Towards Sustainable Farm Production System: A Case Study of Corn Farming
Abstract
:1. Introduction
2. Materials and Methods
- “Definition of the goal and scope”;
- “Life cycle inventory”;
- “Life cycle impact assessment”;
- “Interpretation of results”.
2.1. First Step—Definition of the Goal and Scope
2.1.1. Goal and Scope
2.1.2. Case Study
2.2. Second Step—Life Cycle Inventory
2.3. Third Step—Life Cycle Impact Assessment
3. Results and Discussions
3.1. Step Four—Interpretation of LCA Results
3.2. Distribution of Study Area Based on Impact Categories
3.3. Mitigation Strategies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leach, M.; Nisbett, N.; Cabral, L.; Harris, J.; Hossain, N.; Thompson, J. Food Politics and Development. World Dev. 2020, 134, 105024. [Google Scholar] [CrossRef]
- Mir, K.A.; Park, C.; Purohit, P.; Kim, S. Comparative Analysis of Greenhouse Gas Emission Inventory for Pakistan: Part I Energy and Industrial Processes and Product Use. Adv. Clim. Chang. Res. 2020, 11, 40–51. [Google Scholar] [CrossRef]
- Abdullah, F.B.; Iqbal, R.; Hyder, S.I.; Jawaid, M. Energy Security Indicators for Pakistan: An Integrated Approach. Renew. Sustain. Energy Rev. 2020, 133, 110122. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Ravi Kanth Reddy, P.; Obaisi, A.I.; Elghandour, M.M.M.Y.; Oyebamiji, K.J.; Salem, A.Z.M.; Morakinyo-Fasipe, O.T.; Cipriano-Salazar, M.; Camacho-Díaz, L.M. Sustainable Agriculture Options for Production, Greenhouse Gasses and Pollution Alleviation, and Nutrient Recycling in Emerging and Transitional Nations—An Overview. J. Clean. Prod. 2020, 242, 118319. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of Emerging Implications of Climate Change on Food Production Systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef]
- Nemecek, T.; Jungbluth, N.; i Canals, L.M.; Schenck, R. Environmental Impacts of Food Consumption and Nutrition: Where Are We and What Is Next? Int. J. Life Cycle Assess. 2016, 21, 607–620. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, H.; Xing, B. Environmental Life Cycle Assessment of Wheat Production Using Chemical Fertilizer, Manure Compost, and Biochar-Amended Manure Compost Strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef]
- Habibi, E.; Niknejad, Y.; Fallah, H.; Dastan, S.; Tari, D.B. Life Cycle Assessment of Rice Production Systems in Different Paddy Field Size Levels in North of Iran. Environ. Monit. Assess. 2019, 191, 202. [Google Scholar] [CrossRef]
- Król-Badziak, A.; Pishgar-Komleh, S.H.; Rozakis, S.; Księżak, J. Environmental and Socio-Economic Performance of Different Tillage Systems in Maize Grain Production: Application of Life Cycle Assessment and Multi-Criteria Decision Making. J. Clean. Prod. 2021, 278, 123792. [Google Scholar] [CrossRef]
- Meza-Palacios, R.; Aguilar-Lasserre, A.A.; Morales-Mendoza, L.F.; Pérez-Gallardo, J.R.; Rico-Contreras, J.O.; Avarado-Lassman, A. Life Cycle Assessment of Cane Sugar Production: The Environmental Contribution to Human Health, Climate Change, Ecosystem Quality and Resources in México. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2019, 54, 668–678. [Google Scholar] [CrossRef]
- Hedayati, M.; Brock, P.M.; Nachimuthu, G.; Schwenke, G. Farm-Level Strategies to Reduce the Life Cycle Greenhouse Gas Emissions of Cotton Production: An Australian Perspective. J. Clean. Prod. 2019, 212, 974–985. [Google Scholar] [CrossRef]
- Naderi, S.; Ghasemi Nejad Raini, M.; Taki, M. Measuring the Energy and Environmental Indices for Apple (Production and Storage) by Life Cycle Assessment (Case Study: Semirom County, Isfahan, Iran). Environ. Sustain. Indic. 2020, 6, 100034. [Google Scholar] [CrossRef]
- Svanes, E.; Johnsen, F.M. Environmental Life Cycle Assessment of Production, Processing, Distribution and Consumption of Apples, Sweet Cherries and Plums from Conventional Agriculture in Norway. J. Clean. Prod. 2019, 238, 117773. [Google Scholar] [CrossRef]
- Nikkhah, A.; Royan, M.; Khojastehpour, M.; Bacenetti, J. Environmental Impacts Modeling of Iranian Peach Production. Renew. Sustain. Energy Rev. 2017, 75, 677–682. [Google Scholar] [CrossRef]
- Litskas, V.D.; Irakleous, T.; Tzortzakis, N.; Stavrinides, M.C. Determining the Carbon Footprint of Indigenous and Introduced Grape Varieties through Life Cycle Assessment Using the Island of Cyprus as a Case Study. J. Clean. Prod. 2017, 156, 418–425. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Life Cycle Analysis of Organic Tomato Production and Supply in Sweden. J. Clean. Prod. 2018, 196, 635–643. [Google Scholar] [CrossRef]
- Lopes, J.; Medeiros, D.L.; Kiperstok, A. Combining Cleaner Production and Life Cycle Assessment for Reducing the Environmental Impacts of Irrigated Carrot Production in Brazilian Semi-Arid Region. J. Clean. Prod. 2018, 170, 924–939. [Google Scholar] [CrossRef]
- Bojacá, C.R.; Wyckhuys, K.A.G.; Schrevens, E. Life Cycle Assessment of Colombian Greenhouse Tomato Production Based on Farmer-Level Survey Data. J. Clean. Prod. 2014, 69, 26–33. [Google Scholar] [CrossRef]
- Campos-Guzmán, V.; García-Cáscales, M.S.; Espinosa, N.; Urbina, A. Life Cycle Analysis with Multi-Criteria Decision Making: A Review of Approaches for the Sustainability Evaluation of Renewable Energy Technologies. Renew. Sustain. Energy Rev. 2019, 104, 343–366. [Google Scholar] [CrossRef]
- Rehman, A.; Luan, J.; Shahzad, B.; Chandio, A.A.; Hussain, I.; Nabi, G.; Iqbal, M.S. Economic Perspectives of Major Field Crops of Pakistan: An Empirical Study. Pac. Sci. Rev. B Humanit. Soc. Sci. 2015, 1, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation Strategies for Maize Production under Climate Change for Semi-Arid Environments. Eur. J. Agron. 2020, 115, 126040. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ahmad, M.; Irfan, M.; Traore, O.; Chandio, A.A. Towards Environmental Sustainability: Devolving the Influence of Carbon Dioxide Emission to Population Growth, Climate Change, Forestry, Livestock and Crops Production in Pakistan. Ecol. Indic. 2021, 125, 107460. [Google Scholar] [CrossRef]
- Abbas, A.; Waseem, M.; Yang, M. An Ensemble Approach for Assessment of Energy Efficiency of Agriculture System in Pakistan|. Energy Effic. 2020, 13, 683–696. [Google Scholar] [CrossRef]
- Costa, M.P.; Chadwick, D.; Saget, S.; Rees, R.M.; Williams, M.; Styles, D. Representing Crop Rotations in Life Cycle Assessment: A Review of Legume LCA Studies. Int. J. Life Cycle Assess. 2020, 25, 1942–1956. [Google Scholar] [CrossRef]
- Ali, M.; Geng, Y.; Robins, D.; Cooper, D.; Roberts, W. Impact Assessment of Energy Utilization in Agriculture for India and Pakistan. Sci. Total Environ. 2019, 648, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Perret, S.R.; Gheewala, S.H.; Soni, P. Eco-Efficiency of Cotton-Cropping Systems in Pakistan: An Integrated Approach of Life Cycle Assessment and Data Envelopment Analysis. J. Clean. Prod. 2016, 134 Pt B, 623–632. [Google Scholar] [CrossRef]
- Nikkhah, A.; Khojastehpour, M.; Abbaspour-Fard, M.H. Hybrid Landfill Gas Emissions Modeling and Life Cycle Assessment for Determining the Appropriate Period to Install Biogas System. J. Clean. Prod. 2018, 185, 772–780. [Google Scholar] [CrossRef]
- Elahi, E.; Cui, W.; Jha, S.K.; Zhang, H. Estimation of Realistic Renewable and Non-Renewable Energy Use Targets for Livestock Production Systems Utilising an Artificial Neural Network Method: A Step towards Livestock Sustainability. Energy 2019, 183, 191–204. [Google Scholar] [CrossRef]
- Elahi, E.; Abid, M.; Zhang, L.; ul Haq, S.; Sahito, J.G.M. Agricultural Advisory and Financial Services; Farm Level Access, Outreach and Impact in a Mixed Cropping District of Punjab, Pakistan. Land Use Policy 2018, 71, 249–260. [Google Scholar] [CrossRef]
- Ecoinvent v2.2 Database. Available online: http://esu-services.ch/data/ecoinvent/ (accessed on 26 March 2021).
- Paramesh, V.; Arunachalam, V.; Nikkhah, A.; Das, B.; Ghnimi, S. Optimization of Energy Consumption and Environmental Impacts of Arecanut Production through Coupled Data Envelopment Analysis and Life Cycle Assessment. J. Clean. Prod. 2018, 203, 674–684. [Google Scholar] [CrossRef]
- Nikkhah, A.; Firouzi, S.; El Haj Assad, M.; Ghnimi, S. Application of Analytic Hierarchy Process to Develop a Weighting Scheme for Life Cycle Assessment of Agricultural Production. Sci. Total Environ. 2019, 665, 538–545. [Google Scholar] [CrossRef]
- Wowra, K.; Zeller, V.; Schebek, L. Nitrogen in Life Cycle Assessment (LCA) of Agricultural Crop Production Systems: Comparative Analysis of Regionalization Approaches. Sci. Total Environ. 2020, 763, 143009. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liao, P.; van Gestel, N.; Sun, Y.; Zeng, Y.; Huang, S.; Zhang, W.; van Groenigen, K.J. Lime Application Lowers the Global Warming Potential of a Double Rice Cropping System. Geoderma 2018, 325, 1–8. [Google Scholar] [CrossRef]
- Smith, K.; Watts, D.; Way, T.; Torbert, H.; Prior, S. Impact of Tillage and Fertilizer Application Method on Gas Emissions in a Corn Cropping System. Pedosphere 2012, 22, 604–615. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Sharifi, M.; Hosseinpour, S.; Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Khanali, M. Use of LCA Indicators to Assess Iranian Rapeseed Production Systems with Different Residue Management Practices. Ecol. Indic. 2017, 80, 31–39. [Google Scholar] [CrossRef]
- Shahmohammadi, A.; Veisi, H.; Khoshbakht, K. Compartive Life Cycle Assessment of Mechanized and Semi-Mechanized Methods of Potato Cultivation. Energy Ecol. Environ. 2018, 3, 288–295. [Google Scholar] [CrossRef]
- Dekamin, M.; Barmaki, M.; Kanooni, A. Selecting the Best Environmental Friendly Oilseed Crop by Using Life Cycle Assessment, Water Footprint and Analytic Hierarchy Process Methods. J. Clean. Prod. 2018, 198, 1239–1250. [Google Scholar] [CrossRef]
- Esmaeilzadeh, S.; Asgharipour, M.R.; Bazrgar, A.B.; Soufizadeh, S.; Karandish, F. Assessing the Carbon Footprint of Irrigated and Dryland Wheat with a Life Cycle Approach in Bojnourd. Environ. Prog. Sustain. Energy 2019, 38, 13134. [Google Scholar] [CrossRef]
- Ghasempour, A.; Ahmadi, E. Evaluation of Environmental Effects in Producing Three Main Crops (Corn, Wheat and Soybean) Using Life Cycle Assessment. Agric. Eng. Int. CIGR J. 2018, 20, 126–137. [Google Scholar]
- Heidari, M.D.; Huijbregts, M.A.J.; Mobli, H.; Omid, M.; Rafiee, S.; van Zelm, R. Regionalised Life Cycle Assessment of Pasta Production in Iran: Damage to Terrestrial Ecosystems. J. Clean. Prod. 2017, 159, 141–146. [Google Scholar] [CrossRef]
- Joy, E.J.M.; Ahmad, W.; Zia, M.H.; Kumssa, D.B.; Young, S.D.; Ander, E.L.; Watts, M.J.; Stein, A.J.; Broadley, M.R. Valuing Increased Zinc (Zn) Fertiliser-Use in Pakistan. Plant Soil 2017, 411, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Elahi, E.; Cui, W.; Zhang, H.; Nazeer, M. Agricultural Intensification and Damages to Human Health in Relation to Agrochemicals: Application of Artificial Intelligence. Land Use Policy 2019, 83, 461–474. [Google Scholar] [CrossRef]
- Payandeh, Z.; Kheiralipour, K.; Karimi, M.; Khoshnevisan, B. Joint Data Envelopment Analysis and Life Cycle Assessment for Environmental Impact Reduction in Broiler Production Systems. Energy 2017, 127, 768–774. [Google Scholar] [CrossRef]
- Taki, M.; Soheili-Fard, F.; Rohani, A.; Chen, G.; Yildizhan, H. Life Cycle Assessment to Compare the Environmental Impacts of Different Wheat Production Systems. J. Clean. Prod. 2018, 197, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, S.; Khoshnevisan, B.; Mohammadi, I.; Aghbashlo, M.; Mousazadeh, H.; Clark, S. Sustainability Evaluation of Pasteurized Milk Production with a Life Cycle Assessment Approach: An Iranian Case Study. Sci. Total Environ. 2016, 562, 614–627. [Google Scholar] [CrossRef]
- van den Berg, H.; Gu, B.; Grenier, B.; Kohlschmid, E.; Al-Eryani, S.; da Silva Bezerra, H.S.; Nagpal, B.N.; Chanda, E.; Gasimov, E.; Velayudhan, R.; et al. Pesticide Lifecycle Management in Agriculture and Public Health: Where Are the Gaps? Sci. Total Environ. 2020, 742, 140598. [Google Scholar] [CrossRef]
- Williams, J.D.; Long, D.S.; Reardon, C.L. Productivity and Water Use Efficiency of Intensified Dryland Cropping Systems under Low Precipitation in Pacific Northwest, USA. Field Crops Res. 2020, 254, 107787. [Google Scholar] [CrossRef]
- Elahi, E.; Cui, W.; Zhang, H.; Abid, M. Use of Artificial Neural Networks to Rescue Agrochemical-Based Health Hazards: A Resource Optimisation Method for Cleaner Crop Production. J. Clean. Prod. 2019, 238, 117900. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Thapa, G.B. Agricultural Sustainability Assessment at Provincial Level in Pakistan. Land Use Policy 2017, 68, 492–502. [Google Scholar] [CrossRef]
- Sadeghi, S.M.; Noorhosseini, S.A.; Damalas, C.A. Environmental Sustainability of Corn (Zea Mays L.) Production on the Basis of Nitrogen Fertilizer Application: The Case of Lahijan, Iran. Renew. Sustain. Energy Rev. 2018, 95, 48–55. [Google Scholar] [CrossRef]
- Pishgar Komleh, S.H.; Keyhani, A.; Rafiee, S.; Sefeedpary, P. Energy Use and Economic Analysis of Corn Silage Production under Three Cultivated Area Levels in Tehran Province of Iran. Energy 2011, 36, 3335–3341. [Google Scholar] [CrossRef]
- Banaeian, N.; Zangeneh, M. Study on Energy Efficiency in Corn Production of Iran. Energy 2011, 36, 5394–5402. [Google Scholar] [CrossRef]
- Firouzi, S.; Nikkhah, A.; Rosentrater, K.A. An Integrated Analysis of Non-Renewable Energy Use, GHG Emissions, Carbon Efficiency of Groundnut Sole Cropping and Groundnut-Bean Intercropping Agro-Ecosystems. Environ. Prog. Sustain. Energy 2017, 36, 1832–1839. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E.; Jenkins, R. Life Cycle Assessment of Corn Grain and Corn Stover in the United States. Int. J. Life Cycle Assess. 2009, 14, 160–174. [Google Scholar] [CrossRef]
- Maham, S.G.; Rahimi, A.; Smith, D.L. Environmental Assessment of the Essential Oils Produced from Dragonhead (Dracocephalum Moldavica L.) in Conventional and Organic Farms with Different Irrigation Rates. J. Clean. Prod. 2018, 204, 1070–1086. [Google Scholar] [CrossRef]
- Prabhakar, S.V.R.K.; Elder, M. Biofuels and Resource Use Efficiency in Developing Asia: Back to Basics. Appl. Energy 2009, 86 (Suppl. S1), S30–S36. [Google Scholar] [CrossRef]
Impact Categories | Units | Functional Units | ||
---|---|---|---|---|
Land-Based | Mass-Based | Per 1000 MJ Energy Generation | ||
Carcinogens | Kg C2H3Cl equivalent | 87.24 | 13.34 | 48.01 |
Non-carcinogens | Kg C2H3Cl equivalent | 48.67 | 7.36 | 26.48 |
Respiratory inorganics | Kg PM2.5 equivalent | 8.56 | 1.31 | 4.71 |
Ionizing radiation | Bq C-14 equivalent | 20,111.04 | 3087.28 | 11,115.61 |
Ozon layer depletion | Kg CFC-11 equivalent | 6.40 × 10−4 | 9.99 × 10−5 | 0.00036 |
Respiratory organics | Kg C2H4 equivalent | 0.84 | 0.13 | 0.47 |
Aquatic ecotoxicity | Kg TEG water | 231,588.27 | 35,152.98 | 126,571.60 |
Terrestrial Ecotoxicity | Kg TEG soil | 29,304.28 | 4483.80 | 16,145.65 |
Terrestrial acid/nutria | Kg SO2 equivalent | 742.12 | 113.38 | 408.17 |
Land occupation | m2org.arable | 97.90 | 14.83 | 53.42 |
Aquatic acidification | Kg SO2 equivalent | 102.78 | 15.70 | 56.53 |
Aquatic eutrophication | Kg PO4 P-lim | 1.39 | 0.21 | 0.76 |
Global warming | Kg CO2 equivalent | 2295.34 | 354.18 | 1275.13 |
Non-renewable energy | MJ primary | 34,569.90 | 5353.04 | 19,272.15 |
Mineral extraction | MJ surplus | 165.01 | 25.05 | 90.18 |
Impact Categories | Seed | Potassium Fertilizer | Phosphate Fertilizer | Nitrogen Fertilizer | Pesticide | Diesel Fuel | On-Farm |
---|---|---|---|---|---|---|---|
Carcinogens | 0.9 | 0.9 | 14.0 | 64.5 | 16.0 | 3.7 | 0.0 |
Non-carcinogens | 4.8 | 5.2 | 39.4 | 31.0 | 13.5 | 1.6 | 4.5 |
Respiratory inorganics | 0.0 | 1.0 | 10.4 | 11.9 | 5.6 | 1.0 | 70.1 |
Ionizing radiation | 1.6 | 1.1 | 34.7 | 23.3 | 22.0 | 17.3 | 0.0 |
Ozon layer depletion | 0.5 | 0.0 | 3.2 | 5.4 | 84.4 | 6.5 | 0.0 |
Respiratory organics | 1.0 | 2.0 | 12.4 | 33.4 | 21.0 | 30.2 | 0.0 |
Aquatic ecotoxicity | 2.9 | 1.1 | 53.3 | 22.1 | 17.6 | 3.0 | 0.0 |
Terrestrial Ecotoxicity | 9.0 | 1.0 | 30.0 | 36.0 | 17.7 | 5.0 | 1.3 |
Terrestrial acid/nutria | 0.7 | 0.0 | 2.3 | 2.7 | 1.3 | 0.0 | 93.0 |
Land occupation | 39.0 | 15.0 | 37.0 | 5.0 | 4.0 | 0.0 | 0.0 |
Aquatic acidification | 0.0 | 1.0 | 5.0 | 6.0 | 3.0 | 0.0 | 85.0 |
Aquatic eutrophication | 0.0 | 1.5 | 64.5 | 11.8 | 20.2 | 2.0 | 0.0 |
Global warming | 1.1 | 2.5 | 15.0 | 45.0 | 12.0 | 3.4 | 21.0 |
Non-renewable energy | 1.0 | 1.4 | 15.0 | 36.4 | 17.6 | 28.6 | 0.0 |
Mineral extraction | 1.0 | 1.0 | 39.0 | 46.0 | 13.0 | 0.0 | 0.0 |
Damage Categories | Seed | Potassium Fertilizer | Phosphate Fertilizer | Nitrogen Fertilizer | Pesticide | Diesel Fuel | On-Farm |
---|---|---|---|---|---|---|---|
Human health | 0.0045 | 0.0054 | 0.0989 | 0.1277 | 0.0551 | 0.0115 | 0.5964 |
Eco systems | 0.0046 | 0.0014 | 0.0095 | 0.0087 | 0.0039 | 0.0011 | 0.0527 |
Climate change | 0.0025 | 0.0028 | 0.0373 | 0.1002 | 0.0316 | 0.0094 | 0.0481 |
Resources | 0.0018 | 0.0018 | 0.0341 | 0.0860 | 0.0389 | 0.0660 | 0.0000 |
IA | GWP (Kg CO2 eq) | OLP (Kg CFC-11 eq) |
---|---|---|
CML-IA baseline | 3134.38 | 6.40 × 10−4 |
EDIP 2003 | 3134.44 | 6.40 × 10−4 |
EDP (2013) | 3134.38 | 6.40 × 10−4 |
ILCD 2011 Midpoint | 3135.25 | 6.40 × 10−4 |
IMPACT 2002+ * | 2295.34 | 6.40 × 10−4 |
Impact Categories | Units | The Characterization Based on the Various Scenarios | |||||
---|---|---|---|---|---|---|---|
Current | 5% N-Based Fertilizer Reduction | 10% N-Based Fertilizer Reduction | 20% N-Based Fertilizer Reduction | 50% N-Based Fertilizer Reduction | 100% N-Based Fertilizer Reduction | ||
Carcinogens | Kg C2H3Cl equivalent | 87.24 | 84.42 | 81.58 | 75.92 | 58.93 | 30.61 |
Non-carcinogens | Kg C2H3Cl equivalent | 48.67 | 47.81 | 46.94 | 45.20 | 39.99 | 31.31 |
Respiratory inorganics | Kg PM2.5 equivalent | 8.56 | 8.24 | 7.91 | 7.26 | 5.31 | 2.06 |
Ionizing radiation | Bq C-14 equivalent | 20,111.04 | 19,879.33 | 19,647.34 | 19,183.56 | 17,792.22 | 15,473.33 |
Ozon layer depletion | Kg CFC-11 equivalent | 6.40 × 10−4 | 6.39 × 10−4 | 6.38 × 10−4 | 6.34 × 10−4 | 6.24 × 10−4 | 6.07 × 10−4 |
Respiratory organics | Kg C2H4 equivalent | 0.84 | 0.83 | 0.82 | 0.79 | 0.70 | 0.56 |
Aquatic ecotoxicity | Kg TEG water | 231,588.27 | 229,090.20 | 226,589.10 | 221,589.20 | 206,589.50 | 181,589.90 |
Terrestrial Ecotoxicity | Kg TEG soil | 29,304.28 | 28,749.87 | 0.82 | 27,085.20 | 23,756.33 | 18,208.22 |
Terrestrial acid/nutria | Kg SO2 equivalent | 742.12 | 707.41 | 672.70 | 603.28 | 395.02 | 47.92 |
Land occupation | m2org.arable | 97.90 | 97.64 | 97.36 | 96.82 | 95.18 | 92.45 |
Aquatic acidification | Kg SO2 equivalent | 102.78 | 98.28 | 93.77 | 84.77 | 57.77 | 12.76 |
Aquatic eutrophication | Kg PO4 P-lim | 1.39 | 1.38 | 1.37 | 1.36 | 1.31 | 1.24 |
Global warming | Kg CO2 equivalent | 2295.34 | 2245.79 | 2196.18 | 2097.01 | 1799.50 | 1303.66 |
Non-renewable energy | MJ primary | 34,569.90 | 33,920.62 | 33,270.57 | 31,971.05 | 28,072.47 | 21,574.85 |
Mineral extraction | MJ surplus | 165.01 | 161.24 | 157.46 | 149.9 | 127.23 | 89.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.; Zhao, C.; Ullah, W.; Ahmad, R.; Waseem, M.; Zhu, J. Towards Sustainable Farm Production System: A Case Study of Corn Farming. Sustainability 2021, 13, 9243. https://doi.org/10.3390/su13169243
Abbas A, Zhao C, Ullah W, Ahmad R, Waseem M, Zhu J. Towards Sustainable Farm Production System: A Case Study of Corn Farming. Sustainability. 2021; 13(16):9243. https://doi.org/10.3390/su13169243
Chicago/Turabian StyleAbbas, Adnan, Chengyi Zhao, Waheed Ullah, Riaz Ahmad, Muhammad Waseem, and Jianting Zhu. 2021. "Towards Sustainable Farm Production System: A Case Study of Corn Farming" Sustainability 13, no. 16: 9243. https://doi.org/10.3390/su13169243
APA StyleAbbas, A., Zhao, C., Ullah, W., Ahmad, R., Waseem, M., & Zhu, J. (2021). Towards Sustainable Farm Production System: A Case Study of Corn Farming. Sustainability, 13(16), 9243. https://doi.org/10.3390/su13169243