monteiro, H.; Freire, F. Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods. Energy Build. 2012, 47, 572–583. [Google Scholar] [CrossRef] [Green Version]
- Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Macleod, M.; Margni, M.; van de Meent, D.; Rosenbaum, R.; McKone, T.E. Building a Model Based on Scientific Consensus for Life Cycle Impact Assessment of Chemicals: The Search for Harmony and Parsimony. In Environmental Science & Technology; American Chemical Society (ACS): Washington, DC, USA, 2008; Volume 42, pp. 7032–7037. [Google Scholar]
- Huijbregts, M. A critical view on scientific consensus building in life cycle impact assessment. Int. J. Life Cycle Assess. 2013, 19, 477–479. [Google Scholar] [CrossRef] [Green Version]
- Rack, M.; Valdivia, S.; Sonnemann, G. Life Cycle Impact Assessment—Where we are, trends, and next steps: A late report from a UNEP/SETAC Life Cycle Initiative workshop and a few updates from recent developments. Int. J. Life Cycle Assess. 2013, 18, 1413–1420. [Google Scholar] [CrossRef]
- Frischknecht, R.; Fantke, P.; Tschümperlin, L.; Niero, M.; Antón, A.; Bare, J.; Boulay, A.-M.; Cherubini, F.; Hauschild, M.Z.; Henderson, A.; et al. Global guidance on environmental life cycle impact assessment indicators: Progress and case study. Int. J. Life Cycle Assess. 2016, 21, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Jolliet, O.; Antón, A.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; I Canals, L.M.; Motoshita, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018, 23, 2189–2207. [Google Scholar] [CrossRef] [Green Version]
- Fantke, P.; Aurisano, N.; Bare, J.; Backhaus, T.; Bulle, C.; Chapman, P.M.; De Zwart, D.; Dwyer, R.; Ernstoff, A.; Golsteijn, L.; et al. Toward harmonizing ecotoxicity characterization in life cycle impact assessment. Environ. Toxicol. Chem. 2018, 37, 2955–2971. [Google Scholar] [CrossRef]
- Woods, J.S.; Damiani, M.; Fantke, P.; Henderson, A.; Johnston, J.; Bare, J.; Sala, S.; De Souza, D.M.; Pfister, S.; Posthuma, L.; et al. Ecosystem quality in LCIA: Status quo, harmonization, and suggestions for the way forward. Int. J. Life Cycle Assess. 2018, 23, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Núñez, M.; Rosenbaum, R.; Karimpour, S.; Boulay, A.-M.; Lathuillière, M.J.; Margni, M.; Scherer, L.; Verones, F.; Pfister, S. A Multimedia Hydrological Fate Modeling Framework to Assess Water Consumption Impacts in Life Cycle Assessment. Environ. Sci. Technol. 2018, 52, 4658–4667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutel, C.; Liao, X.; Patouillard, L.; Bare, J.; Fantke, P.; Frischknecht, R.; Hauschild, M.Z.; Jolliet, O.; De Souza, D.M.; Laurent, A.; et al. Overview and recommendations for regionalized life cycle impact assessment. Int. J. Life Cycle Assess. 2019, 24, 856–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasvaux, S.; Achim, F.; Garat, P.; Peuportier, B.; Chevalier, J.; Habert, G. Correlations in Life Cycle Impact Assessment methods (LCIA) and indicators for construction materials: What matters? Ecol. Indic. 2016, 67, 174–182. [Google Scholar] [CrossRef]
- Steinmann, Z.; Schipper, A.M.; Hauck, M.; Huijbregts, M. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles? Environ. Sci. Technol. 2016, 50, 3913–3919. [Google Scholar] [CrossRef]
- Esnouf, A.; Latrille, É.; Steyer, J.-P.; Helias, A. Representativeness of environmental impact assessment methods regarding Life Cycle Inventories. Sci. Total. Environ. 2018, 621, 1264–1271. [Google Scholar] [CrossRef]
- Buyle, M.; Braet, J.; Audenaert, A. Life cycle assessment in the construction sector: A review. Renew. Sustain. Energy Rev. 2013, 26, 379–388. [Google Scholar] [CrossRef]
- Geng, S.; Wang, Y.; Zuo, J.; Zhou, Z.; Du, H.; Mao, G. Building life cycle assessment research: A review by bibliometric analysis. Renew. Sustain. Energy Rev. 2017, 76, 176–184. [Google Scholar] [CrossRef]
- De Schryver, A.M.; Brakkee, K.W.; Goedkoop, M.J.; Huijbregts, M. Characterization Factors for Global Warming in Life Cycle Assessment Based on Damages to Humans and Ecosystems. Environ. Sci. Technol. 2009, 43, 1689–1695. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.H.; Ng, S.T. Comparing the midpoint and endpoint approaches based on ReCiPe—a study of commercial buildings in Hong Kong. Int. J. Life Cycle Assess. 2014, 19, 1409–1423. [Google Scholar] [CrossRef]
- Pre-Sustainability. Available online: http://www.pre-sustainability.com/simapro-lca-software (accessed on 20 November 2020).
- PE-International. Available online: http://www.gabi-software.com (accessed on 20 November 2020).
- Fazio, S.; Castellani, V.; Sala, S.; Schau, E.; Secchi, M.; Zampori, L.; Diaconu, E. Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Methods; European Commission: Ispra, Italy, 2018. [Google Scholar]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- EMSD. Consultancy Study on Life Cycle Energy Analysis of Building Construction; Electrical and Mechanical Services Department: Hong Kong, China, 2006.
- Satola, D.; Kristiansen, A.B.; Houlihan-Wiberg, A.; Gustavsen, A.; Ma, T.; Wang, R.Z. Comparative life cycle assessment of various energy efficiency designs of a container-based housing unit in China: A case study. Build. Environ. 2020, 186, 107358. [Google Scholar] [CrossRef]
LCIA Methods | CML | EDIP | EF | EPD | ILCD | IMPACT | ReCiPe | TRACI |
---|---|---|---|---|---|---|---|---|
References | [3] | [4] | [43] | environdec.com (accessed on 2 April 2021) | [5] | [44] | [6] | [7] |
Region | Europe | Europe | Europe | Global | Europe | Europe | Global | North America |
Version | IA-baseline | 2003 | 2.0 | 2018 | 2001 Midpoint+ | 2002+ | 2016 Midpoint(H) | 2.1 |
Approach | Mid | Mid | Mid/End | Mid | Mid | Mid/End | Mid | Mid |
Global warming | kg CO2 eq | kg CO2 eq | kg CO2 eq | kg CO2 eq | kg CO2 eq | kg CO2 eq | kg CO2 eq | kg CO2 eq |
Acidification | kg SO2 eq | m2 | mol H+ eq | kg SO2 eq | mol H+ eq | kg SO2 eq | kg SO2 eq | kg SO2 eq |
Ozone depletion | kg CFC-11 eq | kg CFC-11 eq | kg CFC-11 eq | kg CFC-11 eq | kg CFC-11 eq | kg CFC-11 eq | kg CFC-11 eq | kg CFC-11 eq |
Eutrophication | kg PO4 eq | kg P | kg P eq | kg PO4 eq | kg P eq | kg PO4 P-lim | kg P eq | kg N eq |
Energy consumption | MJ | MJ | MJ | MJ primary | kg oil eq | MJ surplus | ||
Resource | kg Sb eq | PR2004 | kg Sb eq | kg Sb eq | kg Sb eq | kg Cu eq | ||
Smog | kg C2H4 eq | per.ppm.h | kg NMVOC eq | kg NMVOC | kg NMVOC eq | kg C2H4 eq | kg NOx eq | kg O3 eq |
Water depletion | m3 depriv. | m3 eq | m3 water eq | m3 | ||||
Human toxicity (Cancer) | kg 1,4-DB eq | person | CTUh | CTUh | kg C2H3Cl eq | kg 1,4-DCB | CTUh | |
Human toxicity (Non-Cancer) | kg 1,4-DB eq | person | CTUh | CTUh | kg C2H3Cl eq | kg 1,4-DCB | CTUh | |
Particulate matter | disease inc. | kg PM2.5 eq | kg PM2.5 eq | kg PM2.5 eq | kg PM2.5 eq | |||
Ecotoxicity (Freshwater) | kg 1,4-DB eq | m3 | CTUe | CTUe | kg TEG water | kg 1,4-DCB | CTUe | |
Land use | Pt | kg C deficit | m2org.arable | m2a crop eq | ||||
Ionizing radiation | kBq U-235 eq | k Bq U235 eq | Bq C-14 eq | kBq Co-60 eq |
Material | Dataset in Ecoinvent | FU |
---|---|---|
Asphalt | Mastic asphalt GLO| market for | Conseq, S | 1 kg |
Brick | Clay brick GLO| market for | Conseq, S | 1 kg |
Cement | Cement, blast furnace slag 5–25%, US only RoW| market for | Conseq, S | 1 kg |
Concrete | Concrete, 35 MPa GLO| market for | Conseq, S | 1 kg * |
Door | Door, inner, wood GLO| market for | Conseq, S | 1 kg * |
Fiber | Cellulose fibre, inclusive blowing in GLO| market for | Conseq, S | 1 kg |
Glass | Flat glass, uncoated GLO| market for | Conseq, S | 1 kg |
Mortar | Lime mortar GLO| market for | Conseq, S | 1 kg |
Plaster | Cover plaster, mineral GLO| market for | Conseq, S | 1 kg |
Rebar | Reinforcing steel GLO| market for | Conseq, S | 1 kg |
Steel | Steel, low-alloyed GLO| market for | Conseq, S | 1 kg |
Stone | Natural stone plate, cut GLO| market for | Conseq, S | 1 kg |
Tiles | Ceramic tile CH| production | Conseq, S | 1 kg |
Window frame | Window frame, aluminium, U = 1.6 W*m−2 K GLO| market for | Conseq, S | 0.1 kg * |
Item | Aircrete I | Aircrete II | |
---|---|---|---|
Source | https://epdturkey.org (accessed on 15 April 2021) | Ecoinvent | |
Data description | Autoclaved Aerated Concrete | Autoclaved aerated concrete block CH| production | Cut-off, U | |
FU | 1 m3 | 1 m3 | |
Boundary | Cradle-to-gate | Cradle-to-gate | |
LCIA method | CML | TRACI | Converted to CML * |
Climate change | 196 kg CO2 eq | 137 kg CO2 eq | 139 kg CO2 eq |
Acidification | 0.441 kg SO2 eq | 0.272 kg SO2 eq | 0.289 kg SO2 eq |
Ozone depletion | 8.13 × 10−6 kg CFC-11 eq | 7.82 × 10−6 kg CFC-11 eq | 6.42 × 10−6 kg CFC-11 eq |
Eutrophication | 0.127 kg PO4 eq | 0.153 kg N eq | 0.0721 kg PO4 eq |
Smog | 0.0269 kg C2H4 eq | 4.51 kg O3 eq | 0.0226 kg C2H4 eq |
Energy depletion | 1298 MJ | 64.9 MJ surplus | 823 MJ |
Item | Office Building | Living Laboratory (Baseline) | |
---|---|---|---|
Source | [10] | [47] | |
Location | The Netherlands | China | |
Area | 1900 m2 | 27 m2 | |
Structure | Reinforced concrete | Shipping container | |
FU | m2 | m2 | |
Boundary | Cradle-to-grave | Cradle-to-grave | |
LCIA method | TRACI | ReCiPe | Converted to TRACI * |
Climate change | 4473 kg CO2 eq | 7759 kg CO2 eq | 7532 kg CO2 eq |
Acidification | 32.8 kg SO2 eq | 30.5 kg SO2 eq | 35.2 kg SO2 eq |
Ozone depletion | 8.6 × 10−6 kg CFC-11 eq | 0.00189 kg CFC-11 eq | 3.9 × 10−4 kg CFC-11 eq |
Eutrophication | 1.19 kg N eq | 1.72 kg P eq | 14.4 kg N eq |
Smog | 392 kg O3 eq | 17.8 kg NOx eq | 410 kg O3 eq |
Energy depletion | 51,263 MJ surplus | 1389 kg oil eq | 4589 MJ surplus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Hossain, M.U.; Li, H.; Liu, P. Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector. Sustainability 2021, 13, 9016. https://doi.org/10.3390/su13169016
Dong Y, Hossain MU, Li H, Liu P. Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector. Sustainability. 2021; 13(16):9016. https://doi.org/10.3390/su13169016
Chicago/Turabian StyleDong, Yahong, Md. Uzzal Hossain, Hongyang Li, and Peng Liu. 2021. "Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector" Sustainability 13, no. 16: 9016. https://doi.org/10.3390/su13169016
APA StyleDong, Y., Hossain, M. U., Li, H., & Liu, P. (2021). Developing Conversion Factors of LCIA Methods for Comparison of LCA Results in the Construction Sector. Sustainability, 13(16), 9016. https://doi.org/10.3390/su13169016