The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO2 Emissions: Evidence from Major Asia Pacific Countries
Abstract
:1. Introduction
2. Literature Review
2.1. COVID-19 Related Supply Chain and Production Activity Distributions
2.2. COVID-19’s Environmental and CO2 Emissions Impact
2.3. Sectoral Environmental and Carbon Linkages
2.4. Research Gaps and Significance
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Environmentally Extended Input–Output Model
3.2.2. Decomposition of the National Economy into the Target and Other Sectors
3.2.3. Decomposition of Direct and Indirect Demand-Induced Emissions
3.2.4. CO2 Emissions Estimations after Adjusting for Direct and Indirect Demand Shocks
3.2.5. Estimation of the Impact of Direct and Indirect Demand Shocks
4. Results
4.1. Direct CO2 Emissions under the Baseline (No COVID-19) Scenario
4.2. The Impact of Negative Total Demand Shocks on Country-Wide and Sectoral CO2 Releases
4.3. Decomposition of Impacts from Direct and Indirect Demand Shocks
4.4. The Sectoral Sources of Indirect Demand
5. Discussion
5.1. Discussion of the Results
5.2. Limitations and Future Research
6. Policy Implications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sectoral Abbreviations | Full Names |
---|---|
AMQ | “Agriculture, Mining and Quarrying” |
BTPS | “Business, Trade, Personal, and Public Services” |
HROS | “Hotel and Restaurants and Other Personal Services” |
MUC | “Light/Heavy Manufacturing, Utilities, and Construction” |
TS | “Transport services” |
Items a | Bangladesh b | China | India | Indonesia | Pakistan |
---|---|---|---|---|---|
Best case | |||||
AMQ | −3.18 × 10−5 | −2.60 | −0.02 | −0.07 | 0.00 |
BTPS | −5.85 × 10−4 | −2.29 | −0.02 | −0.03 | 0.00 |
HROS | −2.10 × 10−4 | −0.66 | −0.03 | −0.24 | 0.00 |
MUC | −1.29 × 10−3 | −17.26 | −0.19 | −0.24 | −0.01 |
TS | −1.42 × 10−5 | −0.51 | 0.00 | −0.01 | 0.00 |
Total impact | −2.13 × 10−3 | −23.31 | −0.26 | −0.58 | −0.01 |
Moderate case | |||||
AMQ | −7.22 × 10−5 | −6.62 | −0.04 | −0.09 | 0.00 |
BTPS | −1.15 × 10−3 | −5.91 | −0.02 | −0.04 | −0.01 |
HROS | −3.22 × 10−4 | −1.27 | −0.06 | −0.30 | 0.00 |
MUC | −2.82 × 10−3 | −42.03 | −0.32 | −0.35 | −0.01 |
TS | −2.62 × 10−5 | −0.85 | −0.01 | −0.01 | 0.00 |
Total impact | −4.39 × 10−3 | −56.67 | −0.44 | −0.79 | −0.02 |
Worse case | |||||
AMQ | −1.23 × 10−4 | −11.17 | −0.06 | −0.16 | 0.00 |
BTPS | −2.36 × 10−3 | −13.34 | −0.05 | −0.07 | −0.01 |
HROS | −6.41 × 10−4 | −2.07 | −0.10 | −0.50 | 0.00 |
MUC | −5.05 × 10−3 | −139.71 | −0.66 | −0.60 | −0.02 |
TS | −4.87 × 10−5 | −1.77 | −0.01 | −0.01 | 0.00 |
Total impact | −8.22 × 10−3 | −168.06 | −0.88 | −1.34 | −0.04 |
Hypothetical worst case | |||||
AMQ | −0.02 | −11.18 | −2.75 | −0.60 | −0.07 |
BTPS | −0.30 | −13.34 | −2.01 | −0.57 | −1.04 |
HROS | −0.04 | −2.07 | −0.52 | −0.76 | −0.08 |
MUC | −0.25 | −139.82 | −10.82 | −2.90 | −1.09 |
TS | −0.01 | −1.77 | −0.22 | −0.04 | −0.05 |
Total impact | −0.63 | −168.18 | −16.32 | −4.88 | −2.33 |
References
- Ibn-Mohammed, T.; Mustapha, K.B.; Godsell, J.; Adamu, Z.; Babatunde, K.A.; Akintade, D.D.; Acquaye, A.; Fujii, H.; Ndiaye, M.M.; Yamoah, F.A.; et al. A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resour. Conserv. Recycl. 2021, 164, 105169. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard (Data Last Updated: 2 March 2021, 6:09 pm CET). Available online: https://covid19.who.int/ (accessed on 3 March 2021).
- Singh, S.; Kumar, R.; Panchal, R.; Tiwari, M.K. Impact of COVID-19 on logistics systems and disruptions in food supply chain. Int. J. Prod. Res. 2020, 59, 1–16. [Google Scholar] [CrossRef]
- Barbier, E.B.; Burgess, J.C. Sustainability and development after COVID-19. World Dev. 2020, 135, 105082. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.; Han, P.; Liu, D.; Liu, Z.; Oda, T.; Martin, C.; Liu, Z.; Yao, B.; Sun, W.; Wang, P.; et al. Global to local impacts on atmospheric CO2 caused by COVID-19 lockdown. arXiv 2020, arXiv:2010.13025. [Google Scholar]
- Quéré, C.L.; Peters, G.P.; Friedlingstein, P.; Andrew, R.M.; Canadell, J.G.; Davis, S.J.; Jackson, R.B.; Jones, M.W. Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Chang. 2021, 11, 197–199. [Google Scholar] [CrossRef]
- D’adamo, I.; González-Sánchez, R.; Medina-Salgado, M.S.; Settembre-Blundo, D. E-commerce calls for cyber-security and sustainability: How european citizens look for a trusted online environment. Sustainability 2021, 13, 6752. [Google Scholar] [CrossRef]
- Acevedo-Duque, Á.; Gonzalez-Diaz, R.; Vargas, E.C.; Paz-Marcano, A.; Muller-Pérez, S.; Salazar-Sepúlveda, G.; Caruso, G.; D’Adamo, I. Resilience, Leadership and Female Entrepreneurship within the Context of SMEs: Evidence from Latin America. Sustainability 2021, 13, 8129. [Google Scholar] [CrossRef]
- D’Adamo, I.; Lupi, G. Sustainability and resilience after COVID-19: A circular premium in the fashion industry. Sustainability 2021, 13, 1861. [Google Scholar] [CrossRef]
- Amankwah-Amoah, J. Note: Mayday, Mayday, Mayday! Responding to environmental shocks: Insights on global airlines’ responses to COVID-19. Transp. Res. Part E Logist. Transp. Rev. 2020, 143, 102098. [Google Scholar] [CrossRef]
- Chowdhury, M.T.; Sarkar, A.; Paul, S.K.; Moktadir, M.A. A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry. Oper. Manag. Res. 2020. [Google Scholar] [CrossRef]
- Marimuthu, R.; Sankaranarayanan, B.; Ali, S.M.; Karuppiah, K. Green recovery strategies for the mining industry of India: Lessons learned from the COVID-19 pandemic. J. Asia Bus. Stud. 2021. [Google Scholar] [CrossRef]
- Chen, J.; Huang, J.; Su, W.; Štreimikienė, D.; Baležentis, T. The challenges of COVID-19 control policies for sustainable development of business: Evidence from service industries. Technol. Soc. 2021, 66, 101643. [Google Scholar] [CrossRef]
- Cui, Q.; He, L.; Liu, Y.; Zheng, Y.; Wei, W.; Yang, B.; Zhou, M. The impacts of COVID-19 pandemic on China’s transport sectors based on the CGE model coupled with a decomposition analysis approach. Transp. Policy 2021, 103, 103–115. [Google Scholar] [CrossRef]
- Shahed, K.S.; Azeem, A.; Ali, S.M.; Moktadir, M.A. A supply chain disruption risk mitigation model to manage COVID-19 pandemic risk. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Karmaker, C.L.; Ahmed, T.; Ahmed, S.; Ali, S.M.; Moktadir, M.A.; Kabir, G. Improving supply chain sustainability in the context of COVID-19 pandemic in an emerging economy: Exploring drivers using an integrated model. Sustain. Prod. Consum. 2021, 26, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Barik, G.; Gayen, B.K.; Bar, S.; Maiti, A.; Sarkar, A.; Ghosh, S.; De, S.K.; Sreekesh, S. Revisiting the levels of Aerosol Optical Depth in south-southeast Asia, Europe and USA amid the COVID-19 pandemic using satellite observations. Environ. Res. 2021, 193, 110514. [Google Scholar] [CrossRef] [PubMed]
- Dumka, U.C.; Kaskaoutis, D.G.; Verma, S.; Ningombam, S.S.; Kumar, S.; Ghosh, A. Silver linings in the dark clouds of COVID-19: Improvement of air quality over India and Delhi metropolitan area from measurements and WRF-CHIMERE model simulations. Atmos. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Patra, A.K.; Gorai, A.K. Effect of lockdown due to SARS COVID-19 on aerosol optical depth (AOD) over urban and mining regions in India. Sci. Total Environ. 2020, 745, 141024. [Google Scholar] [CrossRef]
- Debone, D.; da Costa, M.V.; Miraglia, S.G.E.K. 90 days of COVID-19 social distancing and its impacts on air quality and health in Sao Paulo, Brazil. Sustainability 2020, 12, 7440. [Google Scholar] [CrossRef]
- Alonso-Muñoz, S.; González-Sánchez, R.; Siligardi, C.; García-Muiña, F.E. New circular networks in resilient supply chains: An external capital perspective. Sustainability 2021, 13, 6130. [Google Scholar] [CrossRef]
- Rume, T.; Didar-UlIslam, S.M. Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon 2020, 6, e04965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hao, M.; Morse, S. Is environmental sustainability taking a backseat in china after covid-19? The perspective of business managers. Sustainability 2020, 12, 369. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Cheela, V.S.; Ranjan, V.P.; Jaglan, A.K.; Dubey, B.; Goel, S.; Bhattacharya, J. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour. Conserv. Recycl. 2020, 162, 105052. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, A.; Dubey, B.K.; Goel, S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 2021, 750, 141514. [Google Scholar] [CrossRef]
- Kalbusch, A.; Henning, E.; Brikalski, M.P.; de Luca, F.V.; Konrath, A.C. Impact of coronavirus (COVID-19) spread-prevention actions on urban water consumption. Resour. Conserv. Recycl. 2020, 163, 105098. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Pervez, A.; Modibbo, U.M.; Chauhan, J. Flexible Fuzzy Goal Programming Approach in Optimal Mix of Power Generation for Socio-Economic Sustainability: A Case Study. Sustainability 2021, 13, 8256. [Google Scholar] [CrossRef]
- D’Adamo, I.; Rosa, P. How do you see infrastructure? Green energy to provide economic growth after COVID-19. Sustainability 2020, 12, 4738. [Google Scholar] [CrossRef]
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Quéré, C.L.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang. 2020, 10, 913–919. [Google Scholar] [CrossRef]
- Arribas-Ibar, M.; Nylund, P.A.; Brem, A. The risk of dissolution of sustainable innovation ecosystems in times of crisis: The electric vehicle during the covid-19 pandemic. Sustainability 2021, 13, 1319. [Google Scholar] [CrossRef]
- Rousseau, S.; Deschacht, N. Public Awareness of Nature and the Environment During the COVID-19 Crisis. Environ. Resour. Econ. 2020, 76, 1149–1159. [Google Scholar] [CrossRef]
- Turner, A.J.; Kim, J.; Fitzmaurice, H.; Newman, C.; Worthington, K.; Chan, K.; Wooldridge, P.J.; Köehler, P.; Frankenberg, C.; Cohen, R.C. Observed Impacts of COVID-19 on Urban CO2 Emissions. Geophys. Res. Lett. 2020, 47, e2020GL090037. [Google Scholar] [CrossRef]
- Zheng, B.; Geng, G.; Ciais, P.; Davis, S.J.; Martin, R.V.; Meng, J.; Wu, N.; Chevallier, F.; Broquet, G.; Boersma, F.; et al. Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic. Sci. Adv. 2020, 6, eabd4998. [Google Scholar] [CrossRef]
- Han, P.; Cai, Q.; Oda, T.; Zeng, N.; Shan, Y.; Lin, X.; Liu, D. Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data. Sci. Total Environ. 2021, 750, 141688. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B.; et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef] [PubMed]
- Quéré, C.L.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Shan, Y.; Ou, J.; Wang, D.; Zeng, Z.; Zhang, S.; Guan, D.; Hubacek, K. Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nat. Clim. Chang. 2021, 11, 200–206. [Google Scholar] [CrossRef]
- Sajid, M.J.; Qingren, C.; Ming, C.; Shuang, L. Sectoral carbon linkages of Indian economy based on hypothetical extraction model. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 1756–8692. [Google Scholar] [CrossRef]
- Duarte, R.; Sa, J.; Bielsa, J. Water use in the Spanish economy: An input-output approach. Ecol. Econ. 2002, 43, 71–85. [Google Scholar] [CrossRef]
- Dionisio, C.; Blanco, P.; Thaler, T. An Input-Output Assessment of Water Productivity in the Castile and León Region (Spain). Water 2014, 6, 929–944. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.; Wang, L.; Xu, X. Linkage effect of virtual water trade in China’s industrial products—Based on generalized hypothetical extraction method. Ecol. Indic. 2018, 93, 1302–1310. [Google Scholar] [CrossRef]
- Guerra, A.I.; Sancho, F. Measuring energy linkages with the hypothetical extraction method: An application to Spain. Energy Econ. 2010, 32, 831–837. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Zuo, J.; Luo, Y. Sectoral linkage analysis of three main air pollutants in China’s industry: Comparing 2010 with 2002. J. Environ. Manag. 2017, 202, 232–241. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, N.; Mao, G.; Zuo, J.; Crittenden, J.; Jin, Y.; Moreno-Cruz, J. Air pollutant emissions from economic sectors in China: A linkage analysis. Ecol. Indic. 2017, 77, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.J.; Cao, Q.; Kang, W. Transport sector carbon linkages of EU’s top seven emitters. Transp. Policy 2019, 80, 24–38. [Google Scholar] [CrossRef]
- Cella, G. The input-output measurement of interindustry linkages. Oxf. Bull. Econ. Stat. 1984, 46, 73–84. [Google Scholar] [CrossRef]
- Bai, H.; Feng, X.; Hou, H.; He, G.; Dong, Y.; Xu, H. Mapping inter-industrial CO2 flows within China. Renew. Sustain. Energy Rev. 2018, 93, 400–408. [Google Scholar] [CrossRef]
- Sajid, M.J.; Li, X.; Cao, Q. Demand and supply-side carbon linkages of Turkish economy using hypothetical extraction method. J. Clean. Prod. 2019, 228, 264–275. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Wang, S.; Zhang, Z.; Li, J. Inter-regional linkage analysis of industrial CO2 emissions in China: An application of a hypothetical extraction method. Ecol. Indic. 2016, 61, 428–437. [Google Scholar] [CrossRef]
- Sajid, M.J.; Qiao, W.; Cao, Q.; Kang, W. Prospects of industrial consumption embedded final emissions: A revision on Chinese household embodied industrial emissions. Sci. Rep. 2020, 10, 1826. [Google Scholar] [CrossRef] [Green Version]
- Ali, Y. Measuring CO2 emission linkages with the hypothetical extraction method (HEM). Ecol. Indic. 2015, 54, 171–183. [Google Scholar] [CrossRef]
- Sajid, M.J. Structural decomposition and Regional Sensitivity Analysis of industrial consumption embedded emissions from Chinese households. Ecol. Indic. 2021, 122, 107237. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Xu, Y. Industrial linkage of embodied CO2 emissions: Evidence based on an absolute weighted measurement method. Resour. Conserv. Recycl. 2020, 160, 104892. [Google Scholar] [CrossRef]
- Sajid, M.J.; Shahni, N.; Ali, M. Calculating inter-sectoral carbon flows of a mining sector via hypothetical extraction method. J. Min. Environ. 2019, 10, 853–867. [Google Scholar] [CrossRef]
- Sajid, M.J. Inter-sectoral carbon ties and final demand in a high climate risk country: The case of Pakistan. J. Clean. Prod. 2020, 269, 122254. [Google Scholar] [CrossRef]
- Worldometer Countries in the World by Population. 2021. Available online: https://www.worldometers.info/world-population/population-by-country/ (accessed on 1 January 2021).
- Tiseo, I. Average PM 2.5 Levels in Most Polluted Countries Worldwide. 2019. Available online: https://www.statista.com/statistics/1135356/most-polluted-countries-in-the-world/#:~:text=Bangladesh%20had%20an%20average%20PM2,%20second%20most%20polluted%20country%2C%20Pakistan (accessed on 6 March 2021).
- Asian Development Bank COVID-19 Economic Impact Assessment Template. Available online: https://data.adb.org/dataset/covid-19-economic-impact-assessment-template (accessed on 11 May 2021).
- Eora Global MRIO Eora National IO Tables. Available online: https://worldmrio.com/countrywise/ (accessed on 1 January 2021).
- Leontief, W.W. Quantitative Input and Output Relations in the Economic Systems of the United States. Rev. Econ. Stat. 1936, 18, 105–125. [Google Scholar] [CrossRef] [Green Version]
- IMF Real GDP Growth. Available online: https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD/IND/CHN/PAK/BGD/IDN (accessed on 26 July 2021).
- Sajid, M.J.; Niu, H.; Xie, J.; Habib, M. Final consumer embedded carbon emissions and externalities: A case of Chinese consumers. Environ. Dev. 2021, 100642. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Martin, M.; Rosa, P. A sustainable revolution: Let’s go sustainable to get our globe cleaner. Sustainability 2020, 12, 4387. [Google Scholar] [CrossRef]
- Sajid, M.J. Economic consequences of resource trade-offs for special disaster-blessed industries: The case of COVID-19. In Proceedings of the 2020 International Conference on New Energy Technology and Industrial Development (NETID 2020), Dali, China, 18–20 December 2021; Volume 235, p. 02007. [Google Scholar]
- MacSwan, A. Factbox: The Economic Remedies for the Coronavirus. Available online: https://www.reuters.com/article/us-health-coronavirus-economy-policy-fac/factbox-the-economic-remedies-for-the-coronavirus-idUSKBN2121C4 (accessed on 3 April 2020).
- Štreimikienė, D.; Mikalauskienė, A.; Atkočiūnienė, Z.; Mikalauskas, I. Renewable energy strategies of the Baltic States. Energy Environ. 2019, 30, 363–381. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajid, M.J.; Gonzalez, E.D.R.S. The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO2 Emissions: Evidence from Major Asia Pacific Countries. Sustainability 2021, 13, 9312. https://doi.org/10.3390/su13169312
Sajid MJ, Gonzalez EDRS. The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO2 Emissions: Evidence from Major Asia Pacific Countries. Sustainability. 2021; 13(16):9312. https://doi.org/10.3390/su13169312
Chicago/Turabian StyleSajid, Muhammad Jawad, and Ernesto D. R. Santibanez Gonzalez. 2021. "The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO2 Emissions: Evidence from Major Asia Pacific Countries" Sustainability 13, no. 16: 9312. https://doi.org/10.3390/su13169312
APA StyleSajid, M. J., & Gonzalez, E. D. R. S. (2021). The Impact of Direct and Indirect COVID-19 Related Demand Shocks on Sectoral CO2 Emissions: Evidence from Major Asia Pacific Countries. Sustainability, 13(16), 9312. https://doi.org/10.3390/su13169312