Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change
Abstract
:1. Introduction
2. Data and Materials
2.1. Description of Study Area
2.2. Methods
2.2.1. Data Collection and Processing
2.2.2. Single Dynamic Degree of Land Use
2.2.3. Ecosystem Service Value (ESV) Calculation
2.2.4. Sensitivity Coefficient of Ecosystem Service Value
2.2.5. Spatial Auto-Correlation Analysis
3. Results and Analysis
3.1. Spatio-Temporal Change Characteristics of Land Use Types
3.2. Temporal and Spatial Changes in ESV
3.2.1. Time Dimension Changes in ESV
3.2.2. Ecosystem Sensitivity Coefficient Analysis
3.2.3. Changing Characteristics of ESV Spatial Dimensions
3.3. Analysis of Spatial Correlation of ESV
Spatial Autocorrelation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, S.G.; Rajchandar, P.; Aires, M.; Silva João, M.N.; Mohamed, S.; Pedro, C.; Campos, F.S. Using Satellite Image Fusion to Evaluate the Impact of Land Use Changes on Ecosystem Services and Their Economic Values. Remote Sens. 2021, 13, 851. [Google Scholar]
- Feng, Y.; Zhu, J.H.; Zeng, L.X.; Xiao, W.F. Prediction of profit and loss of county—Scale ecosystem service Values under land use change: A case study of Banan District, Chongqing. Acta Ecol. Sin. 2021, 41, 3381–3393. [Google Scholar]
- Li, T.H.; Li, W.K.; Qian, Z.H. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecol. Econ. 2008, 69, 1427–1435. [Google Scholar]
- Wang, X.M.; Xu, M.; Zhang, Y.; Xu, N.Z.; Zhang, Y.H. Evaluation of Eco-economy Harmony and Spatial Evolution of the Urban Agglomeration Area in The Great Pearl River Delta. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 1–8. [Google Scholar] [CrossRef]
- Wei, X.D.; Wang, N.; Luo, P.P.; Yang, J.; Zhang, J.; Lin, K.L. Spatiotemporal Assessment of Land Marketization and Its Driving Forces for Sustainable Urban–Rural Development in Shaanxi Province in China. Sustainability 2021, 13, 7755. [Google Scholar] [CrossRef]
- Zha, X.B.; Luo, P.P.; Zhu, W.; Wang, S.T.; Lyu, J.q.; Zhou, M.M.; Huo, A.D.; Wang, Z.H. A Bibliometric Analysis of the Research on Sponge City: Current Situation and Future Development Direction. Ecohydrology 2021, e2328. [Google Scholar] [CrossRef]
- OuYang, Z.Y.; Wang, X.K.; Miao, H. Aprimary study on Chinese terrestrial ecosystem services and theur ecological-economic values. Acta Ecol. Sin. 1999, 19, 609–613. [Google Scholar]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Fu, B.J.; Zhang, L.W. Land—use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Wang, Z.Y.; Cao, J.S. Assessing and Predicting the Impact of Multi-Scenario Land Use Changes on the Ecosystem Service Value: A Case Study in the Upstream of Xiong’ an New Area, China. Sustainability 2021, 13, 704. [Google Scholar] [CrossRef]
- Jin, T.T.; Zhang, Y.X.; Zhu, Y.H.; Gong, J.; Yan, L.L. Spatiotemporal variations of ecosystem service values and landscape ecological risk and their cor-relation in forest area of Loess Plateau, China: A case study of Ziwuling region. Chin. J. Appl. Ecol. 2021, 32, 1623–1632. [Google Scholar]
- Costanza, R.; D’Arge, R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Hassan, R.M.; Crafford, J.G. Measuring the contribution of ecological composition and functional services of ecosystems to the dynamics of KwaZulu-Natal coast fisheries. Ecol. Econ. 2015, 119, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Daily, G.C. Nature’s Services: Socuetal Dependence on Natural Ecosystems. Pac. Conserv. Biol. 1997, 6, 220–221. [Google Scholar]
- Zhao, J.Z.; Xiao, H.; Wu, G. Comparison analysis on physical and value assessment methods for ecosystems services. Chin. J. Appl. Ecol. 2000, 11, 290–292. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Zhang, J.; Lei, G.; Qi, L.H.; Ding, X.; Cheng, C.J.; Liu, X.Q. The landscape pattern and ecological service value in Danjiangkou City under land use change from 2003 to 2018. Acta Ecol. Sin. 2021, 41, 1280–1290. [Google Scholar]
- Lei, J.R.; Chen, Z.Z.; Chen, X.H.; Li, Y.L.; Wu, T.T. Spatio-temporal changes of land use and ecosystem services value in Hainan Island from 1980 to 2018. Acta Ecol. Sin. 2020, 40, 4760–4773. [Google Scholar]
- Chen, W.X.; Zeng, J.; Zhong, M.X.; Pan, S.P. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, R.S.; Huang, J.L.; Yang, W.R. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Sci. Bull. 2012, 57, 2120–2131. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Z.; Jia, Y.G.; Zhao, J.J.; Shen, Y.J.; Pei, H.W.; Zhang, H.J.; Li, Y.L. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef]
- Wu, G.Y.; Dong, R.; Yu, F.W. Estimation of Ecological Compensation Standards for Small Watersheds: Based on the Value of Ecological Service Function. IOP Conf. Ser. Earth Environ. Sci. 2019, 35, 210–214. [Google Scholar]
- Nesticò, A.; Endreny, T.; Guarini, M.R.; Sica, F.; Anelli, D. Real Estate Values, Tree Cover, and Per-Capita Income: An Evaluation of the Interdependencies in Buffalo City (NY). In International Conference on Computational Science and Its Applications; Springer: Cham, Switzerlands, 2020; pp. 913–926. [Google Scholar]
- Sagoff, M. The quantification and valuation of ecosystem services. Ecol. Econ. 2011, 70, 497–502. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Kris, A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Luo, S.F.; Yan, W.D. Evolution and driving force analysis of ecosystem service values in Guangxi Beibu Gulf coastal areas, China. Acta Ecol. Sin. 2018, 38, 3248–3259. [Google Scholar]
- Yueriguli, K.S.M.; Yang, S.T.; Zibibula, S.M.Y. Impact of land use change on ecosystem service value in Ebinur Lake Basin, Xinjiang. Trans. Chin. Soc. Agric. Eng. 2019, 35, 260–269. [Google Scholar]
- Chen, W.X.; Li, F.J.; Zhu, L.J. Spatial heterogeneity and sensitivity analysis of Ecosystem Services value in the Middle Yangtze River region. J. Nat. Resour. 2019, 34, 325–337. [Google Scholar]
- Wang, X.G.; Yan, F.Q.; Zeng, Y.W.; Chen, M.; Su, F.Z.; Cui, Y.K. Changes in Ecosystems and Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area since the Reform and Opening Up in China. Remote Sens. 2021, 13, 1611. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.F.; Wang, F.; Liu, Y.Y.; Liu, Y.H.; Qian, L.X. Prediction and tradeoff analysis of ecosystem service value in the rapidly urbanizing Foshan City of China: A case study. Acta Ecol. Sin. 2020, 40, 9023–9036. [Google Scholar]
- Gashaw, T.; Tulu, T.; Argaw, M.; Abeyou, W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Guo, B.; Wang, X.X.; Pei, L.; Su, Y.; Zhang, D.M.; Wang, Y. Identifying the spatiotemporal dynamic of PM 2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 2021, 751, 141765. [Google Scholar] [CrossRef]
- Fang, C.L.; Gao, Q.; Zhang, X.L.; Cheng, W.G. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: Case study on the northern slope of the Tianshan Mountains. Sci. China Earth Sci. 2019, 62, 137–148. [Google Scholar] [CrossRef]
- Song, W.J.; Zhang, Q.; Liu, S.S.; Yang, J.N. LUCC-Based Human Disturbance and Ecological Security in Arid Area: A Case Study in the Economic Zone on Northern Slope of the Tianshan Mountains. Arid Zone Res. 2018, 1, 235–242. [Google Scholar]
- Huo, A.; Peng, J.; Cheng, Y.X.; Luo, P.P.; Zhao, Z.X.; Zheng, C.L. Hydrological Analysis of Loess Plateau Highland Control Schemes in Dongzhi Plateau. Front. Earth Sci. 2020, 8, 528632. [Google Scholar] [CrossRef]
- Guo, Z.C.; Wei, W.; Shi, P.J.; Zhou, L.; Wang, X.F.; Li, Z.Y.; Pang, S.F.; Jie, B.B. Spatiotemporal changes of land desertification sensitivityin the arid region of Northwest China. Acta Geogr. Sin. 2020, 75, 1948–1965. [Google Scholar]
- Zhu, Y.H.; Luo, P.P.; Zhang, S.; Sun, B. Spatiotemporal Analysis of Hydrological Variations and Their Impacts on Vegetation in Semiarid Areas from Multiple Satellite Data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Liu, J.Y. Study on National Resources & Environment Survey and Dynamic Monitoring Using Remote Sensing. J. Remote Sens. 1997, 3, 225–230. [Google Scholar]
- Tong, S.Q.; Bao, G.; Rong, A.H.; Huang, X.J.; Bao, Y.B.; Bao, Y.H. Comparison of the Spatiotemporal Dynamics of Land Use Changes in Four Municipalities of China Based on Intensity Analysis. Sustainability 2020, 12, 3687. [Google Scholar] [CrossRef]
- Zulpiya, M.M.T.; Hamit, Y.M.T.; Anwar, E.Z.I.Z.; Ajigul, A.B.L.M.T. Response of ecosystem services value to land use/cover change in the Yanqi Basin of Xinjiang, China. J. Desert Res. 2014, 34, 275–283. [Google Scholar]
- Mayila, R.H.M.; Mamat, S.W.T.; Nigela, T.X.P.; Yikliman, A.B.D.M.T.; Ma, C.Y.; Erxat, A.B.L.M.T. The ecosystem service value spatial—temporal changes in the Ugan—kuqa River Delta Oasis based on RS and GIS. Acta Eeoiogica Silica 2018, 38, 5938–5951. [Google Scholar]
- Xin, D.; Wang, L.C.; Huang, C.B.; Fang, L.L.; Wang, S.Q.; Wang, L.Z. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar]
- Qiao, B.; Zhu, C.X.; Cao, X.Y.; Xiao, J.S.; Zhang, L.D.; Yan, Y.Q.; Chen, G.Q.; Shi, F.F. Spatial autocorrelation analysis of land use and ecosystem service value in Maduo County, Qinghai Province, China at the grid scale. Chin. J. Appl. Ecol. 2020, 31, 1660–1672. [Google Scholar]
- Guo, C.Y.; Gao, S.; Zhou, B.Y.; Gao, J.H. Effects of land use change on ecosystem service value in Funiu Mountain based upon a grid square. Acta Ecol. Sin. 2019, 39, 3482–3493. [Google Scholar]
- Luo, N.N.; Mao, D.H.; Wen, B.L.; Liu, X.T. Climate Change Affected Vegetation Dynamics in the Northern Xinjiang of China: Evaluation by SPEI and NDVI. Land 2020, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Kang, T.T.; Li, Z.; Gao, Y.C. Effectiveness of ecological restoration in the mountain-oasis-desert system of northwestern arid area of China. Acta Ecol. 2019, 39, 7418–7431. [Google Scholar]
- Wei, H.J.; Liu, H.M.; Xu, Z.H.; Ren, J.H.; Lu, N.C.; Fan, W.G.; Zhang, P.; Dong, X.B. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-dessert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Xie, D.N.; Duan, L.; Si, G.Y.; Liu, W.J.; Zhang, T.; Mulder, J. Long-term 15N balance after single-dose input of 15N labeled NH4+ and NO3− in a subtropical forest under reducing N deposition. Glob. Biogeochem. Cycles 2021, e2021GB006959. [Google Scholar] [CrossRef]
- Xia, X.X.; Zhu, L.; Yang, A.M.; Jin, H.; Zhang, Q.Q. Evaluate the positive and negative value of ecosystem services based on Mountain-Desert-Oasis system (MODS): A case study of Manas River Basin in Xinjiang. Acta Ecol. Sinca 2020, 40, 3921–3934. [Google Scholar]
- Liu, H.M.; Gao, J.X.; Liu, X.; Zhang, H.Y.; Xu, X.L. Monitoring and assessment of the ecosystem services value in the national key ecological function zones. Acta Ecol. Sin. 2020, 40, 1865–1876. [Google Scholar]
- Yao, Y.; Ding, J.L.; Zhang, F.; Lei, L.; Jiang, H.N. Impact of human driving factors for land use change on ecosystem services values in Xinjiang Wei Autonomous Region. Bull. Soil Water Conserv. 2013, 33, 298–304. [Google Scholar]
- Xia, J.Y.; Cao, M.; Xiao, W.; Li, Y.P.; Fu, G.; Wang, W.; Li, J.S. Integrating Spatial Valuation of Ecosystem Services into Protected Area Management:A Case Study of the Cangshan Nature Reserve Dali, china. Sustainability 2020, 12, 9395. [Google Scholar] [CrossRef]
- Li, G.D.; Fang, C.L.; Wang, S.J. Exploring spatiotemporal changes in ecosystem-service values and hotspots in China. Sci. Total Environ. 2016, 545–546, 609–620. [Google Scholar] [CrossRef]
- Mu, D.; Luo, P.P.; Lyu, J.; Zhou, M.M.; Huo, A.D.; Duan, W.L.; Nover, D.; He, B.; Zhao, X.L. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. J. Flood Risk Manag. 2020, 14, e12668. [Google Scholar]
- Zhang, Y.Z.; Huang, C.C.; Tan, Z.H.; Chen, Y.L.; Qiu, H.J.; Huang, C.; Li, Y.Q.; Zhang, Y.X.; Li, X.G.; Shulmeister, J.; et al. Prehistoric and historic overbank floods in the Luoyang Basin along the Luohe River, middle Yellow River basin, China. Quat. Int. 2019, 521, 118–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, P.P.; Zhao, S.F.; Kang, S.X.; Wang, P.B.; Zhou, M.M.; Lyu, J.Q. Control and Remediation Methods for Eutrophic Lakes in Recent 30 years. Water Sci. Technol. 2020, 81, 1099–1113. [Google Scholar] [CrossRef]
- Ahammad, R.; Stacey, N.; Sunderland, T. Analysis of forest-related policies for supporting ecosystem services-based forest management in Bangladesh. Ecosyst. Serv. 2021, 48, 101235. [Google Scholar] [CrossRef]
- Ling, H.B.; Yan, J.J.; Xu, H.L.; Guo, B.; Zhang, Q.Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total Environ. 2019, 659, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Mo, S.; Luo, P.P.; Zhou, M.M.; Shen, B.; Nover, D. A quantitative assessment of hydrological responses to climate change and human activities at spatiotemporal within a typical catchment on the Loess Plateau, China. Quat. Int. 2019, 527, 1–11. [Google Scholar] [CrossRef]
- Wang, L.Y.; Ke, X.L.; Hatab, A.A. Trade-Offs between Economic Benefits and Ecosystem Services Value under Three Cropland Protection Scenarios for Wuhan City in China. Land 2020, 9, 117. [Google Scholar] [CrossRef]
Ecosystem Service Function | Land Use Type | |||||
---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Water | Construction Land | Unused Land | |
Gas regulation | 940.91 | 6586.37 | 1505.46 | 0.00 | 0.00 | 0.00 |
Climate regulation | 1674.82 | 5080.92 | 1693.64 | 865.64 | 0.00 | 0.00 |
Water conservation | 1129.09 | 6021.83 | 1505.46 | 38,351.50 | 0.00 | 56.45 |
Soil formation and protection | 2747.46 | 7339.10 | 3669.55 | 18.82 | 0.00 | 37.64 |
Waste disposal | 3086.19 | 2465.18 | 2465.18 | 34,211.50 | 0.00 | 18.82 |
Biodiversity conservation | 1336.09 | 6134.74 | 2051.18 | 4685.73 | 0.00 | 639.82 |
Food production | 1881.82 | 188.18 | 564.55 | 188.18 | 0.00 | 18.82 |
Raw material production | 188.18 | 4892.73 | 94.09 | 18.82 | 0.00 | 0.00 |
Entertainment culture | 18.82 | 2408.73 | 75.27 | 8167.10 | 82.60 | 18.82 |
Total | 13,003.38 | 41,117.78 | 13,624.38 | 86,507.29 | 82.60 | 790.36 |
Land Use Type | 1990 | 2000 | 2010 | 2018 | 1990–2018 |
---|---|---|---|---|---|
Cultivated Land | 5.37 | 5.44 | 6.22 | 7.98 | 2.61 |
Forest Land | 4.19 | 4.05 | 4.05 | 2.45 | −1.74 |
Grassland | 32.95 | 32.85 | 32.35 | 35.32 | 2.37 |
Water | 1.61 | 1.74 | 1.78 | 1.19 | −0.42 |
Construction Land | 0.41 | 0.48 | 0.54 | 0.95 | 0.54 |
Unused Land | 55.46 | 55.44 | 55.07 | 52.11 | −3.35 |
Land Use Type | Cultivated Land | Forest Land | Grassland | Water | Construction Land | Unused Land | Total | Transfer Out |
---|---|---|---|---|---|---|---|---|
Cultivated Land | 239.91 | 10.62 | 51.8 | 3.3 | 19.7 | 3.89 | 320.16 | 80.25 |
Forest Land | 12.05 | 68.68 | 155.59 | 2.28 | 1.28 | 10.26 | 250.14 | 238.09 |
Grassland | 149.36 | 70.83 | 1476.85 | 9.76 | 12.53 | 247.91 | 1967.24 | 1817.88 |
Water | 2.5 | 0.85 | 12.48 | 38.36 | 0.37 | 41.37 | 95.93 | 93.43 |
Construction Land | 10.22 | 0.12 | 2.75 | 0.23 | 9.69 | 2.14 | 25.15 | 14.93 |
Unused Land | 61.95 | 3.9 | 406.71 | 16.75 | 13.04 | 2803.83 | 3306.18 | 3244.23 |
Total | 475.99 | 145.94 | 2106.18 | 70.68 | 56.61 | 3109.4 | 5964.8 | |
Transfer Out | 236.08 | 144.38 | 2054.38 | 67.38 | 36.91 | 3105.51 |
Land Use Type | Cultivated Land | Forest Land | Grassland | Water | Construction Land | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|
1990 | ESV | 417.66 | 1030.28 | 2683.36 | 833.66 | 0.20 | 262.02 | 5227.18 |
Proportion % | 7.99% | 19.71% | 51.33% | 15.95% | 0.00% | 5.01% | 100% | |
2000 | ESV | 422.83 | 994.62 | 2675.30 | 901.59 | 0.24 | 261.88 | 5256.46 |
Proportion % | 8.04% | 18.92% | 50.90% | 17.15% | 0.00% | 4.98% | 100% | |
2010 | ESV | 483.61 | 994.16 | 2634.62 | 918.53 | 0.27 | 260.13 | 5291.31 |
Proportion % | 9.14% | 18.79% | 49.79% | 17.36% | 0.01% | 4.92% | 100% | |
2018 | ESV | 619.34 | 602.14 | 2872.77 | 614.95 | 0.47 | 245.88 | 4955.55 |
Proportion % | 12.50% | 12.15% | 57.97% | 12.41% | 0.01% | 4.96% | 100% | |
ESV changes 1990 to 2018 | 201.67 | −428.13 | 189.41 | −218.72 | 0.26 | −16.13 | −271.63 | |
ESV change rate 1990 to 2018 | 48.29% | −41.56% | 7.06% | −26.24% | 129.94% | −6.16% | −5.2% |
Type 1 | Type 2 | 1990 | 2000 | 2010 | 2018 | ||||
---|---|---|---|---|---|---|---|---|---|
ESV | % | ESV | % | ESV | % | ESV | % | ||
Regulation Service | Gas regulation | 491.76 | 9.41% | 485.53 | 9.24% | 485.36 | 9.17% | 458.70 | 9.56% |
Climate regulation | 523.02 | 10.01% | 518.95 | 9.87% | 521.84 | 9.86% | 462.20 | 9.63% | |
Water conservation | 871.96 | 16.68% | 896.40 | 17.05% | 904.50 | 17.09% | 749.58 | 15.62% | |
Waste disposal | 982.35 | 18.79% | 1006.84 | 19.15% | 1020.54 | 19.29% | 850.14 | 17.72% | |
Subtotal | 2869.09 | 54.89% | 2907.73 | 55.32% | 2932.23 | 55.42% | 2520.63 | 52.53% | |
Support service | Soil formation and protection | 1007.53 | 19.27% | 1000.09 | 19.03% | 1001.82 | 18.93% | 1023.92 | 21.34% |
Biodiversity conservation | 857.88 | 16.41% | 855.45 | 16.27% | 855.00 | 16.16% | 818.34 | 17.05% | |
Subtotal | 1865.41 | 35.69% | 1855.54 | 35.30% | 1856.82 | 35.09% | 1842.26 | 38.39% | |
Provision of services | Food production | 184.40 | 3.53% | 184.80 | 3.52% | 191.90 | 3.63% | 218.62 | 4.56% |
Raw material production | 147.35 | 2.82% | 143.14 | 2.72% | 143.69 | 2.72% | 100.59 | 2.10% | |
Subtotal | 331.75 | 6.35% | 327.94 | 6.24% | 335.59 | 6.34% | 319.20 | 6.65% | |
Cultural service | Entertainment culture | 160.93 | 3.08% | 165.25 | 3.14% | 166.67 | 3.15% | 116.42 | 2.43% |
total | 5227.19 | 100% | 5256.46 | 100% | 5291.31 | 100% | 4798.51 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shataer, R.; Xia, T.; Chang, X.; Zhen, H.; Li, Z. Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change. Sustainability 2021, 13, 9679. https://doi.org/10.3390/su13179679
Wang Y, Shataer R, Xia T, Chang X, Zhen H, Li Z. Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change. Sustainability. 2021; 13(17):9679. https://doi.org/10.3390/su13179679
Chicago/Turabian StyleWang, Yang, Remina Shataer, Tingting Xia, Xueer Chang, Hui Zhen, and Zhi Li. 2021. "Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change" Sustainability 13, no. 17: 9679. https://doi.org/10.3390/su13179679
APA StyleWang, Y., Shataer, R., Xia, T., Chang, X., Zhen, H., & Li, Z. (2021). Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change. Sustainability, 13(17), 9679. https://doi.org/10.3390/su13179679