Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants
Abstract
:1. Introduction
1.1. Climate Change and Sea Rise
1.2. Water Scarcity
1.3. Energy Crisis
1.4. Desalination for Fresh Water Supply
1.5. The Water Cycle and Water Storage
2. Methodology
3. Results and Discussion
- AW_1 m = 2.993 trillion USD where Investment = 58.31 trillion USD;
- AW_1.1 m = 3.125 trillion USD where Investment = 58.31 trillion USD;
- AW_1.2 m = 3.257 trillion USD where Investment = 58.31 trillion USD;
- AW_1.3 m = 3.39 trillion USD where Investment = 66.053 trillion USD;
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Centers for Environmental Information (NCEI). Assessing the Global Climate in 2019. News. Available online: https://www.ncei.noaa.gov/news/global-climate-201912 (accessed on 4 January 2021).
- Mudge, F.B. The development of the ‘greenhouse’theory of global climate change from Victorian times. Weather 1997, 52, 13–17. [Google Scholar] [CrossRef]
- Tyndall, J., XXVII. On radiation through the earth’s atmosphere. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1863, 25, 200–206. [Google Scholar] [CrossRef]
- Manson, M. Geological and Solar Climates: Their Causes and Variations: A Thesis; G. Spaulding & Company, Printers: San Francisco, CA, USA, 1893. [Google Scholar]
- Arrhenius, S., XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1896, 41, 237–276. [Google Scholar] [CrossRef] [Green Version]
- Department of Agriculture, Water and the Environment. Greenhouse Effect. Available online: https://www.environment.gov.au/climate-change/climate-science-data/climate-science/greenhouse-effect (accessed on 4 January 2021).
- Callendar, G.S. The artificial production of carbon dioxide and its influence on temperature. Q. J. R. Meteorol. Soc. 1938, 64, 223–240. [Google Scholar] [CrossRef]
- World Meteorological Organization. Secretariat. In Proceedings of the World Climate Conference—A Conference of Experts on Climate and Mankind, Geneva, Switzerland, 12–23 February 1979. [Google Scholar]
- Climate Change: The IPCC 1990 and 1992 Assessments. 1992. Available online: https://www.ipcc.ch/report/climate-change-the-ipcc-1990-and-1992-assessments/ (accessed on 10 May 2021).
- Climate Time Machine. Available online: https://climate.nasa.gov/interactives/climate-time-machine (accessed on 4 January 2021).
- IPCC. Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151 p. [Google Scholar]
- Stocker, T. (Ed.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Chang. 2012, 80, 14–20. [Google Scholar] [CrossRef]
- Sweet, W.W.V.; Kopp, R.; Weaver, C.P.; Obeysekera, J.T.B.; Horton, R.M.; Thieler, E.R.; Zervas, C.E. Global and Regional Sea Level Rise Scenarios for the United States; Technical Report for NOAA: Washington, DC, USA, 2017. [Google Scholar]
- Lu, D.; Flavelle, C. Rising seas will erase more cities by 2050, new research shows. The New York Times, 29 October 2019. [Google Scholar]
- Meehl, G.A.; Washington, W.M.; Collins, W.D.; Arblaster, J.M.; Hu, A.; Buja, L.E.; Strand, W.G.; Teng, H. How much more global warming and sea level rise? Science 2005, 307, 1769–1772. [Google Scholar] [CrossRef] [Green Version]
- Slater, T.; Hogg, A.E.; Mottram, R. Ice-sheet losses track high-end sea-level rise projections. Nat. Clim. Chang. 2020, 10, 879–881. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Meisner, C.; Wheeler, D.; Yan, J. The impact of sea level rise on developing countries: A comparative analysis. Clim. Chang. 2009, 93, 379–388. [Google Scholar] [CrossRef]
- Hauer, M.E.; Fussell, E.; Mueller, V.; Burkett, M.; Call, M.; Abel, K.; McLeman, R.; Wrathall, D. Sea-level rise and human migration. Nat. Rev. Earth Environ. 2020, 1, 28–39. [Google Scholar] [CrossRef]
- National Geographic Society. Earth’s Freshwater. Available online: https://www.nationalgeographic.org/media/earths-fresh-water/ (accessed on 4 January 2021).
- UN-Water. Scarcity. Available online: https://www.unwater.org/water-facts/scarcity/ (accessed on 4 January 2021).
- Anim, D.O.; Ofori-Asenso, R. Water scarcity and COVID-19 in sub-Saharan Africa. J. Infect. 2020, 81, e108–e109. [Google Scholar] [CrossRef]
- Drinking-Water. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 4 January 2021).
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joffé, G. The impending water crisis in the MENA region. Int. Spect. 2016, 51, 55–66. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the world water development report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Hejazi, M.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.; et al. Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol. Forecast. Soc. Chang. 2014, 81, 205–226. [Google Scholar] [CrossRef]
- OECD. Water and Agriculture. Available online: https://www.oecd.org/agriculture/topics/water-and-agriculture/ (accessed on 12 May 2021).
- Economidou, Y.; Doula, M.K.; Zorpas, A.A. Mitigation of the effects of climate change in the agricultural sector of Cyprus, through optimization of benefit. Water Supply 2021. [Google Scholar] [CrossRef]
- Roser, M. Future Population Growth. 2013. Available online: https://ourworldindata.org/future-population-growth (accessed on 23 August 2021).
- World Economic Forum. 1.1 Billion People Still Lack Electricity. This Could Be the Solution. Available online: https://www.weforum.org/agenda/2018/06/1-billion-people-lack-electricity-solution-mini-grid-iea/ (accessed on 4 January 2021).
- Coyle, E.D.; Simmons, R.A. Understanding the Global Energy Crisis; Purdue University Press: West Lafayette, IN, USA, 2014. [Google Scholar]
- MAHB. When Fossil Fuels Run Out, What Then? Available online: https://mahb.stanford.edu/library-item/fossil-fuels-run/ (accessed on 4 January 2021).
- U.S. Energy Information Administration (EIA). Renewable Energy Explained. Available online: https://www.eia.gov/energyexplained/renewable-sources/ (accessed on 5 January 2021).
- EDF. Renewable Energy. Types, Forms & Sources. Available online: https://www.edfenergy.com/for-home/energywise/renewable-energy-sources (accessed on 5 January 2021).
- The Guardian. Windfarms in Great Britain Break Record for Clean Power Generation. Wind Power. Available online: https://www.theguardian.com/environment/2020/dec/19/windfarms-in-great-britain-break-record-for-clear-power-generation (accessed on 5 January 2021).
- Energy.Gov.Au. Renewables. Available online: https://www.energy.gov.au/data/renewables (accessed on 5 January 2021).
- Kåberger, T. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 2018, 1, 48–52. [Google Scholar]
- Statista. Global Cumulative Installed Solar PV Capacity. 2019. Available online: https://www.statista.com/statistics/280220/global-cumulative-installed-solar-pv-capacity/ (accessed on 19 January 2021).
- Masdar, Mohammed bin Rashid Al Maktoum Solar Park Phase 3—Dubai-UAE, Shuaa Energy 2. pp. 1–3. 2019. Available online: https://www.dewa.gov.ae/en/about-us/strategic-initiatives/mbr-solar-park (accessed on 20 February 2021).
- Lee, J.; Zhao, F. GWEC Global Wind Report 2019, Wind Energy Technology; 78 p. 2020. Available online: https://gwec.net/wp-content/uploads/2020/08/Annual-Wind-Report_2019_digital_final_2r.pdf (accessed on 20 February 2021).
- IEA—International Energy Agency. 2021. Available online: https://www.iea.org/ (accessed on 20 February 2021).
- National Hydropower Association. 2021. Available online: https://www.hydro.org/waterpower/why-hydro/available/ (accessed on 20 February 2021).
- Prehoda, E.; Pearce, J.M.; Schelly, C. Policies to overcome barriers for renewable energy distributed generation: A Case study of utility structure and regulatory regimes in Michigan. Energies 2019, 12, 674. [Google Scholar] [CrossRef] [Green Version]
- IEA—International Energy Agency. Renewables 2020 Analysis and Forecast to 2025. 2020. Available online: https://iea.blob.core.windows.net/assets/1a24f1fe-c971-4c25-964a-57d0f31eb97b/Renewables_2020-PDF.pdf (accessed on 20 February 2021).
- Voutchkov, N.; Susnjara, I.; Mbia, B.; Cross, K. Desalination—Past, Present and Future. International Water Association. 2016. Available online: https://iwa-network.org/desalination-past-present-future/ (accessed on 21 February 2021).
- UN-Water. Sustainable Development Goal 6 Synthesis Report on Water and Sanitation; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Desalination History. Available online: https://www.water.vic.gov.au/water-grid-and-markets/desalination/desalination-background/desalination-history (accessed on 5 January 2021).
- Curto, D.; Franzitta, V.; Guercio, A. A review of the water desalination technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Elsaid, K.; Kamil, M.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Environmental impact of desalination technologies: A review. Sci. Total Environ. 2020, 748, 141528. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Kim, J.; Yang, D.R.; Hong, S. Towards a low-energy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions. J. Membr. Sci. 2020, 595, 117607. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Shatat, M.; Worall, M.; Riffat, S. Opportunities for solar water desalination worldwide. Sustain. Cities Soc. 2013, 9, 67–80. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhengming, Z.; Yuan, L. Renewable energy powered desalination systems: Technologies and economics-state of the art. In Proceedings of the Twelfth International Water Technology Conference (IWTC12), Alexandria, Egypt, 1 January 2008; pp. 1–38. [Google Scholar]
- Elsaid, K.; Sayed, E.T.; Yousef, B.A.; Rabaia, M.K.H.; Abdelkareem, M.A.; Olabi, A.G. Recent progress on the utilization of waste heat for desalination: A review. Energy Convers. Manag. 2020, 221, 113105. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. Energy-water-environment nexus underpinning future desalination sustainability. Desalination 2017, 413, 52–64. [Google Scholar] [CrossRef]
- El Saliby, I.; Okour, Y.; Shon, H.K.; Kandasamy, J.; Kim, I.S. Desalination plants in Australia, review and facts. Desalination 2009, 247, 1–14. [Google Scholar] [CrossRef]
- Bundschuh, J.; Ghaffour, N.; Mahmoudi, H.; Goosen, M.; Mushtaq, S.; Hoinkis, J. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renew. Sustain. Energy Rev. 2015, 43, 196–206. [Google Scholar] [CrossRef]
- Gude, V.G. Geothermal source for water desalination—Challenges and opportunities. In Renewable Energy Powered Desalination Handbook; Butterworth-Heinemann: Oxford, UK, 2018; pp. 141–176. [Google Scholar]
- El-Dessouky, H.T.; Ettouney, H.M. Fundamentals of Salt Water Desalination; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Al-Addous, M.; Jaradat, M.; Bdour, M.; Dalala, Z.; Wellmann, J. Combined concentrated solar power plant with low-temperature multi-effect distillation. Energy Explor. Exploit. 2020, 38, 1831–1853. [Google Scholar] [CrossRef]
- Ahmadi, E.; McLellan, B.; Mohammadi-Ivatloo, B.; Tezuka, T. The role of renewable energy resources in sustainability of water desalination as a potential fresh-water source: An updated review. Sustainability 2020, 12, 5233. [Google Scholar] [CrossRef]
- NOAA. Water Cycle. National Oceanic and Atmospheric Administration. 2021. Available online: https://www.noaa.gov/education/resource-collections/freshwater/water-cycle (accessed on 11 April 2021).
- Graham, S.; Parkinson, C.; Chahine, M. The Water Cycle. NASA Earth Observatory. 2010. Available online: https://earthobservatory.nasa.gov/features/Water (accessed on 20 February 2021).
- USGS. How Much Water Is There on Earth? Available online: https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-there-earth?qt-science_center_objects=0#qt-science_center_objects (accessed on 25 February 2021).
- NOAA. Volumes of the World’s Oceans from ETOPO1. Available online: https://web.archive.org/web/20150311032757/http://ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html (accessed on 25 February 2021).
- Palenzuela, P.; Alarcón-Padilla, D.C.; Zaragoza, G.; Blanco, J. Comparison between CSP+ MED and CSP+ RO in Mediterranean area and MENA region: Techno-economic analysis. Energy Procedia 2015, 69, 1938–1947. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Tok, M.E.; Koc, M. A levelized cost analysis for solar-energy-powered sea water desalination in the Emirate of Abu Dhabi. Sustainability 2019, 11, 1691. [Google Scholar] [CrossRef] [Green Version]
- Azinheira, G.; Segurado, R.; Costa, M. Is renewable energy-powered desalination a viable solution for water stressed regions? A case study in Algarve, Portugal. Energies 2019, 12, 4651. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, W.G.; Wicks, E.M.; Luxhoj, J.T. Engineering Economy; Prentice Hall: Upper Saddle River, NJ, USA, 2003; Volume 12. [Google Scholar]
- Manju, S.; Sagar, N. Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renew. Sustain. Energy Rev. 2017, 73, 594–609. [Google Scholar] [CrossRef]
- IGBP—International Geosphere-Biosphere Programme. 2014. Available online: http://www.igbp.net/ (accessed on 12 April 2021).
- Youssef, Y.W.; Khodzinskaya, A. A review of evaporation reduction methods from water surfaces. In E3S Web of Conferences, Proceedings of the XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019), Tashkent, Uzbekistan, 18–21 April 2019; EDP Sciences: Les Ulis, France, 2019; Volume 97, p. 05044. [Google Scholar]
- Guduru, S.; Bajaj, P.; Gonsalves, O.N. India’s low temperature thermal desalination technology: Water diplomacy with Small Island Developing States in the Indo-Pacific Region. Marit. Aff. J. Natl. Marit. Found. India 2020, 16, 30–45. [Google Scholar] [CrossRef]
- Ahmadi, E.; McLellan, B.; Ogata, S.; Mohammadi-Ivatloo, B.; Tezuka, T. An integrated planning framework for sustainable water and energy supply. Sustainability 2020, 12, 4295. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Dellink, R.; Chateau, J.; Lanzi, E.; Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 200–214. [Google Scholar] [CrossRef]
Trillions USD/Annum | |||
---|---|---|---|
SLR | OAU | LTU | HTU |
1.0 m | 14.63 | 22.97 | 9.59 |
1.1 m | 15.28 | 23.98 | 10.01 |
1.2 m | 15.93 | 25 | 10.43 |
1.3 m | 16.58 | 26.02 | 10.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hindiyeh, M.; Albatayneh, A.; Altarawneh, R.; Jaradat, M.; Al-Omary, M.; Abdelal, Q.; Tayara, T.; Khalil, O.; Juaidi, A.; Abdallah, R.; et al. Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants. Sustainability 2021, 13, 9552. https://doi.org/10.3390/su13179552
Hindiyeh M, Albatayneh A, Altarawneh R, Jaradat M, Al-Omary M, Abdelal Q, Tayara T, Khalil O, Juaidi A, Abdallah R, et al. Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants. Sustainability. 2021; 13(17):9552. https://doi.org/10.3390/su13179552
Chicago/Turabian StyleHindiyeh, Muna, Aiman Albatayneh, Rashed Altarawneh, Mustafa Jaradat, Murad Al-Omary, Qasem Abdelal, Tarek Tayara, Osama Khalil, Adel Juaidi, Ramez Abdallah, and et al. 2021. "Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants" Sustainability 13, no. 17: 9552. https://doi.org/10.3390/su13179552
APA StyleHindiyeh, M., Albatayneh, A., Altarawneh, R., Jaradat, M., Al-Omary, M., Abdelal, Q., Tayara, T., Khalil, O., Juaidi, A., Abdallah, R., Dutournié, P., & Jeguirim, M. (2021). Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants. Sustainability, 13(17), 9552. https://doi.org/10.3390/su13179552