Collaborative Allocation of Energy Consumption, Air Pollutants and CO2 Emissions in China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Allocation Methods Based on Equity
3.2. Efficiency Allocation Approach
4. Materials
5. Results
5.1. Initial Allocation Result Based on Equity
5.2. Collaborative Allocation Result Based on Efficiency
6. Discussion and Suggestions
6.1. Discussion
6.1.1. Comparison with Initial Allocation Scheme
6.1.2. Pressures on Energy Saving, Emissions Reduction and GDP Growth
6.2. Implications and Suggestions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- State Council. The 14th Five-Year Plan for National Economic and Social Development of the People’s Republic of China and the Long-Term Objectives for 2035. 2021. Available online: http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm (accessed on 22 August 2021).
- Bastola, U.; Sapkota, P. Relationships among energy consumption, pollution emission, and economic growth in Nepal. Energy 2015, 80, 254–262. [Google Scholar] [CrossRef]
- Irfan, M.; Shaw, K. Modeling the effects of energy consumption and urbanization on environmental pollution in South Asian countries: A nonparametric panel approach. Qual. Quant. 2017, 51, 65–78. [Google Scholar] [CrossRef]
- Li, G.; Sun, W.; Huang, G.H.; Lv, Y.; Liu, Z.; An, C. Planning of integrated energy-environment systems under dual interval uncertainties. Int. J. Electr. Power Energy Syst. 2018, 100, 287–298. [Google Scholar] [CrossRef]
- Zhang, S.; Worrell, E.; Crijns-Graus, W. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Appl. Energy 2015, 147, 192–213. [Google Scholar] [CrossRef]
- Yuan, X.L.; Mu, R.; Zuo, J.; Wang, Q.S. Economic Development, Energy Consumption, and Air Pollution: A Critical Assessment in China. Hum Ecol. Risk. Assess. 2015, 21, 781–798. [Google Scholar] [CrossRef]
- Yu, Y.; Kong, Q. Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method. Nat. Hazards 2017, 88, 1691–1707. [Google Scholar] [CrossRef]
- Thambiran, T.; Diab, R.D. Air quality and climate change co-benefits for the industrial sector in Durban, South Africa. Energy Policy 2011, 39, 6658–6666. [Google Scholar] [CrossRef] [Green Version]
- Ayres, R.U.; Walter, J. The greenhouse effect: Damages, costs and abatement. Environ. Resour. Econ. 1991, 1, 237–270. [Google Scholar] [CrossRef]
- Messner, S. Synergies and conflicts of sulfur and carbon mitigation strategies. Energy Convers. Manag. 1997, 38, S629–S634. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- IPCC. Climate Change 2007: Mitigation: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Liang, Q.M.; Deng, H.M.; Liu, M. Co-control of CO2 emissions and local pollutants in China: The perspective of adjusting final use behaviors. J. Clean. Prod. 2016, 131, 198–208. [Google Scholar] [CrossRef]
- Song, J.K.; Jiang, L.N.; Zhao, Z.H.; Zhang, Y.M.; Lv, T.G. Cointegration Test of the Relationship Among Energy Consumption, Air Pollutant Emission and Carbon Emission Intensity in China—Based on the Data from 2000 to 2017. Environ. Prot. Sci. 2020, 5, 1–7. [Google Scholar]
- Wang, C.; Deng, H.M.; Guo, K.D.; Liu, Y. Research Progress on Cooperative Governance of Greenhouse Gases and Air Pollutants. Chin. J. Environ. Manag. 2020, 4, 5–12. [Google Scholar]
- Zhou, P.; Zhang, L.; Zhou, D.Q.; Xia, W.J. Modeling economic performance of interprovincial CO2 emission reduction quota trading in China. Appl. Energy 2013, 112, 1518–1528. [Google Scholar] [CrossRef]
- Yu, S.; Wei, Y.M.; Wang, K. Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition. CEEP-BIT Work. Pap. 2012, 66, 630–644. [Google Scholar] [CrossRef]
- Moltafet, M.; Azmi, P.; Mokari, N.; Javan, M.R.; Mokdad, A. Optimal and Fair Energy Efficient Resource Allocation for Energy Harvesting Enabled-PD-NOMA Based HetNets. IEEE. Trans. Wirel. Commun. 2018, 17, 2054–2067. [Google Scholar] [CrossRef]
- Yi, W.J.; Zou, L.L.; Guo, J.; Wang, K.; Wei, Y.M. How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development. Energy Policy 2011, 39, 2407–2415. [Google Scholar] [CrossRef]
- Wu, J.; Ma, X.; Wang, Z. Provincial emission permits quota allocations in China. Quat. Sci. 2010, 30, 481–488. [Google Scholar]
- Dong, F.; Long, R.; Yu, B.; Wang, J.L.; Wang, Y.; Dai, Y.; Yang, Q.; Chen, H. How can China allocate CO2 reduction targets at the provincial level considering both equity and efficiency? Evidence from its Copenhagen Accord pledge. Resour. Conserv. Recycl. 2018, 130, 31–43. [Google Scholar] [CrossRef]
- Sun, Z.R.; Zhou, D.Q.; Zhou, P. Quota Allocation of China’s Energy Conservation Based on Environmental ZSG-DEA. Syst. Eng. 2012, 30, 84–90. [Google Scholar]
- Xiong, S.; Tian, Y.; Ji, J.; Ma, X. Allocation of Energy Consumption among Provinces in China: A Weighted ZSG-DEA Model. Sustainability 2017, 9, 2115. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Zhou, P.; Wang, Y.; Sun, Z. Energy Saving, Emission Reduction and Air Pollutants Emission Rights Allocation Research. China Ind. Econ. 2013, 6, 31–43. [Google Scholar]
- Jiang, H.; Shao, X.; Zhang, X.; Bao, J. A Study of the Allocation of Carbon Emission Permits among the Provinces of China Based on Fairness and Efficiency. Sustainability 2017, 9, 2122. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Geng, Y.; Sheng, J. Efficient allocation of CO2 emissions in China: A zero sum gains data envelopment model. J. Clean. Prod. 2015, 112, 4144–4150. [Google Scholar] [CrossRef]
- Wang, B.J.; Zhao, J.L.; Wu, Y.F.; Zhu, C.Q.; He, Y.N.; Wei, Y.X. Allocating on coal consumption and CO2 emission from fair and efficient perspective: Empirical analysis on provincial panel data of China. Environ. Sci. Pollut. Res. 2019, 26, 17950–17964. [Google Scholar] [CrossRef]
- Pan, W.; Pan, W.L. Research on Quota Allocation of Provincial CO2 Emission Rights in China Based on Energy Efficiency. Soft Sci. 2018, 32, 45–48. [Google Scholar]
- Dong, F.; Li, X.; Long, R.; Liu, X. Regional carbon emission performance in China according to a stochastic frontier model. Renew. Sustain. Energy Rev. 2013, 28, 525–530. [Google Scholar] [CrossRef]
- Song, J.K.; Liang, L.L.; Niu, D.P. Allocation of Carbon Emission Permits among Provinces in China: Based on Environmental FCAM. Technol. Econ. 2017, 36, 100–106. [Google Scholar]
- Zhou, P.; Sun, Z.R.; Zhou, D.Q. Optimal Path for Controlling CO2 Emissions in China: A Perspective of Efficiency Analysis. Energy Econ. 2014, 45, 99–110. [Google Scholar] [CrossRef]
- Sun, Z.R.; Luo, R.D.; Zhou, D.Q. Optimal Path for Controlling Sectoral CO2 Emissions among China’s Regions: A Centralized DEA Approach. Sustainability 2016, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Li, X.S.; Song, M.L. Regional Allocation of CO2 Emissions Allowance during the “Twelfth Five-Year Plan” in China——From the Perspective of Efficiency Comparative Analysis. China Ind. Econ. 2015, 9, 99–113. [Google Scholar]
- Färe, R.; Grosskopf, S.; Lovell, C.K. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. The Estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Sueyoshi, T.; Qu, J.; Li, A.; Liu, X. A new approach for evaluating technology inequality and diffusion barriers: The concept of efficiency Gini coefficient and its application in Chinese provinces. Energy 2021, 235, 121256. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Outline of the 13th Five-Year Plan for National Economic and Social Development of the People’s Republic of China. 2016. Available online: http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm (accessed on 22 August 2021).
- Vision and Proposed Actions Outlined on Jointly Building Silk Road Economic Belt and 21st-Century Maritime Silk Road. 2015. Available online: http://www.gov.cn/xinwen/2015-03/28/content_2839723.htm (accessed on 22 August 2021).
- Choi, Y.; Wang, H.; Yang, F.; Lee, H. Sustainable governance of the Korean freight transportation industry from an environmental perspective. Sustainability 2021, 13, 6429. [Google Scholar] [CrossRef]
Province | Energy Consumption (104 tce) | SO2 Emissions (104 tons) | NOX Emissions (104 tons) | CO2 Emissions (104 tons) | Planned GDP (108 yuan) |
---|---|---|---|---|---|
Beijing (BJ) | 8997.42 | 0.92 | 9.12 | 14,161.36 | 38,312.33 |
Tianjin (TJ) | 10,295.09 | 1.02 | 9.85 | 18,349.94 | 27,566.96 |
Hebei (HeB) | 38,890.74 | 7.34 | 66.70 | 122,927.92 | 53,716.42 |
Shanxi (SX) | 25,236.75 | 5.37 | 39.89 | 58,994.04 | 21,407.82 |
Inner Mongolia (IM) | 25,814.76 | 4.39 | 33.10 | 49,559.02 | 28,162.72 |
Liaoning (LJ) | 27,086.55 | 4.55 | 34.96 | 61,366.25 | 41,702.02 |
Jilin (JL) | 10,066.35 | 2.31 | 21.75 | 30,603.68 | 23,905.05 |
Heilongjiang (HLJ) | 15,859.24 | 3.42 | 32.15 | 42,435.76 | 24,522.35 |
Shanghai (SH) | 14,367.48 | 1.32 | 13.70 | 23,943.36 | 42,108.06 |
Jiangsu (JS) | 38,865.47 | 5.43 | 50.99 | 88,710.90 | 124,323.69 |
Zhejiang (ZJ) | 25,404.54 | 3.68 | 32.38 | 51,421.99 | 77,043.20 |
Anhui (AH) | 15,779.88 | 4.90 | 46.52 | 68,936.94 | 41,895.77 |
Fujian (GJ) | 15,358.75 | 2.53 | 21.95 | 35,854.75 | 49,856.25 |
Jiangxi (JX) | 10,665.33 | 4.08 | 33.07 | 48,143.55 | 33,896.85 |
Shandong (SD) | 49,774.07 | 8.58 | 68.73 | 110,719.48 | 110,659.65 |
Henan (HeN) | 28,957.44 | 8.25 | 72.49 | 100,157.39 | 67,298.65 |
Hubei (HuB) | 21,188.88 | 4.37 | 35.59 | 59,811.69 | 60,000.00 |
Hunan (HuN) | 20,548.05 | 5.23 | 41.69 | 65,717.70 | 54,317.06 |
Guangdong (GD) | 39,432.79 | 6.55 | 62.16 | 91,893.75 | 130,654.36 |
Guangxi (GX) | 12,652.50 | 4.03 | 33.10 | 51,044.80 | 31,058.68 |
Hainan (HaN) | 2472.70 | 0.59 | 6.06 | 8636.52 | 7946.81 |
Chongqing (CQ) | 11,191.96 | 2.81 | 19.05 | 28,218.88 | 29,794.01 |
Sichuan (SC) | 25,121.03 | 6.83 | 51.85 | 81,972.19 | 56,479.73 |
Guizhou (GZ) | 12,435.25 | 4.85 | 29.15 | 43,287.10 | 22,147.64 |
Yunnan (YN) | 13,754.44 | 4.86 | 36.28 | 53,313.32 | 28,824.89 |
Shaanxi (S’X) | 14,961.78 | 3.91 | 29.89 | 40,036.39 | 32,881.39 |
Gansu (GS) | 9435.84 | 3.29 | 23.84 | 33,295.58 | 12,164.20 |
Qinghai (QH) | 5055.44 | 0.73 | 5.26 | 6957.69 | 4234.14 |
Ningxia (NX) | 7241.43 | 1.36 | 10.74 | 12,676.56 | 5376.25 |
Xinjiang (XJ) | 19,349.86 | 3.43 | 27.13 | 36,898.81 | 17,641.82 |
Total | 576,261.81 | 120.92 | 999.15 | 1,540,047.31 | 1,299,898.78 |
Province | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Group 9 |
---|---|---|---|---|---|---|---|---|---|
(0.95, 1.05) | (0.95, 1.10) | (0.95, 1.15) | (0.90, 1.05) | (0.90, 1.10) | (0.90, 1.15) | (0.85, 1.05) | (0.85, 1.10) | (0.85, 1.15) | |
BJ | 38,312.33 | 38,312.33 | 38,312.33 | 38,312.33 | 38,312.33 | 38,312.33 | 38,312.33 | 38,312.33 | 38,312.33 |
TJ | 27,566.96 | 27,566.96 | 27,566.96 | 27,566.96 | 27,566.96 | 27,566.96 | 27,566.96 | 27,566.96 | 27,566.96 |
HeB | 60,208.05 | 55,897.74 | 56,002.58 | 63,466.93 | 62,969.64 | 53,716.42 | 61,555.80 | 67,701.57 | 59,509.93 |
SX | 22,959.01 | 22,959.01 | 22,959.01 | 24,510.21 | 24,510.21 | 21,407.82 | 26,061.40 | 26,061.40 | 21,407.82 |
IM | 28,162.72 | 28,162.72 | 28,162.72 | 28,162.72 | 28,162.72 | 28,162.72 | 28,162.72 | 28,162.72 | 28,162.72 |
LJ | 55,206.92 | 55,548.67 | 55,548.67 | 50,563.64 | 57,378.72 | 57,167.53 | 49,250.74 | 59,043.61 | 57,570.21 |
JL | 44,395.69 | 46,348.63 | 46,546.42 | 44,395.69 | 46,348.63 | 45,928.48 | 44,395.69 | 46,348.63 | 45,278.71 |
HLJ | 42,287.16 | 41,283.77 | 41,283.77 | 42,046.54 | 43,198.06 | 43,198.06 | 40,927.55 | 43,198.06 | 43,198.06 |
SH | 42,108.06 | 42,108.06 | 42,108.06 | 42,108.06 | 42,108.06 | 42,108.06 | 42,108.06 | 42,108.06 | 42,108.06 |
JS | 124,323.69 | 124,323.69 | 124,323.69 | 124,323.69 | 124,323.69 | 124,323.69 | 124,323.69 | 124,323.69 | 124,323.69 |
ZJ | 81,392.20 | 77,747.13 | 79,406.54 | 81,392.20 | 83,756.21 | 84,570.80 | 81,392.20 | 83,756.21 | 84,570.80 |
AH | 49,061.57 | 49,061.57 | 48,922.66 | 49,061.57 | 49,061.57 | 49,061.57 | 49,061.57 | 49,061.57 | 49,061.57 |
FJ | 61,411.18 | 59,996.39 | 58,581.60 | 61,411.18 | 59,996.39 | 58,581.60 | 61,411.18 | 59,996.39 | 58,581.60 |
JX | 33,896.85 | 33,896.85 | 33,896.85 | 33,896.85 | 33,896.85 | 33,896.85 | 33,896.85 | 33,896.85 | 33,896.85 |
SD | 136,711.33 | 143,706.23 | 143,706.23 | 137,033.77 | 131,686.68 | 142,600.92 | 138,115.87 | 127,657.76 | 146,383.64 |
HeN | 115,964.20 | 121,300.41 | 118,632.96 | 115,964.20 | 121,300.41 | 118,632.96 | 115,964.20 | 121,300.41 | 118,632.96 |
HuB | 69,197.21 | 69,471.08 | 69,471.08 | 68,391.71 | 66,070.92 | 69,471.08 | 68,391.71 | 66,070.92 | 69,471.08 |
HuN | 63,428.40 | 65,603.28 | 65,603.28 | 63,428.40 | 61,177.80 | 65,603.28 | 63,428.40 | 61,398.67 | 58,927.20 |
GD | 130,654.36 | 130,654.36 | 130,654.36 | 130,654.36 | 130,654.36 | 130,654.36 | 130,654.36 | 130,654.36 | 130,654.36 |
GX | 46,152.63 | 47,736.08 | 48,205.34 | 46,152.63 | 47,736.08 | 46,570.58 | 46,152.63 | 47,736.08 | 46,570.58 |
HaN | 9095.79 | 9767.34 | 10,438.88 | 9095.79 | 9767.34 | 10,438.88 | 9095.79 | 9767.34 | 10,438.88 |
CQ | 31,849.28 | 33,863.73 | 33,863.73 | 31,849.28 | 30,010.94 | 33,783.22 | 31,849.28 | 30,918.30 | 29,794.01 |
SC | 56,479.73 | 56,479.73 | 56,479.73 | 56,479.73 | 56,479.73 | 56,568.18 | 56,479.73 | 56,479.73 | 61,331.92 |
GZ | 26,591.92 | 23,872.52 | 23,872.52 | 22,821.68 | 27,552.56 | 25,597.40 | 22,821.68 | 22,403.58 | 28,513.19 |
YN | 52,150.25 | 50,883.24 | 52,445.97 | 52,150.25 | 50,883.24 | 52,002.84 | 52,150.25 | 50,883.24 | 50,228.44 |
S’X | 49,975.83 | 50,050.33 | 50,050.33 | 49,975.83 | 50,050.33 | 52,918.19 | 49,975.83 | 48,731.26 | 50,050.33 |
GS | 12,164.20 | 12,164.20 | 12,164.20 | 12,164.20 | 12,164.20 | 12,164.20 | 12,164.20 | 12,164.20 | 12,164.20 |
QH | 8035.51 | 8118.22 | 8118.22 | 8035.51 | 7925.65 | 8118.22 | 8035.51 | 7925.65 | 7348.32 |
NX | 6258.00 | 6300.51 | 6162.10 | 7288.80 | 5376.25 | 6947.94 | 8671.03 | 5820.77 | 5376.25 |
XJ | 29,685.15 | 29,977.04 | 29,977.04 | 33,378.61 | 33,408.72 | 26,623.28 | 33,803.31 | 34,855.90 | 28,503.68 |
Total | 1,555,686.18 | 1,563,161.82 | 1,563,467.82 | 1,556,083.30 | 1,563,835.24 | 1,566,698.43 | 1,556,180.51 | 1,564,306.23 | 1,567,938.33 |
Province | Energy Consumption (104 tce) | SO2 Emissions (104 tons) | NOX Emissions (104 tons) | CO2 Emissions (104 tons) |
---|---|---|---|---|
BJ | 8997.42 | 0.92 | 9.12 | 14,161.36 |
TJ | 10,295.09 | 1.02 | 9.845 | 18,349.94 |
HeB | 33,057.13 | 9.30 | 63.24 | 92,205.22 |
SX | 21,451.24 | 5.17 | 38.59 | 53,964.13 |
IM | 25,814.76 | 4.39 | 33.10 | 49,559.02 |
LJ | 23,023.57 | 3.30 | 29.16 | 46,099.68 |
JL | 11,576.31 | 1.31 | 12.63 | 20,248.93 |
HLJ | 14,376.24 | 2.57 | 22.95 | 36,206.23 |
SH | 14,367.48 | 1.32 | 13.70 | 23,943.36 |
JS | 38,865.47 | 5.43 | 50.99 | 88,710.90 |
ZJ | 28,382.68 | 4.23 | 39.11 | 63,262.79 |
AH | 15,516.62 | 5.64 | 45.91 | 67,121.64 |
FJ | 17,662.56 | 2.79 | 25.54 | 42,595.17 |
JX | 10,665.33 | 4.08 | 33.07 | 48,143.55 |
SD | 48,723.99 | 6.61 | 62.31 | 103,291.34 |
HeN | 33,301.05 | 6.79 | 59.14 | 91,380.69 |
HuB | 21,755.59 | 4.47 | 39.06 | 62,785.12 |
HuN | 23,630.26 | 7.30 | 50.90 | 77,723.69 |
GD | 42,391.84 | 9.69 | 82.63 | 128,203.02 |
GX | 14,550.38 | 4.18 | 34.90 | 52,878.39 |
HaN | 2843.61 | 0.72 | 6.11 | 9021.19 |
CQ | 12,669.27 | 3.35 | 24.24 | 37,340.70 |
SC | 21,352.88 | 7.53 | 60.43 | 88,014.26 |
GZ | 10,569.96 | 3.32 | 26.67 | 39,079.50 |
YN | 15,817.60 | 3.92 | 33.31 | 51,637.01 |
S’X | 15,665.09 | 2.89 | 25.72 | 42,202.96 |
GS | 9435.84 | 3.29 | 23.84 | 33,295.58 |
QH | 5813.75 | 0.98 | 7.52 | 11,308.05 |
NX | 7241.43 | 1.36 | 10.74 | 12,676.56 |
XJ | 16,447.38 | 3.04 | 24.68 | 34,637.34 |
Total | 576,261.81 | 120.92 | 999.15 | 1,540,047.31 |
Category | Energy Saving | Emission Reduction | GDP Growth | Province |
---|---|---|---|---|
I | No pressure | No pressure | No pressure | BJ, TJ, IM, SH, JS, JX, GD, CQ, GS, NX |
II | No pressure | No pressure | Low pressure | ZJ, FJ, HuB, HuN, HaN |
No pressure | No pressure | High pressure | GX, QH | |
III | Low pressure | No pressure | Low pressure | AH, |
No pressure | Low pressure | High pressure | HeN, YN, S’X | |
IV | No pressure | High pressure | High pressure | JL |
Low pressure | High pressure | High pressure | HLJ | |
V | Low pressure | Low pressure | Low pressure | SD |
VI | High pressure | No pressure | Low pressure | SC |
High pressure | Low pressure | Low pressure | HeB, GZ | |
High pressure | Low pressure | High pressure | XJ | |
VII | High pressure | High pressure | Low pressure | LN |
National Strategic Region | Energy Saving | Emission Reduction | Economic Growth |
---|---|---|---|
Beijing-Tianjin-Hebei (BJ, TJ, HB) | 10.03% | 0.91% | 4.62% |
Yangtze River Economic Belt (SH, JS, ZJ, AH, JX, HuB, HuN, CQ, SC, YN, GZ) | −2.04% | −5.73% | 10.76% |
21st Century Maritime Silk Road (LN, HwB, TJ, SD, SH, JS, ZJ, FJ, GD, GX, HaN) | 0.16% | −3.77% | 13.16% |
New Eurasian Continental Bridge Economic Corridor (JS, AH, HeN, S’X, GS, QH, XJ) | −1.99% | 5.03% | 29.84% |
China–Mongolia–Russia Economic Corridor (BJ, TJ, HeB, IM, LJ, JL, HLJ) | 7.20% | 12.17% | 25.94% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Chen, R.; Ma, X. Collaborative Allocation of Energy Consumption, Air Pollutants and CO2 Emissions in China. Sustainability 2021, 13, 9443. https://doi.org/10.3390/su13169443
Song J, Chen R, Ma X. Collaborative Allocation of Energy Consumption, Air Pollutants and CO2 Emissions in China. Sustainability. 2021; 13(16):9443. https://doi.org/10.3390/su13169443
Chicago/Turabian StyleSong, Jiekun, Rui Chen, and Xiaoping Ma. 2021. "Collaborative Allocation of Energy Consumption, Air Pollutants and CO2 Emissions in China" Sustainability 13, no. 16: 9443. https://doi.org/10.3390/su13169443
APA StyleSong, J., Chen, R., & Ma, X. (2021). Collaborative Allocation of Energy Consumption, Air Pollutants and CO2 Emissions in China. Sustainability, 13(16), 9443. https://doi.org/10.3390/su13169443