Role of the Food Supply Chain Stakeholders in Achieving UN SDGs
Abstract
:1. Introduction
2. Materials and Methods
3. Food Supply Chain and UN SDGs
3.1. Impact of Farmers on Achieving UN SDGs (and Vice Versa)
3.2. Impact of Food Processors on Achieving UN SDGs (and Vice Versa)
3.3. Impact of Food Traders on Achieving UN SDGs (and Vice Versa)
3.4. Impact of Food Consumers on Achieving UN SDGs (and Vice Versa)
3.5. The Role of Other Food Supply Chain Stakeholders in Achieving UN SDGs
3.5.1. Policymakers and Governments
3.5.2. Inspection Services and Certification Bodies
3.5.3. Scientific Community
3.5.4. Other Stakeholders
3.5.5. Practical Implications and Future Steps
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
SDG | Sustainable development goal |
SDG1 | No Poverty |
SDG2 | Zero Hunger |
SDG3 | Good Health and Well-Being |
SDG4 | Quality Education |
SDG5 | Gender Equality |
SDG6 | Clean Water and Sanitation |
SDG7 | Affordable and Clean Energy |
SDG8 | Decent Work and Economic Growth |
SDG9 | Industry, Motivation and Infrastructure |
SDG10 | Reduced Inequalities |
SDG11 | Sustainable Cities and Communities |
SDG12 | Responsible Consumption and Production |
SDG13 | Climate Action |
SDG14 | Life Below Water |
SDG15 | Life On Land |
SDG16 | Peace, Justice and Strong Institutions |
SDG17 | Partnerships for the Goals |
References
- UN. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2016. [Google Scholar]
- UN. More Than 100 Countries Discuss Visions for National food Futures to Accelerate Global Action Ahead of September Summit. Available online: https://www.un.org/en/food-systems-summit/news/more-100-countries-discuss-visions-national-food-futures-accelerate-global (accessed on 1 July 2021).
- UN. About the Summit. Available online: http://unstats.un.org/unsd/methods/m49/m49regin.htm (accessed on 1 July 2021).
- FAO. FAO and the 17 Sustainable Development Goals; Food and Agriculture Organization of the United Nations & World Health Organization: Rome, Italy, 2015. [Google Scholar]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 2021, 5, e50–e62. [Google Scholar] [CrossRef]
- Brown, K.A.; Srinivasapura Venkateshmurthy, N.; Law, C.; Harris, F.; Kadiyala, S.; Shankar, B.; Mohan, S.; Prabhakaran, D.; Knai, C. Moving towards sustainable food systems: A review of Indian food policy budgets. Glob. Food Secur. 2021, 28, 100462. [Google Scholar] [CrossRef]
- Siegel, K.M.; Bastos Lima, M.G. When international sustainability frameworks encounter domestic politics: The sustainable development goals and agri-food governance in South America. World Dev. 2020, 135, 105053. [Google Scholar] [CrossRef]
- Bizikova, L.; Jungcurt, S.; McDougal, K.; Tyler, S. How can agricultural interventions enhance contribution to food security and SDG 2.1? Glob. Food Secur. 2020, 26, 100450. [Google Scholar] [CrossRef]
- Blesh, J.; Hoey, L.; Jones, A.D.; Friedmann, H.; Perfecto, I. Development pathways toward “zero hunger”. World Dev. 2019, 118, 1–14. [Google Scholar] [CrossRef]
- Gamboa, G.; Kovacic, Z.; Di Masso, M.; Mingorría, S.; Gomiero, T.; Rivera-Ferré, M.; Giampietro, M. The complexity of food systems: Defining relevant attributes and indicators for the evaluation of food supply chains in Spain. Sustainability 2016, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Carbone, A. Food supply chains: Coordination governance and other shaping forces. Agric. Food Econ. 2017, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Djekic, I.; Tomasevic, I. Role of Sustainable Quality in the Food Chain. In Zero Hunger; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Minnens, F.; Lucas Luijckx, N.; Verbeke, W. Food supply chain stakeholders’ perspectives on sharing information to detect and prevent food integrity issues. Foods 2019, 8, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebs, T.; Brandenburg, M.; Seuring, S.; Stohler, M. Stakeholder influences and risks in sustainable supply chain management: A comparison of qualitative and quantitative studies. Bus. Res. 2018, 11, 197–237. [Google Scholar] [CrossRef] [Green Version]
- Sodhi, M.S.; Tang, C.S. Corporate social sustainability in supply chains: A thematic analysis of the literature. Int. J. Prod. Res. 2018, 56, 882–901. [Google Scholar] [CrossRef]
- Heiko, A. Consensus measurement in Delphi studies: Review and implications for future quality assurance. Technol. Forecast. Soc. Chang. 2012, 79, 1525–1536. [Google Scholar]
- Batlle-Bayer, L.; Bala, A.; Albertí, J.; Xifré, R.; Aldaco, R.; Fullana-i-Palmer, P. Food affordability and nutritional values within the functional unit of a food LCA. An application on regional diets in Spain. Resour. Conserv. Recycl. 2020, 160, 104856. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Shukla, P.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Arouna, A.; Lokossou, J.; Wopereis, M.; Bruce-Oliver, S.; Roy-Macauley, H. Contribution of improved rice varieties to poverty reduction and food security in sub-Saharan Africa. Glob. Food Secur. 2017, 14, 54–60. [Google Scholar] [CrossRef]
- Thornton, P.K.; Kristjanson, P.; Förch, W.; Barahona, C.; Cramer, L.; Pradhan, S. Is agricultural adaptation to global change in lower-income countries on track to meet the future food production challenge? Global Environ. Chang. 2018, 52, 37–48. [Google Scholar] [CrossRef]
- Runzel, M.A.; Hassler, E.E.; Rogers, R.; Formato, G.; Cazier, J.A. Designing a smart honey supply chain for sustainable development. IEEE Consum. Electron. Mag. 2021, 10, 69–78. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5° and 2° C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press Cambridge: Cambridge, UK, 2013. [Google Scholar]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.; Smith, D.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Khanal, U.; Wilson, C.; Rahman, S.; Lee, B.L.; Hoang, V.-N. Smallholder farmers’ adaptation to climate change and its potential contribution to UN’s sustainable development goals of zero hunger and no poverty. J. Clean. Prod. 2021, 281, 124999. [Google Scholar] [CrossRef]
- Charoenratana, S.; Shinohara, C. Rural farmers in an unequal world: Land rights and food security for sustainable well-being. Land Use Policy 2018, 78, 185–194. [Google Scholar] [CrossRef]
- Villano, R.; Asante, B.O.; Bravo-Ureta, B. Farming systems and productivity gaps: Opportunities for improving smallholder performance in the forest-savannah transition zone of Ghana. Land Use Policy 2019, 82, 220–227. [Google Scholar] [CrossRef]
- Rashid, F.N. ACHIEVING SDGs in TANZANIA: Is there a nexus between land tenure SECURITY, agricultural credits and rice PRODUCTIVITY? Resour. Conserv. Recycl. 2021, 164, 105216. [Google Scholar] [CrossRef]
- Agarwal, B. Gender equality, food security and the sustainable development goals. Curr. Opin. Environ. Sustain. 2018, 34, 26–32. [Google Scholar] [CrossRef]
- Meneses, Y.E.; Stratton, J.; Flores, R.A. Water reconditioning and reuse in the food processing industry: Current situation and challenges. Trends Food Sci. Technol. 2017, 61, 72–79. [Google Scholar] [CrossRef]
- Djekic, I.; Tomasevic, I. Role of Potable Water in Food Processing. In Clean Water and Sanitation; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Spada, A.; Conte, A.; Del Nobile, M.A. The influence of shelf life on food waste: A model-based approach by empirical market evidence. J. Clean. Prod. 2018, 172, 3410–3414. [Google Scholar] [CrossRef]
- Jambrak, A.R. Non-thermal and Innovative Processing Technologies. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; Elsevier: Oxford, UK, 2019; pp. 477–483. [Google Scholar] [CrossRef]
- Režek Jambrak, A.; Nutrizio, M.; Djekić, I.; Pleslić, S.; Chemat, F. Internet of Nonthermal Food Processing Technologies (IoNTP): Food Industry 4.0 and Sustainability. Appl. Sci. 2021, 11, 686. [Google Scholar] [CrossRef]
- Meng, Y.; Yang, Y.; Chung, H.; Lee, P.-H.; Shao, C. Enhancing sustainability and energy efficiency in smart factories: A review. Sustainability 2018, 10, 4779. [Google Scholar] [CrossRef] [Green Version]
- Augustin, M.A.; Riley, M.; Stockmann, R.; Bennett, L.; Kahl, A.; Lockett, T.; Osmond, M.; Sanguansri, P.; Stonehouse, W.; Zajac, I.; et al. Role of food processing in food and nutrition security. Trends Food Sci. Technol. 2016, 56, 115–125. [Google Scholar] [CrossRef]
- Janssens, C.; Havlík, P.; Krisztin, T.; Baker, J.; Frank, S.; Hasegawa, T.; Leclère, D.; Ohrel, S.; Ragnauth, S.; Schmid, E. Global hunger and climate change adaptation through international trade. Nat. Clim. Chang. 2020, 10, 829–835. [Google Scholar] [CrossRef]
- Brown, M.E.; Carr, E.R.; Grace, K.L.; Wiebe, K.; Funk, C.C.; Attavanich, W.; Backlund, P.; Buja, L. Do markets and trade help or hurt the global food system adapt to climate change? Food Policy 2017, 68, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Qu, Z.; Yang, Z.; Nichol, T.; Clarke, G.; Ge, Y.-E. Climate change research on transportation systems: Climate risks, adaptation and planning. Transp. Res. Part D Transport. Environ. 2020, 88, 102553. [Google Scholar] [CrossRef]
- Boarnet, M.G. Planning, climate change, and transportation: Thoughts on policy analysis. Transp. Res. Part A Policy Pract. 2010, 44, 587–595. [Google Scholar] [CrossRef]
- Coley, D.; Howard, M.; Winter, M. Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches. Food Policy 2009, 34, 150–155. [Google Scholar] [CrossRef]
- Leopold. Calculating Food Miles for a Multiple Ingredient Food Product; Agriculture, L.C.f.S., Ed.; Iowa State University: Ames, IA, USA, 2005. [Google Scholar]
- Payen, S.; Basset-Mens, C.; Perret, S. LCA of local and imported tomato: An energy and water trade-off. J. Clean. Prod. 2015, 87, 139–148. [Google Scholar] [CrossRef]
- Farmery, A.K.; Gardner, C.; Green, B.S.; Jennings, S.; Watson, R.A. Domestic or imported? An assessment of carbon footprints and sustainability of seafood consumed in Australia. Environ. Sci. Policy 2015, 54, 35–43. [Google Scholar] [CrossRef]
- Schmitt, E.; Galli, F.; Menozzi, D.; Maye, D.; Touzard, J.-M.; Marescotti, A.; Six, J.; Brunori, G. Comparing the sustainability of local and global food products in Europe. J. Clean. Prod. 2017, 165, 346–359. [Google Scholar] [CrossRef]
- Djekic, I.; Tomasevic, I. Impact of animal origin food production on climate change and vice versa: Analysis from a meat and dairy products perspective. In Handbook of Climate Change Management: Research, Leadership, Transformation; Leal Filho, W., Luetz, J., Ayal, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Sofos, J.N. Chapter 6—Meat and Meat Products. In Food Safety Management; Lelieveld, Y.M., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 119–162. [Google Scholar] [CrossRef]
- Baldera Zubeldia, B.; Nieto Jiménez, M.; Valenzuela Claros, M.T.; Mariscal Andrés, J.L.; Martin-Olmedo, P. Effectiveness of the cold chain control procedure in the retail sector in Southern Spain. Food Control 2016, 59, 614–618. [Google Scholar] [CrossRef]
- Djekic, I.; Tomasevic, I. Environmental impacts of the meat chain—Current status and future perspectives. Trends Food Sci. Technol. 2016, 54, 94–102. [Google Scholar] [CrossRef]
- Hart, M.; Austin, W.; Acha, S.; Le Brun, N.; Markides, C.N.; Shah, N. A roadmap investment strategy to reduce carbon intensive refrigerants in the food retail industry. J. Clean. Prod. 2020, 275, 123039. [Google Scholar] [CrossRef]
- Jouzdani, J.; Govindan, K. On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals. J. Clean. Prod. 2021, 278, 123060. [Google Scholar] [CrossRef]
- Burek, J.; Nutter, D.W. Environmental implications of perishables storage and retailing. Renew. Sustain. Energy Rev. 2020, 133, 110070. [Google Scholar] [CrossRef]
- James, C. Chapter 13—Food transportation and refrigeration technologies—Design and optimization. In Sustainable Food Supply Chains; Accorsi, R., Manzini, R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 185–199. [Google Scholar] [CrossRef]
- ISO. ISO 14020:2000 Environmental Labels and Declarations—General Principles; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- ISO. ISO 14026:2017 Environmental Labels and Declarations—Principles, Requirements and Guidelines for Communication of Footprint Information; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Kaczorowska, J.; Rejman, K.; Halicka, E.; Szczebyło, A.; Gorska-Warsewicz, H. Impact of food sustainability labels on the perceived product value and price expectations of urban consumers. Sustainability 2019, 11, 7240. [Google Scholar] [CrossRef] [Green Version]
- Asioli, D.; Aschemann-Witzel, J.; Nayga, R.M., Jr. Sustainability-related food labels. Annu. Rev. Resour. Econ. 2020, 12, 171–185. [Google Scholar] [CrossRef]
- De Bauw, M.; Matthys, C.; Poppe, V.; Vranken, L. A combined Nutri-Score and ‘Eco-Score’Approach for more Nutritious and more Environmentally Friendly Food Choices? Evidence From a Belgian Consumer Experiment. Food Qual. Prefer. 2021, 93, 104276. [Google Scholar] [CrossRef]
- Ecolabel. All Ecolables. Available online: http://www.ecolabelindex.com/ecolabels/ (accessed on 10 March 2021).
- FAO/WHO. Sustainable Healthy Diets—Guiding Principles; Food and Agriculture Organization of the United Nations & World Health Organization: Rome, Italy, 2019. [Google Scholar]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Abejón, R.; Batlle-Bayer, L.; Laso, J.; Bala, A.; Vazquez-Rowe, I.; Larrea-Gallegos, G.; Margallo, M.; Cristobal, J.; Puig, R.; Fullana-i-Palmer, P. Multi-Objective Optimization of Nutritional, Environmental and Economic Aspects of Diets Applied to the Spanish Context. Foods 2020, 9, 1677. [Google Scholar] [CrossRef]
- Batlle-Bayer, L.; Aldaco, R.; Bala, A.; Fullana-i-Palmer, P. Toward sustainable dietary patterns under a water–energy–food nexus life cycle thinking approach. Curr. Opin. Environ. Sci. Health 2020, 13, 61–67. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The healthiness and sustainability of national and global food based dietary guidelines: Modelling study. BMJ 2020, 370, m2322. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tian, X. Food accessibility, diversity of agricultural production and dietary pattern in rural China. Food Policy 2019, 84, 92–102. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Patalagsa, M.A.; Islam, M.R.; Uddin, M.N.; Ahmad, S.; Biswas, S.C.; Ahmed, M.T.; Yang, R.-Y.; Hanson, P.; Begum, S. The effect of women’s home gardens on vegetable production and consumption in Bangladesh. Food Secur. 2015, 7, 97–107. [Google Scholar] [CrossRef]
- Pradhan, A.; Sathanandhan, R.; Panda, A.K.; Wagh, R. Improving household diet diversity through promotion of nutrition gardens in India. Am. J. Food Sci. Nutr. 2018, 5, 43–51. [Google Scholar]
- Ambrose, G.; Das, K.; Fan, Y.; Ramaswami, A. Is gardening associated with greater happiness of urban residents? A multi-activity, dynamic assessment in the Twin-Cities region, USA. Landsc. Urban Plan. 2020, 198, 103776. [Google Scholar] [CrossRef]
- López-Avilés, A.; Veldhuis, A.J.; Leach, M.; Yang, A. Sustainable energy opportunities in localised food production and transportation: A case study of bread in the UK. Sustain. Prod. Consum. 2019, 20, 98–116. [Google Scholar] [CrossRef]
- Abbade, E.B. Estimating the nutritional loss and the feeding potential derived from food losses worldwide. World Dev. 2020, 134, 105038. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diet; International Fund for Agricultural Development (IFAD), WFP, WHO, Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Djekic, I.; Miloradovic, Z.; Djekic, S.; Tomasevic, I. Household food waste in Serbia—Attitudes, quantities and global warming potential. J. Clean. Prod. 2019, 229, 44–52. [Google Scholar] [CrossRef]
- Thapa Karki, S.; Bennett, A.C.T.; Mishra, J.L. Reducing food waste and food insecurity in the UK: The architecture of surplus food distribution supply chain in addressing the sustainable development goals (Goal 2 and Goal 12.3) at a city level. Ind. Mark. Manag. 2021, 93, 563–577. [Google Scholar] [CrossRef]
- Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Kanie, N.; Biermann, F. Governing Through Goals: Sustainable Development Goals as Governance Innovation; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- OHCHR. Voluntary National Reviews. Available online: https://www.ohchr.org/EN/Issues/SDGS/Pages/2020VoluntaryNationalReviews.aspx (accessed on 12 April 2021).
- Pohlmann, C.R.; Scavarda, A.J.; Alves, M.B.; Korzenowski, A.L. The role of the focal company in sustainable development goals: A Brazilian food poultry supply chain case study. J. Clean. Prod. 2020, 245, 118798. [Google Scholar] [CrossRef]
- Djekic, I.; Sanjuán, N.; Clemente, G.; Jambrak, A.R.; Djukić-Vuković, A.; Brodnjak, U.V.; Pop, E.; Thomopoulos, R.; Tonda, A. Review on environmental models in the food chain—Current status and future perspectives. J. Clean. Prod. 2018, 176, 1012–1025. [Google Scholar] [CrossRef]
- ISO. ISO/TC 34 Food Products. Available online: https://www.iso.org/committee/47858.html (accessed on 15 March 2021).
- CAC. CAC/RCP 1-1969, Rev.4-2003. Recommended International Code of Practice—General Principles of Food Hygiene Codex Alimentarius Commission; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- ISO. ISO 22000:2018 Food Safety Management Systems—Requirements for Any Organization in the Food Chain; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- BRC. BRC Global Standard for Food Safety, Issue 8; BRC Trading Ltd.: London, UK, 2018. [Google Scholar]
- IFS. IFS Food, version 6.1. IFS Management GmbH: Berlin, Germany, 2017. [Google Scholar]
- GFSI. GFSI. GFSI recognized certification programme owners. In Progress Benchmark & TE Applications List—April 2020; Global Food Safety Inititative & The Consumer Goods Forum: Levallois-Perret, France, 2020. [Google Scholar]
- ISO. The ISO Survey of Certifications 2019; International Organization for Standardization: Geneva, Switzerland, 2020. [Google Scholar]
- ISO. ISO 14001:2015 Environmental Management Systems—Requirements with Guidance for Use; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- ISO. ISO/TC 207 Environmental Management. Available online: https://www.iso.org/committee/54808.html (accessed on 15 March 2021).
- ISO. ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Espinoza-Orias, N.; Stichnothe, H.; Azapagic, A. The carbon footprint of bread. Int. J. Life Cycle Assess. 2011, 16, 351–365. [Google Scholar] [CrossRef]
- ISO. ISO/IEC 17021-1:2015 Conformity assessment—Requirements for Bodies Providing Audit and Certification of Management Systems—Part 1: Requirements; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- ISO. ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Lozano, R. Analysing the use of tools, initiatives, and approaches to promote sustainability in corporations. Corp. Soc. Responsib. Environ. Manag. 2019, 27, 982–998. [Google Scholar] [CrossRef]
- Lozano, R. Towards better embedding sustainability into companies’ systems: An analysis of voluntary corporate initiatives. J. Clean. Prod. 2012, 25, 14–26. [Google Scholar] [CrossRef]
- GRI. About GRI. Available online: https://www.globalreporting.org/about-gri/ (accessed on 11 December 2020).
- Maloni, M.J.; Brown, M.E. Corporate Social Responsibility in the Supply Chain: An Application in the Food Industry. J. Bus. Ethics 2006, 68, 35–52. [Google Scholar] [CrossRef]
- Nestle. Nestlé in Society. Creating Shared Value and Meeting our Commitments 2017; Nestec S.A.: Vevey, Switzerland, 2018. [Google Scholar]
- Intertek. Sustainability Assurance. Available online: https://www.intertek.com/sustainability/assurance/ (accessed on 12 March 2021).
- De Menna, F.; Vittuari, M.; Molari, G. Impact evaluation of integrated food-bioenergy systems: A comparative LCA of peach nectar. Biomass Bioenergy 2015, 73, 48–61. [Google Scholar] [CrossRef]
- GHG. The greenhouse gas protocol. In A Corporate Accounting and Reporting Standard; World Resources Institute and World Business Council for Sustainable Development: Amsterdam, The Netherlands, 2015. [Google Scholar]
- ISO. ISO 14064-1:2018 Greenhouse Gases—Part 1: Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Kioupi, V.; Voulvoulis, N. Sustainable Development Goals (SDGs): Assessing the Contribution of Higher Education Programmes. Sustainability 2020, 12, 6701. [Google Scholar] [CrossRef]
- Chaleta, E.; Saraiva, M.; Leal, F.; Fialho, I.; Borralho, A. Higher Education and Sustainable Development Goals (SDG)—Potential Contribution of the Undergraduate Courses of the School of Social Sciences of the University of Évora. Sustainability 2021, 13, 1828. [Google Scholar] [CrossRef]
- Elghannam, A.; Mesias, F. Short food supply chains from a social media marketing perspective: A consumer-oriented study in Spain. New Medit Mediterr. J. Econ. Agric. Environ. = Rev. Méditerr. dʹEcon. Agric. et Environ. 2019, 18. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, N.; Mishra, N. Social media data analytics to improve supply chain management in food industries. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 398–415. [Google Scholar] [CrossRef]
- UN. United Nations SDG Media Compact Hits 100-Member Mark; United Nations: New York, NY, USA, 2020. [Google Scholar]
- UN. Non—Governmental Organizations (NGO) Major Group—Official Position Paper for the 2017 High-Level Political Forum. In Full Position Paper of the Non-Governmental Organizations (NGO) Major Group; Group, N.M., Ed.; United Nations: San Francisco, CA, USA, 2017. [Google Scholar]
- FSA. Guide to Food Hygiene & Other Regulations for the UK Meat Industry; Guide, M.I., Ed.; Food Standards Agency: London, UK, 2013. [Google Scholar]
- FAOSTAT. Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 March 2021).
- UNESCO. UNESCO Science Report: Towards 2030; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2015. [Google Scholar]
- TWB. Employment in Agriculture (% of Total Employment)—Modeled ILO Estimate. Available online: https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?end=2019&start=1991 (accessed on 22 May 2021).
- Laughman, C. The 2020 Top 100 Food & Beverage Companies. In Food Engineering; E-Magazine: Troy, MI, USA, 2021. [Google Scholar]
- FAO. Sustainable Development Goals—Indicators under FAO Custodianship. Available online: http://www.fao.org/sustainable-development-goals/indicators/en/ (accessed on 12 April 2021).
Primary Stakeholders | Secondary Stakeholders |
---|---|
Farmers | Policymakers and governments |
Food processors | Inspection services and certification bodies |
Food traders | Scientific community |
Food consumers | Other: NGOs and media |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djekic, I.; Batlle-Bayer, L.; Bala, A.; Fullana-i-Palmer, P.; Jambrak, A.R. Role of the Food Supply Chain Stakeholders in Achieving UN SDGs. Sustainability 2021, 13, 9095. https://doi.org/10.3390/su13169095
Djekic I, Batlle-Bayer L, Bala A, Fullana-i-Palmer P, Jambrak AR. Role of the Food Supply Chain Stakeholders in Achieving UN SDGs. Sustainability. 2021; 13(16):9095. https://doi.org/10.3390/su13169095
Chicago/Turabian StyleDjekic, Ilija, Laura Batlle-Bayer, Alba Bala, Pere Fullana-i-Palmer, and Anet Režek Jambrak. 2021. "Role of the Food Supply Chain Stakeholders in Achieving UN SDGs" Sustainability 13, no. 16: 9095. https://doi.org/10.3390/su13169095
APA StyleDjekic, I., Batlle-Bayer, L., Bala, A., Fullana-i-Palmer, P., & Jambrak, A. R. (2021). Role of the Food Supply Chain Stakeholders in Achieving UN SDGs. Sustainability, 13(16), 9095. https://doi.org/10.3390/su13169095