Management of Global Warming Effects in the European Water Framework Directive: Consideration of Social–Ecological System Features in the Elbe River Basin District
Abstract
:1. Introduction
2. Theoretical Framework
3. Methodological Approach
4. The Elbe River Basin District
5. Results and Discussion
5.1. Social–Ecological System Feature 1: “Scale and Openness”
5.1.1. “Scale and Openness”: Feature Properties
5.1.2. “Scale and Openness” in Context of the European Water Framework Directive and Global Warming
5.1.3. Successful Consideration of “Scale and Openness” in the Elbe River Basin Management
5.1.4. Insufficient Consideration of “Scale and Openness” in the Elbe River Basin Management
5.1.5. “Scale and Openness”: Semi-Quantitative Assessment
5.2. Social–Ecological System Feature 2: “Context Dependency”
5.2.1. “Context Dependency”: Feature Properties
5.2.2. “Context Dependency” in Context of the European Water Framework Directive and Global Warming
5.2.3. Successful Consideration of “Context Dependency” in the Elbe River Basin Management
5.2.4. Insufficient Consideration of “Context Dependency” in the Elbe River Basin Management
5.2.5. “Context Dependency”: Semi-Quantitative Assessment
5.3. Social–Ecological System Feature 3: “Self-Organisation and Adaptability”
5.3.1. “Self-Organisation and Adaptability”: Feature Properties
5.3.2. “Self-Organisation and Adaptability” in the Context of the European Water Framework Directive and Global Warming
5.3.3. Successful Consideration of “Self-Organisation and Adaptability” in the Elbe River Basin Management
5.3.4. Insufficient Consideration of “Self-Organisation and Adaptability” in the Elbe River Basin Management
5.3.5. “Self-Organisation and Adaptability”: Semi-Quantitative Assessment
5.4. Social–Ecological System Feature 4: “Non-Linearity, Uncertainty, Unpredictability”
5.4.1. “Non-Linearity, Uncertainty, Unpredictability”: Feature Properties
5.4.2. “Non-Linearity, Uncertainty, Unpredictability” in Context of the European Water Framework Directive and Global Warming
5.4.3. Successful Consideration of “Non-Linearity, Uncertainty, Unpredictability” in the Elbe River Basin Management
5.4.4. Insufficient Consideration of “Non-Linearity, Uncertainty, Unpredictability” in the Elbe River Basin Management
5.4.5. “Non-Linearity, Uncertainty, Unpredictability”: Semi-Quantitative Assessment
5.5. Social–Ecological System Feature 5: “Dynamics”
5.5.1. “Dynamics”: Feature Properties
5.5.2. “Dynamics” in Context of the European Water Framework Directive and Global Warming
5.5.3. Successful Consideration of “Dynamics” in the Elbe River Basin Management
5.5.4. Insufficient Consideration of “Dynamics” in the Elbe River Basin Management
5.5.5. “Dynamics”: Semi-Quantitative Assessment
5.6. Social–Ecological System Feature 6: “Constituted Relationally”
5.6.1. “Constituted Relationally”: Feature Properties
5.6.2. “Constituted Relationally” in Context of the European Water Framework Directive and Global Warming
5.6.3. Successful Consideration of “Constituted Relationally” in the Elbe River Basin Management
5.6.4. Insufficient Consideration of “Constituted Relationally” in the Elbe River Basin Management
5.6.5. “Constituted Relationally”: Semi-Quantitative Assessment
6. Requirements from the Governance Perspective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary Boundaries: Guiding human development on a changing planet. Science 2015, 347, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.F. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Arros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, NY, USA, 2014; pp. 1267–1326. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Intergovernmental Panel on Climate Changem, 2018; in press. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Pachauri, R.K., Meyer, L.A., Eds.; 2014; in press. [Google Scholar]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef] [PubMed]
- European Environmental Agency. Climate Change Adaptation and Disaster Risk Reduction in Europe. Enhancing Coherence of the Knowledge Base, Policies and Practices; Issue 7/2017; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Berkes, F.; Colding, J.; Folke, C. Navigating Social–Ecological Systems. Building Resilience for Complexity and Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social–ecological resilience and biosphere-based sustainability science. Ecol. Soc. 2016, 21, 41. [Google Scholar] [CrossRef]
- De Vos, A.; Biggs, R.; Preiser, R. Methods for understanding social–ecological systems: A review of place-based studies. Ecol. Soc. 2019, 24, 16. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for the Community Action in the Field of Water Policy; OJ L327; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- European Environmental Agency. European Waters. Assessment of Status and Pressures 2018; Issue 7/2018; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- European Commission. Fitness Check Evaluation of the Water Framework Directive and the Floods Directive, 1st ed.; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Voulvoulis, N.; Arpon, K.D.; Giakoumis, T. The EU Water Framework Directive: From great expectations to problems with implementation. Sci. Total Environ. 2017, 575, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Beveridge, R.; Monsees, J.; Moss, S.T. Das IRS Handbuch zur Analyse der Institutionellen und Politischen Kontexte von Projekten zum Wasserressourcen-Management, 1st ed.; Leibnitz-Institut für Regionalentwicklung und Strukturplanung: Erkner, Germany, 2012; 57p. [Google Scholar]
- German Environmental Agency. Gewässer in Deutschland: Zustand und Bewertung, 1st ed.; Germany Environment Agency: Dessau, Germany, 2017. [Google Scholar]
- Reese, M.; Möckel, S. Die Handlungsfelder staatlicher Anpassungspolitik und Ansatzpunkte rechtlicher Steuerung. Gewässerqualität. In Rechtlicher Handlungsbedarf für die Anpassung an die Folgen des Klimawandels-Analyse, Weiter- und Neuentwicklung Rechtlicher Instrumente, 1st ed.; Reese, M., Möckel, S., Bovet, J., Köck, W., Eds.; German Environment Agency: Dessau, Germany, 2016; Volume 2. [Google Scholar]
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 24 River Basin Management in a Changing Climate, 1st ed.; Publications Office of the European Union: Luxembourg, 2009. [Google Scholar]
- European Commission. European Overview-River Basin Management Plans. Implementation of the Water Framework Directive (2000/60/EC) and the Floods Directive (2007/60/EC). Second River Basin Management Plans. First Flood Risk Management Plans, 1st ed.; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Chokkavarapu, N.; Mandla, V.R. Comparative study of GCMs, RCMs, downscaling and hydrological models: A review toward future climate change impact estimation. SN Appl. Sci. 2019, 1, 1698. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Stefanidis, S.; Dafis, S.; Stathis, D. Evaluation of Regional Climate Models (RCMs) Performance in Simulating Seasonal Precipitation over Mountainous Central Pindus (Greece). Water 2020, 12, 2750. [Google Scholar] [CrossRef]
- Preiser, R.; Biggs, R.; De Vos, A.; Folke, C. Social–ecological systems as complex adaptive systems: Organizing principles for advancing research methods and approaches. Ecol. Soc. 2018, 23, 46. [Google Scholar] [CrossRef] [Green Version]
- Becker, E. Soziale Ökologie: Konturen und Konzepte einer neuen Wissenschaft. In Wissenschaftstheoretische Perspektiven für die Umweltwissenschaften, 1st ed.; Matschonat, G., Gerber, A., Eds.; Markgraf: Weikersheim, Germany, 2003; pp. 165–195. [Google Scholar]
- Berkes, F.; Folke, C.; Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience, 1st ed.; Cambridge University Press: Cambridge, UK, 1998; 476p. [Google Scholar]
- Leach, M.; Rockström, J.; Raskin, P.; Scoones, I.; Stirling, A.C.; Smith, A.; Thompson, J.; Millstone, E.; Ely, A.; Around, E.; et al. Transforming innovation for sustainability. Ecol. Soc. 2012, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Tengö, M.; Brondizio, E.S.; Elmqvist, T.; Malmer, P.; Spierenberg, M. Connecting diverse knowledge systems for enhanced ecosystem governance: The multiple evidence base approach. Ambio 2014, 43, 579–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social–ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- River Basin Cooperation Elbe. Aktualisierung des Bewirtschaftungsplans nach § 83 WHG bzw. Artikel 13 der Richtlinie 2000/60/EG für den Deutschen Teil der Flussgebietseinheit Elbe für den Zeitraum von 2016 bis 2021, 1st ed.; RBC Elbe Secretariat: Magdeburg, Germany, 2015. [Google Scholar]
- River Basin Cooperation Elbe. Aktualisierung des Maßnahmenprogramms nach § 82 WHG bzw. Artikel 11 der Richtlinie 2000/60/EG für den Deutschen Teil der Flussgebietseinheit Elbe für den Zeitraum von 2016 bis 2021, 1st ed.; RBC Elbe Secretariat: Magdeburg, Germany, 2015. [Google Scholar]
- River Basin Cooperation Elbe. Hintergrunddokument zu den Wichtigen Wasserbewirtschaftungsfragen “Ausrichtung auf ein nachhaltiges Wassermengenmanagement” und “Berücksichtigung der Folgen des Klimawandels”, 1st ed.; RBC Elbe Secretariat: Magdeburg, Germany, 2015. [Google Scholar]
- International Commission for the Protection of the Elbe River (ICPER). International River Basin Management Plan for the Elbe River Basin District, 1st ed.; ICPER Secretariat: Magdeburg, Germany, 2015. [Google Scholar]
- Klauer, B.; Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany. Personal communication, 2020.
- Reese, M.; Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany. Personal communication, 2020.
- Herzog, L.; Osnabrück University, Osnabrück, Germany. Personal communication, 2020.
- Wolf, C.; Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany. Personal communication, 2020.
- Klauer, B.; Schiller, J.; Bathe, F. Concept for cost-effective improvement of river morphology. J. Environ. Plan. Manag. 2014, 58, 1944–1960. [Google Scholar] [CrossRef]
- Klauer, B.; Sigel, K.; Schiller, J. Disproportionate costs in the EU Water Framework Directive—How to justify less stringent environmental objectives. Environ. Sci. Policy 2016, 59, 10–17. [Google Scholar] [CrossRef]
- Reese, M.; Bedtke, N.; Gawel, E.; Klauer, B.; Köck, W.; Möckel, S. Wasserrahmenrichtlinie-Wege aus der Umsetzungskrise. Wasser Abfall 2019, 21, 47–54. [Google Scholar] [CrossRef]
- Swart, R.; Biesbroek, R.; Binnerup, S.; Carter, T.R.; Cowan, C.; Henrichs, T.; Loquen, S.; Mela, H.; Morecroft, M.; Reese, M.; et al. Europe Adapts to Climate Change: Comparing National Adaptation Strategies (PEER Report 1), 1st ed.; Partnership for European Environmental Research: Helsinki, Finland, 2009; p. 283. [Google Scholar]
- Reese, M. Das neue Recht des Hochwasserschutzes vor den Herausforderungen des Klimawandels. Nat. Recht 2011, 33, 19–28. [Google Scholar] [CrossRef]
- Reese, M.; Köck, W. Flussgebietsweites Sedimentmanagement unter der EG-Wasserrahmenrichtlinie am Beispiel der Elbe. Wasser Abfall 2019, 21, 33–40. [Google Scholar] [CrossRef]
- Widmer, A.; Herzog, L.; Moser, A.; Ingold, K. Multilevel water quality management in the international Rhine catchment area: How to establish social–ecological fit through collaborative governance. Ecol. Soc. 2019, 24, 27. [Google Scholar] [CrossRef] [Green Version]
- Herzog, L.M.; Ingold, K. Threats to Common-Pool Resources & the Importance of Forums: On the Emergence of Cooperation in CPR Problem Settings. Policy Stud. J. 2019, 47, 77–113. [Google Scholar]
- Berger, V.; Fan, F.M.; Gabel, F.; Galvão, P.H.; Gies, M.; Grabner, D.; Langhans, S.; Macedo-Moura, P.; Abel de Souza Machado, A.; Manzione, R.L.; et al. How Do We Want to Live Tomorrow? Perspectives on Water Management in Urban Regions, 1st ed.; Nissen, J., Azara, F., Cortesão Barnsley Scheuenstuhl, M.C., Eisinger, M., Eds.; Centre for Water and Environmental Research: Essen, Germany, 2017; p. 24. [Google Scholar]
- Ziv, G.; Mullin, K.; Boeuf, B.; Fincham, W.; Taylor, N.; Villalobos-Jiménez, G.; von Vittorelli, L.; Wolf, C.; Fritsch, O.; Strauch, M.; et al. Water quality is a poor predictor of recreational hotspots in England. PLoS ONE 2016, 11, e0166950. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C. Wie viel ist streng genug? Ein Verfahrensvorschlag zur Festlegung des Bestmöglichen Ökologischen Gewässerzustandes für Zielabsenkungen nach Art. 4.5 der EG-Wasserrahmenrichtlinie unter Berücksichtigung Struktureller, Funktionaler und Ökosystemleistungsrelevanter Aspekte. Ph.D. Thesis, Osnabrück University, Osnabrück, Germany, 2019. [Google Scholar]
- Wolf, C.; Völker, J.; Klauer, B. Der ökologische Zustand nach WRRL–Potenziale einer ergänzenden funktionalen Zustandsbewertung. WasserWirtschaft 2019, 4, 22–26. [Google Scholar] [CrossRef]
- Weitere, M.; Altenburger, R.; Anlanger, C.; Baborowski, M.; Bärlund, I.; Beckers, L.-M.; Borchardt, D.; Brack, W.; Brase, L.; Busch, W.; et al. Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Sci. Total Environ. 2021, 769, 144324. [Google Scholar] [CrossRef]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef] [Green Version]
- Virapongse, A.; Brooks, S.; Metcalf, E.C.; Zedalis, M.; Gosz, J.; Kliskey, A.; Alessa, L. A social–ecological systems approach for environmental management. J. Environ. Manag. 2016, 178, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Schlüter, M.; Blenckner, T. The importance of transient social dynamics for restoring ecosystems beyond ecological tipping points. Proc. Natl. Acad. Sci. USA 2020, 117, 2717–2722. [Google Scholar] [CrossRef] [Green Version]
- Levin, S.; Xepapadeas, T.; Crépin, A.S.; Norberg, J.; De Zeeuw, A.; Folke, C.; Hughes, T.; Arrow, K.; Barrett, S.; Daily, G.; et al. Social–ecological systems as complex adaptive systems: Modeling and policy implications. Environ. Dev. Econ. 2013, 18, 111–132. [Google Scholar] [CrossRef] [Green Version]
- Krysanova, V.; Hesse, C.; Martinkova, M.; Koskova, R.; Blazkova, S. Case Study: Elbe. In The Adaptive Water Resource Management Handbook, 1st ed.; Mysiak, J., Henrikson, H.J., Sullivan, C., Bromley, J., Pahl-Wostl, C., Eds.; Earthscan: London, UK, 2010; pp. 89–102. [Google Scholar]
- Zingraff-Hamed, A.; Schröter, B.; Schaub, S.; Lepenies, R.; Stein, U.; Hüesker, F.; Meyer, C.; Schleyer, C.; Schmeier, S.; Pusch, M.T. Perception of Bottlenecks in the Implementation of the European Water Framework Directive. Water Altern. 2020, 13, 3. [Google Scholar]
- Hüesker, F.; Moss, T. The Politics of Multi-Scalar Action in River Basin Management: Implementing the EU Water Framework Directive (WFD). Land Use Policy 2015, 42, 38–47. [Google Scholar] [CrossRef]
- Jager, N.W.; Challies, E.; Kochskämper, E.; Newig, J.; Benson, D.; Blackstock, K.; Collins, K.; Ernst, A.; Evers, M.; Feichtinger, J.; et al. Transforming European Water Governance? Participation and Member States. Water 2016, 8, 156. [Google Scholar] [CrossRef]
- Holguin, N.; Mugica, A.; Ukar, O. How Is Climate Change Included in the Implementation of the European Flood Directive? Analysis of the Methodological Approaches of Different Countries. Water 2021, 13, 1490. [Google Scholar] [CrossRef]
- Brillinger, M.; Henze, J.; Albert, C.; Schwarze, R. Integrating nature-based solutions in flood risk management plans: A matter of individual beliefs? Sci. Total Environ. 2021, 795, 148896. [Google Scholar] [CrossRef] [PubMed]
- Lastrada, E.; Cobos, G.; Torrijo, F.J. Analysis of Climate Change’s Effect on Flood Risk. Case Study of Reinosa in the Ebro River Basin. Water 2020, 12, 1114. [Google Scholar]
“Scale and Openness” Feature Properties | Score 1 |
---|---|
Hierarchical structure, embedded sub-systems nested in larger systems | 5 |
Internal and external exchange and mutual interactions | 4 |
Effects impacting across scales | 5 |
Application of solutions that fit the scale | 5 |
Radical openness | 5 |
Temporal scale | 3 |
Scale in terms of scope | 1 |
“Scale and openness” total | 4.0 |
“Context Dependency” Feature Properties | Score 1 |
---|---|
Systems depend on both environment and sub-systems | 5 |
No system understanding without recognising the context | 5 |
Multiple context-dependent identities exist | 4 |
Changes inside the system influence both environment and sub-systems | 4 |
System functions adapt to change in context; context change = system change | 4 |
Create transformative spaces for activating systemic change processes | 2 |
System is a result of context and relation | 3 |
“Context dependency” total | 3.9 |
“Self-Organisation and Adaptability” Feature Properties | Score 1 |
---|---|
Systems contain self-organising principles | 4 |
Transformative space allows opportunity for self-organisation | 2 |
In response to changes in the environment, system behaviour adapts | 4 |
Implementation of adaptive practices, prevention of rigid planning | 4 |
Path-dependent self-organisation at tipping points | 1 |
Adaptation to feedback loops on temporal scale | 2 |
Social and institutional learning through path-dependency | 5 |
“Self-organisation and adaptability” total | 3.1 |
“Non-Linearity, Uncertainty, Unpredictability” Feature Properties | Score 1 |
---|---|
Non-linear cause–effect relationships | 2 |
Management for the emergence and expect unintended consequences | 5 |
Systems are deeply uncertain | 3 |
Systems are inherently unpredictable | 3 |
Flexible responses are fostered, outcomes can be redefined | 5 |
Emergent properties lead to non-linear functioning | 1 |
“Non-linearity, uncertainty, unpredictability” total | 3.2 |
“Dynamics” Feature Properties | Score 1 |
---|---|
Cyclic changing sequences of resource dynamics | 2 |
Application of methods addressing system dynamics | 4 |
Assess mechanisms that build or inhibit systemic resilience | 3 |
Uncertain outputs resulting from the “window of opportunity” | 3 |
Identify thresholds and indicators that could help detect possible regime shifts | 1 |
Feedback loops of slow and fast variables determine system dynamics | 5 |
“Dynamics” total | 3.0 |
“Constituted Relationally” Feature Properties | Score 1 |
---|---|
Nature and structure of relationships are considered explicitly | 2 |
System is not defined by its properties but rather by their interactions | 3 |
Process-dependent interactions on multiple spatial and temporal scales | 4 |
Foster collaborative processes, build trust and social networks | 5 |
Management for diversity to allow interactions | 3 |
Address dynamic and modifiable components of the system | 4 |
“Constituted relationally” total | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sievers, E.; Zielhofer, C.; Hüesker, F. Management of Global Warming Effects in the European Water Framework Directive: Consideration of Social–Ecological System Features in the Elbe River Basin District. Sustainability 2021, 13, 9111. https://doi.org/10.3390/su13169111
Sievers E, Zielhofer C, Hüesker F. Management of Global Warming Effects in the European Water Framework Directive: Consideration of Social–Ecological System Features in the Elbe River Basin District. Sustainability. 2021; 13(16):9111. https://doi.org/10.3390/su13169111
Chicago/Turabian StyleSievers, Eva, Christoph Zielhofer, and Frank Hüesker. 2021. "Management of Global Warming Effects in the European Water Framework Directive: Consideration of Social–Ecological System Features in the Elbe River Basin District" Sustainability 13, no. 16: 9111. https://doi.org/10.3390/su13169111
APA StyleSievers, E., Zielhofer, C., & Hüesker, F. (2021). Management of Global Warming Effects in the European Water Framework Directive: Consideration of Social–Ecological System Features in the Elbe River Basin District. Sustainability, 13(16), 9111. https://doi.org/10.3390/su13169111