Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications
Abstract
:1. Introduction
2. Experimental Methodology
3. Results
3.1. Steady Continuous Operation of Thermoelectric Air Conditioner
3.2. Pulse Operated Thermoelectric Air Conditioner
3.2.1. At Pulse Width of 40 s and Cooling Load 0 W to 20 W
3.2.2. At Pulse Width of 30 s and Cooling Load 0 W to 20 W
3.2.3. At Pulse Width of 9 s and Cooling Load 0 W to 20 W
4. Conclusions
- The combined action of the Peltier heat, cooling load, Fourier heat, and Joule heat, all of which operate simultaneously during steady-state operation, determines the optimum performance of the cold side temperature of TEMs;
- During pulse operation, the peak overshoot and minimum temperature of the cold side of TEMs increased as the experiment progressed for all cooling loads;
- As the experiment progresses, two factors contribute to the increase in peak overshoot and minimum temperature of the cold side of TEMs. These factors include the accumulation of Joule heat in the element of TEMs and the increasing Fourier heat conduction in the element of TEMs;
- It was observed that the average cold side temperature increases as the pulse width was decreased from 40 s to 9 s;
- Lower current width causes an abrupt increase in the TEMs’ cold side minimum and overshoot temperatures. This anomaly occurs due to a lack of current width, which causes the hot side temperature of the TEMs to rise abruptly due to the accumulation of Joule heat in the TEMs’ element.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, T.; Li, Y.; Zhang, J.; Ning, P.; Niu, P. Cooling and mechanical performance analysis of a trapezoidal thermoelectric cooler with variable cross-section. Energies 2020, 13, 6070. [Google Scholar] [CrossRef]
- Faddel, S.; Tian, G.; Zhou, Q. Decentralized management of commercial HVAC systems. Energies 2021, 14, 3024. [Google Scholar] [CrossRef]
- Lv, S.; Qian, Z.; Hu, D.; Li, X.; He, W. A comprehensive review of strategies and approaches for enhancing the performance of thermoelectric module. Energies 2020, 13, 3142. [Google Scholar] [CrossRef]
- Irshad, K.; Habib, K.; Saidur, R.; Kareem, M.W.; Saha, B.B. Study of thermoelectric and photovoltaic facade system for energy efficient building development: A review. J. Clean. Prod. 2019, 209, 1376–1395. [Google Scholar] [CrossRef]
- He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent development and application of thermoelectric generator and cooler. Appl. Energy 2015, 143, 1–25. [Google Scholar] [CrossRef]
- Teffah, K.; Zhang, Y.; Mou, X.L. Modeling and experimentation of new thermoelectric cooler-thermoelectric generator module. Energies 2018, 11, 576. [Google Scholar] [CrossRef] [Green Version]
- Russel, M.K.; Ewing, D.; Ching, C.Y. Characterization of a thermoelectric cooler based thermal management system under different operating conditions. Appl. Therm. Eng. 2013. [Google Scholar] [CrossRef]
- Shittu, S.; Li, G.; Zhao, X.; Ma, X. Review of thermoelectric geometry and structure optimization for performance enhancement. Appl. Energy 2020. [Google Scholar] [CrossRef]
- Pourkiaei, S.M.; Ahmadi, M.H.; Sadeghzadeh, M.; Moosavi, S.; Pourfayaz, F.; Chen, L.; Yazdi, M.A.P.; Kumar, R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy 2019. [Google Scholar] [CrossRef]
- Irshad, K.; Habib, K.; Kareem, M.W.; Basrawi, F.; Saha, B.B. Evaluation of thermal comfort in a test room equipped with a photovoltaic assisted thermo-electric air duct cooling system. Int. J. Hydrog. Energy 2017, 42, 26956–26972. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Wang, L.; Wang, W.W.; Liu, D.; Zhao, F.Y. Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modeling and performance optimization. J. Clean. Prod. 2020. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, T.; Wang, F.; Yu, Y. Numerical study and optimization of a combined thermoelectric assisted indirect evaporative cooling system. J. Therm. Sci. 2020. [Google Scholar] [CrossRef]
- Zheng, L.J.; Lim, S.; Kim, N.K.; Kang, D.H.; Youn, Y.J.; Lee, W.; Kang, H.W. Experimental study of a thin water-film evaporative cooling system to enhance the energy conversion efficiency of a thermoelectric device. Energy 2020. [Google Scholar] [CrossRef]
- Lamba, R.; Kaushik, S.C.; Tyagi, S.K. Geometric optimization of trapezoidal thermoelectric heat pump considering contact resistances through genetic algorithm. Int. J. Energy Res. 2018. [Google Scholar] [CrossRef]
- Liao, X.; Liu, Y.; Ren, J.; Guan, L.; Sang, X.; Wang, B.; Zhang, H.; Wang, Q.; Ma, T. Investigation of a double-PCM-based thermoelectric energy-harvesting device using temperature fluctuations in an ambient environment. Energy 2020. [Google Scholar] [CrossRef]
- Borhani, S.M.; Hosseini, M.J.; Pakrouh, R.; Ranjbar, A.A.; Nourian, A. Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite. Renew. Energy 2021. [Google Scholar] [CrossRef]
- Irshad, K.; Habib, K.; Algarni, S.; Saha, B.B.; Jamil, B. Sizing and life-cycle assessment of building integrated thermoelectric air cooling and photovoltaic wall system. Appl. Therm. Eng. 2019. [Google Scholar] [CrossRef]
- Ruiz-Ortega, P.E.; Olivares-Robles, M.A. Peltier supercooling in transient thermoelectrics: Spatial temperature profile and characteristic cooling length. Entropy 2019, 21, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, J.N.; Chen, H.X.; Jia, H.; Qian, X.L. The transient behavior of Peltier junctions pulsed with supercooling. J. Appl. Phys. 2012. [Google Scholar] [CrossRef]
- Wang, T.; Wu, H.; Gao, D.; Zhang, K.; Meng, J. Achieving better super-cooling in a two-stage transient thermoelectric device with constraint-free pulse current by multi-objective optimization. J. Therm. Sci. 2021. [Google Scholar] [CrossRef]
- Wang, S.L.; Liu, H.B.; Gao, Y.W.; Shen, Y.; Yang, Y.R.; Wang, X.D.; Lee, D.J. Transient supercooling performance of thermoelectric coolers with a continuous double current pulse. J. Taiwan Inst. Chem. Eng. 2021. [Google Scholar] [CrossRef]
- Gao, Y.W.; Shi, C.L.; Wang, X.D. Numerical analysis for transient supercooling effect of pulse current shapes on a two-stage thermoelectric cooler. Appl. Therm. Eng. 2019. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ng, K.C. Thermodynamic formulation of temperature-entropy diagram for the transient operation of a pulsed thermoelectric cooler. Int. J. Heat Mass Transf. 2006. [Google Scholar] [CrossRef]
- Yang, R.; Chen, G.; Kumar, A.R.; Snyder, G.J.; Fleurial, J.P. Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Convers. Manag. 2005. [Google Scholar] [CrossRef]
- Manno, M.; Wang, P.; Bar-Cohen, A. Pulsed thermoelectric cooling for improved suppression of a germanium hotspot. IEEE Trans. Compon. Packag. Manuf. Technol. 2014. [Google Scholar] [CrossRef]
- Snyder, G.J.; Fleurial, J.P.; Caillat, T.; Yang, R.; Chen, G. Supercooling of Peltier cooler using a current pulse. J. Appl. Phys. 2002. [Google Scholar] [CrossRef]
- Manikandan, S.; Kaushik, S.C.; Yang, R. Modified pulse operation of thermoelectric coolers for building cooling applications. Energy Convers. Manag. 2017, 140, 145–156. [Google Scholar] [CrossRef]
- Ma, M.; Yu, J.; Chen, J. An investigation on thermoelectric coolers operated with continuous current pulses. Energy Convers. Manag. 2015. [Google Scholar] [CrossRef]
- Piggott, A.J.; Allen, J.S. Peltier supercooling with isosceles current pulses: Cooling an object with internal heat generation. ECS J. Solid State Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Shen, L.M.; Xiao, F.; Chen, H.X.; Wang, S.W. Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element. Int. J. Refrig. 2012. [Google Scholar] [CrossRef]
- Ma, M.; Yu, J. Experimental study on transient cooling characteristics of a realistic thermoelectric module under a current pulse operation. Energy Convers. Manag. 2016. [Google Scholar] [CrossRef]
- Lv, H.; Wang, X.D.; Meng, J.H.; Wang, T.H.; Yan, W.M. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Appl. Energy 2016. [Google Scholar] [CrossRef]
- Gao, Y.W.; Lv, H.; Wang, X.D.; Yan, W.M. Enhanced Peltier cooling of two-stage thermoelectric cooler via pulse currents. Int. J. Heat Mass Transf. 2017. [Google Scholar] [CrossRef]
- Ruiz-Ortega, P.E.; Olivares-Robles, M.A.; Badillo-Ruiz, C.A. Transient thermal behavior of a segmented thermoelectric cooler with variable cross-sectional areas. Int. J. Energy Res. 2021. [Google Scholar] [CrossRef]
- Yin, T.; He, Z.Z. Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions. Appl. Energy 2021. [Google Scholar] [CrossRef]
- Li, W.K.; Chang, J.H.; Amani, M.; Yang, T.F.; Yan, W.M. Experimental study on transient supercooling of two-stage thermoelectric cooler. Case Stud. Therm. Eng. 2019. [Google Scholar] [CrossRef]
Specifications | Values | Units |
---|---|---|
Ferrortech 9500/391/085b | ||
53.8 | V | |
248 | W | |
8.5 | A | |
72 | °C | |
2.882 × 10–3 | K-1 | |
ZT (50 °C on the hot side of TEM) | 0.93 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irshad, K. Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications. Sustainability 2021, 13, 9682. https://doi.org/10.3390/su13179682
Irshad K. Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications. Sustainability. 2021; 13(17):9682. https://doi.org/10.3390/su13179682
Chicago/Turabian StyleIrshad, Kashif. 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications" Sustainability 13, no. 17: 9682. https://doi.org/10.3390/su13179682
APA StyleIrshad, K. (2021). Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications. Sustainability, 13(17), 9682. https://doi.org/10.3390/su13179682