Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area—Location and Characterization
2.1.1. Location
2.1.2. Livelihood Characterization
2.2. Indicators and Their Relationship with the Sub- and Major Components of the IPCC–Drought Vulnerability Index (IPCC–DVI)
2.3. Sampling and Data Sources
2.4. Approach to the Measurement of Vulnerability to Drought
2.4.1. Normalization of the Indicators
2.4.2. Principal Component Analysis (PCA)
2.4.3. Farm Typology with Cluster Analysis
3. Results and Discussions
3.1. Farm Typologies
3.2. Exposure: Climate Change, Perception, and Drought Characteristics
3.3. Sensitivity: Crop Failure, Diseases, and Crisis
3.4. Adaptive Capacity: Accesses, Wealth, Technology, and Livelihood Diversification
3.5. The Overall Drought Vulnerability: Sensitivity, Exposure, and Adaptive Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farid, K.S.; Tanny, N.Z.; Rahman, M.W. Determinants of drought risk coping mechanisms among the farmers of Northern region of Bangladesh. J. Bangladesh Agric. Univ. 2019, 17, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Balaganesh, G.; Malhotra, R.; Sendhil, R.; Sirohi, S.; Maiti, S.; Ponnusamy, K.; Sharma, A.K. Development of composite vulnerability index and district level mapping of climate change induced drought in Tamil Nadu, India. Ecol. Indic. 2020, 113, 106197. [Google Scholar] [CrossRef]
- GebreMichael, Y. Climate Change, Vulnerability, and Adaption under the Small Farming Households of Konso Community, Southern Ethiopia. In Handbook of Climate Change Resilience; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Jamshidi, O.; Asadi, A.; Kalantari, K.; Azadi, H.; Scheffran, J. Vulnerability to climate change of smallholder farmers in the Hamadan province, Iran. Clim. Risk Manag. 2019, 23, 146–159. [Google Scholar] [CrossRef]
- Tibesigwa, B.; Visser, M.; Turpie, J. The impact of climate change on net revenue and food adequacy of subsistence farming households in South Africa. Environ. Dev. Econ. 2015, 20, 327–353. [Google Scholar] [CrossRef] [Green Version]
- Aribi, F.; Sghaier, M. Livelihood vulnerability assessment to climate change and variability: The case of farm households in South-East Tunisia. Environ. Dev. Sustain. 2021, 23, 12631–12658. [Google Scholar] [CrossRef]
- Ndung’u, P.W.; Bebe, B.O.; Ondiek, J.O.; Butterbach-Bahl, K.; Merbold, L.; Goopy, J.P. Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: Livestock systems of Nandi County, Kenya. Anim. Prod. Sci. 2019, 59, 1136–1146. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.I.; Ma, H. Climate Change and Livelihood Vulnerability in Mixed Crop–Livestock Areas: The Case of Province Punjab, Pakistan. Sustainability 2020, 12, 586. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.; Ghosal, S. Determinants of household livelihood vulnerabilities to climate change in the Himalayan foothills of West Bengal, India. Int. J. Disaster Risk Reduct. 2020, 50, 101706. [Google Scholar] [CrossRef]
- Jellason, N.P.; Conway, J.S.; Baines, R.N.; Ogbaga, C.C. A review of farming challenges and resilience management in the Sudano-Sahelian drylands of Nigeria in an era of climate change. J. Arid Environ. 2021, 186, 104398. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extrem. 2014, 3, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Lennox, R.J.; Crook, D.A.; Moyle, P.B.; Struthers, D.P.; Cooke, S.J. Toward a better understanding of freshwater fish responses to an increasingly drought-stricken world. Rev. Fish Biol. Fisher. 2019, 29, 71–92. [Google Scholar] [CrossRef]
- Dutra, E.; Magnusson, L.; Wetterhall, F.; Cloke, H.L.; Balsamo, G.; Boussetta, S.; Pappenberger, F. The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int. J. Climatol. 2013, 33, 1720–1729. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E. A detailed look at the recent drought situation in the Greater Horn of Africa. J. Arid Environ. 2014, 103, 71–79. [Google Scholar] [CrossRef]
- Agutu, N.; Awange, J.; Ndehedehe, C.; Mwaniki, M. Consistency of agricultural drought characterization over Upper Greater Horn of Africa (1982–2013): Topographical, gauge density, and model forcing influence. Sci. Total Environ. 2020, 709, 135149. [Google Scholar] [CrossRef]
- Abid, M.; Ali, A.; Raza, M.; Mehdi, M. Ex-ante and ex-post coping strategies for climatic shocks and adaptation determinants in rural Malawi. Clim. Risk Manag. 2020, 27, 100200. [Google Scholar] [CrossRef]
- Epstein, A.; Bendavid, E.; Nash, D.; Charlebois, E.D.; Weiser, S.D. Drought and intimate partner violence towards women in 19 countries in sub-Saharan Africa during 2011–2018: A population-based study. PLoS. Med. 2020, 17, e1003064. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, T.; van der Veen, A. Farmers’ drought experience, risk perceptions, and behavioural intentions for adaptation: Evidence from Ethiopia. Clim. Dev. 2020, 13, 493–502. [Google Scholar] [CrossRef]
- Lottering, S.; Mafongoya, P.; Lottering, R. Drought and its impacts on small-scale farmers in sub-Saharan Africa: A review. S. Afr. Geogr. J. 2021, 103, 319–341. [Google Scholar] [CrossRef]
- Tessema, I.; Simane, B. Vulnerability analysis of smallholder farmers to climate variability and change: An agro-ecological system-based approach in the Fincha’a sub-basin of the upper Blue Nile Basin of Ethiopia. Ecol. Process. 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Singh, A.; Kumar, S.; Sheoran, P.; Sharma, D.; Stringer, L.C.; Quinn, C.H.; Kumar, A.; Singh, D. Perceived Climate Variability and Compounding Stressors: Implications for Risks to Livelihoods of Smallholder Indian Farmers. Environ. Manag. 2020, 66, 826–844. [Google Scholar] [CrossRef]
- Sam, A.S.; Padmaja, S.S.; Kächele, H.; Kumar, R.; Müller, K. Climate change, drought and rural communities: Understanding people’s perceptions and adaptations in rural eastern India. Int. J. Disaster Risk Reduct. 2020, 44, 101436. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, A.K.; Pramanik, S.; Mamidanna, S.; Whitbread, A. Climate risk, vulnerability and resilience: Supporting livelihood of smallholders in semiarid India. Land Use Policy 2020, 97, 104729. [Google Scholar] [CrossRef]
- Chavez Michaelsen, A.; Huamani Briceño, L.; Vilchez Baldeon, H.; Perz, S.G.; Quaedvlieg, J.; Rojas, R.O.; Brown, I.F.; Pinedo Mora, R. The effects of climate change variability on rural livelihoods in Madre de Dios, Peru. Reg. Environ. Chang. 2020, 20, 70. [Google Scholar] [CrossRef]
- Abeje, M.T.; Tsunekawa, A.; Haregeweyn, N.; Nigussie, Z.; Adgo, E.; Ayalew, Z.; Tsubo, M.; Elias, A.; Berihun, D.; Quandt, A. Communities’ livelihood vulnerability to climate variability in Ethiopia. Sustainability 2019, 11, 6302. [Google Scholar] [CrossRef] [Green Version]
- Maru, H.; Haileslassie, A.; Zeleke, T.; Esayas, B. Agroecology-based analysis of meteorological drought and mapping its hotspot areas in Awash Basin, Ethiopia. Model. Earth Syst. Environ. 2021, 1–22. [Google Scholar] [CrossRef]
- Auci, S.; Coromaldi, M. Climate variability and agricultural production efficiency: Evidence from Ethiopian farmers. Int. J. Environ. Stud. 2021, 78, 57–76. [Google Scholar] [CrossRef]
- Borgomeo, E.; Vadheim, B.; Woldeyes, F.B.; Alamirew, T.; Tamru, S.; Charles, K.J.; Kebede, S.; Walker, O. The distributional and multi-sectoral impacts of rainfall shocks: Evidence from computable general equilibrium modelling for the Awash Basin, Ethiopia. Ecol. Econ. 2018, 146, 621–632. [Google Scholar] [CrossRef]
- Shawul, A.A.; Chakma, S. Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environ. Earth Sci. 2019, 78, 141. [Google Scholar] [CrossRef]
- Adane, G.B.; Hirpa, B.A.; Lim, C.-H.; Lee, W.-K. Spatial and Temporal Analysis of Dry and Wet Spells in Upper Awash River Basin, Ethiopia. Water 2020, 12, 3051. [Google Scholar] [CrossRef]
- Hailu, R.; Tolossa, D.; Alemu, G. Water institutions in the Awash basin of Ethiopia: The discrepancies between rhetoric and realities. Int. J. River Basin Manag. 2018, 16, 107–121. [Google Scholar] [CrossRef]
- De Haan, L.; Zoomers, A. Development geography at the crossroads of livelihood and globalisation. Tijdschr. Econ. Soc. Geogr. 2003, 94, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Ellis, F. Household strategies and rural livelihood diversification. J. Dev. Stud. 1998, 35, 1–38. [Google Scholar] [CrossRef]
- Ndlela, S.; Worth, S. Creating self-reliance and sustainable livelihoods amongst small-scale sugarcane farmers. J. Agric. Educ. Ext. 2021, 27, 325–339. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Peng, J.; Braimoh, A.K.; Yin, H. Assessing vulnerability to drought based on exposure, sensitivity and adaptive capacity: A case study in middle Inner Mongolia of China. Chin. Geogr. Sci. 2013, 23, 13–25. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M., Parry, M.L., Canziani, O., Palutikof, J., Van der Linden, P., Hanson, C., Eds.; Cambridge University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- IPCC. Climate change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects; Field, C.B., Barros, V.R., Eds.; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Gessler, A.; Bottero, A.; Marshall, J.; Arend, M. The way back: Recovery of trees from drought and its implication for acclimation. New Phytol. 2020, 228, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Adzawla, W.; Baumüller, H. Effects of livelihood diversification on gendered climate vulnerability in northern Ghana. Environ. Dev. Sustain. 2021, 23, 923–946. [Google Scholar] [CrossRef]
- Sharafi, L.; Zarafshani, K.; Keshavarz, M.; Azadi, H.; Van Passel, S. Drought risk assessment: Towards drought early warning system and sustainable environment in western Iran. Ecol. Indic. 2020, 114, 106276. [Google Scholar] [CrossRef]
- Choden, K.; Keenan, R.J.; Nitschke, C.R. An approach for assessing adaptive capacity to climate change in resource dependent communities in the Nikachu watershed, Bhutan. Ecol. Indic. 2020, 114, 106293. [Google Scholar] [CrossRef]
- Mukasa, J.; Olaka, L.; Yahya Said, M. Drought and households’ adaptive capacity to water scarcity in Kasali, Uganda. J. Water Clim. Chang. 2020, 11, 217–232. [Google Scholar] [CrossRef]
- Shukla, R.; Agarwal, A.; Gornott, C.; Sachdeva, K.; Joshi, P. Farmer typology to understand differentiated climate change adaptation in Himalaya. Sci. Rep. 2019, 9, 20375. [Google Scholar] [CrossRef] [Green Version]
- Haileslassie, A.; Craufurd, P.; Thiagarajah, R.; Kumar, S.; Whitbread, A.; Rathor, A.; Blummel, M.; Ericsson, P.; Kakumanu, K.R. Empirical evaluation of sustainability of divergent farms in the dryland farming systems of India. Ecol. Indic. 2016, 60, 710–723. [Google Scholar] [CrossRef] [Green Version]
- Chikowo, R.; Zingore, S.; Snapp, S.; Johnston, A. Farm typologies, soil fertility variability and nutrient management in smallholder farming in Sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 2014, 100, 1–18. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Ng’etich, O.K.; Kiboi, M.N.; Okeyo, J.; Shisanya, C.A.; Okwuosa, E.A.; Mugendi, D.N.; Ngetich, F.K. Farming systems’ typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya. Sci. Afr. 2020, 8, e00458. [Google Scholar] [CrossRef]
- Nasir, J.; Assefa, E.; Zeleke, T.; Gidey, E. Meteorological Drought in Northwestern Escarpment of Ethiopian Rift Valley: Detection seasonal and spatial trends. Environ. Syst. Res. 2021, 10, 16. [Google Scholar] [CrossRef]
- Koech, G.; Makokha, G.O.; Mundia, C.N. Climate change vulnerability assessment using a GIS modelling approach in ASAL ecosystem: A case study of Upper Ewaso Nyiro basin, Kenya. Model. Earth Syst. Environ. 2020, 6, 479–498. [Google Scholar] [CrossRef]
- Asmamaw, M.; Mereta, S.T.; Beyene, E.M.; Ambelu, A. Multidimensional livelihood vulnerability analysis in Dinki watershed, central highlands of Ethiopia. Clim. Dev. 2020, 12, 814–826. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Momin, S.; Pandey, R. Mapping the effect of climate change on community livelihood vulnerability in the riparian region of Gangatic Plain, India. Ecol. Indic. 2020, 119, 106815. [Google Scholar] [CrossRef]
- Gupta, A.K.; Negi, M.; Nandy, S.; Kumar, M.; Singh, V.; Valente, D.; Petrosillo, I.; Pandey, R. Mapping socio-environmental vulnerability to climate change in different altitude zones in the Indian Himalayas. Ecol. Indic. 2020, 109, 105787. [Google Scholar] [CrossRef]
- Poudel, S.; Funakawa, S.; Shinjo, H.; Mishra, B. Understanding households’ livelihood vulnerability to climate change in the Lamjung district of Nepal. Environ. Dev. Sustain. 2020, 22, 8159–8182. [Google Scholar] [CrossRef]
- Nyairo, R.; Machimura, T.; Matsui, T. A combined analysis of sociological and farm management factors affecting household livelihood vulnerability to climate change in rural Burundi. Sustainability 2020, 12, 4296. [Google Scholar] [CrossRef]
- Singh, S. Bridging the gap between biophysical and social vulnerability in rural India: A community livelihood vulnerability approach. Area Dev. Policy 2020, 5, 390–411. [Google Scholar] [CrossRef]
- Endalew, H.A.; Sen, S. Effects of climate shocks on Ethiopian rural households: An integrated livelihood vulnerability approach. J. Environ. Plan. Manag. 2021, 64, 399–431. [Google Scholar] [CrossRef]
- Dechassa, C.; Simane, B.; Alamirew, B. Farm-level Determinants of Farmers’ Adaptation Decisions to Climate Variability and Change in Didessa Basin, Ethiopia. Asian J. Agric. Ext. Econ. Soc. 2020, 38, 42–55. [Google Scholar] [CrossRef]
- Wabwire, E.O.; Mukhovi, S.; Nyandega, I.A. The Perception of Rural Households on Climate Change Effect on Rural Livelihoods in Lake Victoria Basin. Ghana J. Geogr. 2020, 12, 62–83. [Google Scholar] [CrossRef]
- Huong, N.T.L.; Yao, S.; Fahad, S. Assessing household livelihood vulnerability to climate change: The case of Northwest Vietnam. Hum. Ecol. Risk Assess Int. J. 2019, 25, 1157–1175. [Google Scholar] [CrossRef]
- Rudiarto, I.; Pamungkas, D. Spatial Exposure and Livelihood Vulnerability to Climate-Related Disasters in the North Coast of Tegal City, Indonesia. Int. Rev. Spat. Plan. Sustain. Dev. 2020, 8, 34–53. [Google Scholar] [CrossRef]
- Zhu, R.; Fang, Y.; Neupane, N.; Koirala, S.; Zhang, C. Drought stress and livelihood response based on evidence from the Koshi River Basin in Nepal: Modeling and applications. Water 2020, 12, 1610. [Google Scholar] [CrossRef]
- Müller-Mahn, D.; Moure, M.; Gebreyes, M. Climate change, the politics of anticipation and future riskscapes in Africa. Camb. J. Reg. Econ. 2020, 13, 343–362. [Google Scholar] [CrossRef]
- Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. Climate change impact on water resources in the Awash basin, Ethiopia. Water 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Shawul, A.A.; Chakma, S. Suitability of global precipitation estimates for hydrologic prediction in the main watersheds of Upper Awash basin. Environ. Earth Sci. 2020, 79, 53. [Google Scholar] [CrossRef]
- Tolera, M.B.; Chung, I.-M.; Chang, S.W. Evaluation of the climate forecast system reanalysis weather data for watershed modeling in Upper Awash basin, Ethiopia. Water 2018, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Tajebe, L.; Anjulo, A.; Ewnetu, Z. Apple based agroforestry in Dendi Woreda, Oromiya Region: Income contribution and determinants for adoption. Ethiop. J. Agric. Sci. 2013, 23, 61–73. [Google Scholar]
- Haileslassie, A.; Peden, D.; Gebreselassie, S.; Amede, T.; Descheemaeker, K. Livestock water productivity in mixed crop–livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement. Agric. Syst. 2009, 102, 33–40. [Google Scholar] [CrossRef]
- Haileslassie, A.; Peden, D.; Gebreselassie, S.; Amede, T.; Wagnew, A.; Taddesse, G. Livestock water productivity in the Blue Nile Basin: Assessment of farm scale heterogeneity. Rangel. J. 2009, 31, 213–222. [Google Scholar] [CrossRef]
- Yadeta, D.; Kebede, A.; Tessema, N. Potential evapotranspiration models evaluation, modelling, and projection under climate scenarios, Kesem sub-basin, Awash River basin, Ethiopia. Model. Earth Syst. Environ. 2020, 6, 2165–2176. [Google Scholar] [CrossRef]
- Simane, B.; Zaitchik, B.F.; Foltz, J.D. Agroecosystem specific climate vulnerability analysis: Application of the livelihood vulnerability index to a tropical highland region. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 39–65. [Google Scholar] [CrossRef] [Green Version]
- Kadam, P.; Bhalerao, S. Sample size calculation. Int. J. Ayurveda Res. 2010, 1, 55. [Google Scholar]
- Neset, T.-S.; Wiréhn, L.; Opach, T.; Glaas, E.; Linnér, B.-O. Evaluation of indicators for agricultural vulnerability to climate change: The case of Swedish agriculture. Ecol. Indic. 2019, 105, 571–580. [Google Scholar] [CrossRef]
- Marlon, J.R.; Wang, X.; Mildenberger, M.; Bergquist, P.; Swain, S.; Hayhoe, K.; Howe, P.D.; Maibach, E.; Leiserowitz, A. Hot dry days increase perceived experience with global warming. Glob. Environ. Chang. 2021, 68, 102247. [Google Scholar] [CrossRef]
- Tesema, K.B.; Haile, A.T.; Nakawuka, P. Vulnerability of community to climate stress: An indicator-based investigation of Upper Gana watershed in Omo Gibe basin in Ethiopia. Int. J. Disaster Risk Reduct. 2021, 102426. [Google Scholar] [CrossRef]
- Williams, P.A.; Crespo, O.; Abu, M. Adapting to changing climate through improving adaptive capacity at the local level–The case of smallholder horticultural producers in Ghana. Clim. Risk Manag. 2019, 23, 124–135. [Google Scholar] [CrossRef]
- Anandhi, A.; Douglas-Mankin, K.R.; Srivastava, P.; Aiken, R.M.; Senay, G.; Leung, L.R.; Chaubey, I. DPSIR-ESA Vulnerability Assessment (DEVA) Framework: Synthesis, Foundational Overview, and Expert Case Studies. Trans ASABE 2020, 63, 741–752. [Google Scholar] [CrossRef]
- Asfaw, S.; McCarthy, N.; Lipper, L.; Arslan, A.; Cattaneo, A. What determines farmers’ adaptive capacity? Empirical evidence from Malawi. Food Sec. 2016, 8, 643–664. [Google Scholar] [CrossRef]
- Villamayor-Tomas, S.; García-López, G. The influence of community-based resource management institutions on adaptation capacity: A large-n study of farmer responses to climate and global market disturbances. Glob. Environ. Chang. 2017, 47, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Wright, H.; Kristjanson, P.M.; Bhatta, G.D. Understanding Adaptive Capacity: Sustainable Livelihoods and Food Security in Coastal Bangladesh; CCAFS Working Paper No. 32; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2012; Available online: https://hdl.handle.net/10568/24794 (accessed on 10 June 2021).
- Uddin, M.N.; Islam, A.S.; Bala, S.K.; Islam, G.T.; Adhikary, S.; Saha, D.; Haque, S.; Fahad, M.G.R.; Akter, R. Mapping of Climate Vulnerability of the Coastal Region of Bangladesh using principal component analysis. Appl. Geogr. 2019, 102, 47–57. [Google Scholar] [CrossRef]
- Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 2002, 32, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.B.; Riederer, A.M.; Foster, S.O. The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Glob. Eviron. Chang. 2009, 19, 74–88. [Google Scholar] [CrossRef]
- Pandey, R.; Jha, S. Climate vulnerability index-measure of climate change vulnerability to communities: A case of rural Lower Himalaya, India. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 487–506. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Li, G.; Hu, A.; Zhang, J.; Peng, L.; Sun, C.; Cao, D. High-agreement uncorrelated secret key generation based on principal component analysis preprocessing. IEEE Trans. Commun. 2018, 66, 3022–3034. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.A.-A.; Pradhan, B.; Ahmed, N. Assessing drought vulnerability using geospatial techniques in northwestern part of Bangladesh. Sci. Total Environ. 2020, 705, 135957. [Google Scholar] [CrossRef] [PubMed]
- Esayas, B.; Simane, B.; Teferi, E.; Ongoma, V.; Tefera, N. Trends in extreme climate events over three agroecological zones of southern Ethiopia. Adv. Meteorol. 2018, 2018, 7354157. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Leal Filho, W.; Taddese, H.; Balehegn, M.; Nzengya, D.; Debela, N.; Abayineh, A.; Mworozi, E.; Osei, S.; Ayal, D.Y.; Nagy, G.J. Introducing experiences from African pastoralist communities to cope with climate change risks, hazards and extremes: Fostering poverty reduction. Int. J. Disaster Risk Reduct. 2020, 50, 101738. [Google Scholar] [CrossRef]
- Poudel, P.; Thapa, S.; Ghimire, S.; Sen, E. A Study on Perception and Adaptation of the Farmers toward Climate Change in the Western Region of Nepal. Asian J. Agric. Ext. Econ. Soc. 2020, 38, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.R.; Curtis, A.L. Culture, climate change and farm-level groundwater management: An Australian case study. J. Hydrol. 2016, 536, 284–292. [Google Scholar] [CrossRef]
- Yadeta, D.; Kebede, A.; Tessema, N. Climate change posed agricultural drought and potential of rainy season for effective agricultural water management, Kesem sub-basin, Awash Basin, Ethiopia. Theor. Appl. Climatol. 2020, 140, 653–666. [Google Scholar] [CrossRef]
- Liao, C.; Agrawal, A.; Clark, P.E.; Levin, S.A.; Rubenstein, D.I. Landscape sustainability science in the drylands: Mobility, rangelands and livelihoods. Landsc. Ecol. 2020, 35, 2433–2447. [Google Scholar] [CrossRef]
- Adane, G.B.; Hirpa, B.A.; Song, C.; Lee, W.-K. Rainfall Characterization and Trend Analysis of Wet Spell Length across Varied Landscapes of the Upper Awash River Basin, Ethiopia. Sustainability 2020, 12, 9221. [Google Scholar] [CrossRef]
- Phoumin, H.; Kimura, F. Cambodia’s energy poverty and its effects on social wellbeing: Empirical evidence and policy implications. Energy Policy 2019, 132, 283–289. [Google Scholar] [CrossRef]
- Krishnaiah, P. Assessing Rural Households’ Adaptive Capacity to Climate Variability: A Comparative Study from Three Agro-Climatic Zones in North-West Ethiopia. J. Acad. Ind. Res. 2019, 8, 104. [Google Scholar]
- Tinch, R.; Jäger, J.; Omann, I.; Harrison, P.A.; Wesely, J.; Dunford, R. Applying a capitals framework to measuring coping and adaptive capacity in integrated assessment models. Clim. Chang. 2015, 128, 323–337. [Google Scholar] [CrossRef]
- Kassegn, A.; Endris, E. Review on livelihood diversification and food security situations in Ethiopia. Cogent Food Agric. 2021, 7, 1882135. [Google Scholar] [CrossRef]
- Mesfin, D.; Simane, B.; Belay, A.; Recha, J.W.; Schmiedel, U. Assessing the Adaptive Capacity of Households to Climate Change in the Central Rift Valley of Ethiopia. Climate 2020, 8, 106. [Google Scholar] [CrossRef]
- Matewos, T. The state of local adaptive capacity to climate change in drought-prone districts of rural Sidama, southern Ethiopia. Clim. Risk Manag. 2020, 27, 100209. [Google Scholar] [CrossRef]
Agroecological Zones | Sample Districts | Altitude (m) | Major Livelihood | Major Crop Type | Major Livestock | Number of Respondents |
---|---|---|---|---|---|---|
Highland (HL) | Dendi | 2300–3600 | Mixed farming | Wheat, Barley, Teff | Sheep, Cattle, Equines | 132 |
Midland (ML) | Adea | 1500–2300 | Mixed farming | Teff, Wheat, Maize | Cattle, Sheep | 132 |
Lowland (LL) | Fentale | 500–1500 | Agropastoralism and Pastoralism | Sorghum, Maize | Camels, Goats, Chickens | 132 |
Attributes | Indicator | Measures and Explanations | Relationship (− or +) to Attribute | Sources |
---|---|---|---|---|
Exposure | [E1] Precipitation | SD Ave. monthly precipitation (mm) (1983–2016) | − | [71] |
[E2] Minimum temperature | SD Ave. monthly minimum temperature (°C) (1983–2016) | + | [71] | |
[E3] Maximum temperature | SD Ave. monthly maximum temperature (°C) (1983–2016) | + | [71] | |
[E4] Drought magnitude | SD Drought magnitude (SPEI) (1983–2016) | + | [60] | |
[E5] Drought duration | SD Drought duration (SPEI) (1983–2016) | + | [60] | |
[E6] Drought frequency | SD Drought frequency (SPEI) (1983–2016) | − | [60] | |
[E7] Temperature increase | % of HHs that did not perceive temperature increase | + | [72] | |
[E8] Number of hot days | % of HHs that did not perceive hot days in a year increase | + | [72] | |
[E6] Rainfall decrease | % of HHs that did not perceive rainfall decrease | + | [72] | |
[E9] Cessation of rainfall | % of HHs that did not perceive early cessation of rainfall | + | [72] | |
[E10] Rainfall decrease | SD Ave. monthly precipitation (mm) (1983–2016) | + | [72] | |
Sensitivity | [S1] Crop failure | % of HHs reporting crop failure over the last 10 years | + | [9] |
[S2] Production reduction | % of HHs reporting crop production reduction in 10 years | + | [71] | |
[S3] Crop disease | Number of crop pests/diseases in 10 years | + | [8] | |
[S4] Livestock disease | Number of livestock diseases in 10 years | + | [8] | |
[S5] Human disease | Number of human diseases in 10 years | + | [8] | |
[S6] Local conflict | % of HHs reporting local conflicts in 10 years | + | [49] | |
[S7] Food crisis | Number of food crisis occurred in 10 years | + | [52] | |
[S8] Rainfed land | Size of rainfed agriculture land per household/Hectare | + | [60] | |
Adaptive Capacity | [A1] HH head | % of male-headed households | + | [73] |
[A2] Age | Age of the HH head (year) | − | [73] | |
[A3] Family size | Family size of the household | + | [73] | |
[A4] Residence length | Length of residence of the HH head (year) | + | [73] | |
[A5] Health | Ave. time to reach health institution (walking minutes) | − | [58] | |
[A6] Education | Ave. time to reach school (walking minutes) | − | [52] | |
[A7] Market | Ave. time to reach marketplace (walking minutes) | − | [9] | |
[A8] Transport | % HHs having access to transport services | + | [9] | |
[A9] Electricity | % HHs having access to electricity utility at home | + | [54] | |
[A10] Health insurance | % HHs having access to health insurance | + | [59] | |
[A11] Livestock | Livestock in Total Livestock Unit (TLU) | + | [73] | |
[A12] Land | Size of cultivated farmland (ha) | + | [73] | |
[A13] Assets | Monetary value of productive assets (Birr) | + | [49] | |
[A14] Credit access | % HHs reporting availability of credit access | + | [56] | |
[A15] Credit amount | Amount of accessed credit for productive works | + | [49] | |
[A16] Equipment | % of HHs having full agricultural equipment | + | [74] | |
[A17] Sprinkler | % of HHs having irrigation sprinkler | + | [75] | |
[A18] Water pumping | % of HHs having irrigation water pumping generator | + | [75] | |
[A19] WHT | % of HHs using water harvesting technologies | + | [75] | |
[A20] Chemical fertilizer | Amount of farm chemical fertilizers used (kg) | + | [76] | |
[A21] Organic fertilizer | Amount of farm organic fertilizers used (kg) | + | [76] | |
[A22] Pesticide/herbicide | Amount of farm pesticides/herbicides used (Liter) | + | [76] | |
[A23] Improved seed | Amount of farm improved seeds used (kg) | + | [76] | |
[A24] Crop variety | Crop diversity score | + | [54] | |
[A25] On-farm income | Annual on-farm income (Birr) | + | [56] | |
[A26] Non-farm income | Annual non-farm income (Birr) | + | [56] | |
[A27] Off-farm income | Annual off-farm income (Birr) | + | [56] | |
[A28] Saving | Amount of cash saved (Birr) | + | [59] | |
[A29] Additional work | % of HHs engaged in additional works besides farming | + | [54] | |
[A30] Irrigation water | % of HHs having access to irrigation water | + | [49] | |
[A31] Migrant labor | % of HHs working as a migrant labor | + | [58] | |
[A32] Food | Variety of food consumed in the HH per 24 h | + | [58] | |
[A33] Farmers association | % of HHs having membership of Farmers Association | + | [49] | |
[A34] WUA | % of HHs having membership of Water Users Association | + | [77] | |
[A35] Edir | Number of “edir” a household has | + | [49] | |
[A36] Trust WUA | % of HHs trusting Water Users Association | + | [77] | |
[A37] Market information | % of HHs having access to market information | + | [52] | |
[A38] Cell phone | Number of cellphones in the household | + | [78] |
Sub-Component (Indicators) | HL | ML | LL | Component | HL | ML | LL |
---|---|---|---|---|---|---|---|
PRCP | 0.249 | 0.227 | 0.242 | Climate change | |||
MINT | 0.443 | 0.636 | 0.629 | 0.376 | 0.439 | 0.436 | |
MAXT | 0.437 | 0.455 | 0.439 | ||||
DRM | 0.462 | 0.499 | 0.443 | Drought risk | |||
DRD | 0.625 | 0.785 | 0.800 | 0.609 | 0.461 | 0.610 | |
DRF | 0.739 | 0.438 | 0.588 | ||||
TI-HH | 0.111 | 0.262 | 0.312 | Climate perception | |||
HD-HH | 0.227 | 0.361 | 0.175 | 0.205 | 0.441 | 0.250 | |
RFD-HH | 0.318 | 0.425 | 0.231 | ||||
ECR-HH | 0.164 | 0.714 | 0.283 | ||||
Exposure | 0.396 | 0.447 | 0.432 |
Indicators | HL | ML | LL | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (N = 94) | 2 (N = 30) | 3 (N = 8) | Sub-Total (N = 132) | 1 (N = 63) | 2 (N = 51) | 3 (N = 18) | Sub-Total (N = 132) | 1 (N = 112) | 2 (N = 11) | 3 (N = 9) | Sub-Total (N = 132) | 1 (N = 269) | 2 (N = 92) | 3 (N = 35) | |
TI-HH | 8.4 | 10.3 | 0 | 8.3 | 18.8 | 28 | 44.5 | 25.8 | 35.8 | 0 | 11.1 | 30.3 | 22 | 18.3 | 25.7 |
HD-HH | 16.8 | 41.4 | 12.5 | 22 | 29.7 | 36 | 61.1 | 36.4 | 8.3 | 0 | 0 | 6.8 | 16.4 | 32.3 | 34.3 |
RFD-HH | 29.5 | 34.5 | 37.5 | 31.1 | 34.4 | 44 | 66.7 | 42.4 | 7.3 | 28.6 | 0 | 9.1 | 21.6 | 38.7 | 42.9 |
ECR-HH | 13.7 | 24.1 | 12.5 | 15.9 | 64.1 | 78 | 77.8 | 71.2 | 22.9 | 42.9 | 27.3 | 29.5 | 29.5 | 55.9 | 57.1 |
Sub-Component (Indicators) | HL | ML | LL | Component | HL | ML | LL |
---|---|---|---|---|---|---|---|
CFL-HH | 0.568 | 0.168 | 0.735 | Crop failure | 0.675 | 0.520 | 0.821 |
CPR-HH | 0.781 | 0.871 | 0.907 | ||||
NPD | 0.148 | 0.208 | 0.224 | Diseases | 0.133 | 0.176 | 0.216 |
NLD | 0.091 | 0.061 | 0.288 | ||||
NHD | 0.160 | 0.260 | 0.137 | ||||
LCF-HH | 0.106 | 0.136 | 0.144 | Crisis | 0.234 | 0.336 | 0.222 |
NFC | 0.113 | 0.370 | 0.154 | ||||
RFL | 0.482 | 0.502 | 0.367 | ||||
Sensitivity | 0.347 | 0.344 | 0.420 |
Indicators | HL | ML | LL | Total (N = 396) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (N = 94) | 2 (N = 30) | 3 (N = 8) | Sub-Total (N = 132) | 1 (N = 63) | 2 (N = 51) | 3 (N = 18) | Sub-Total (N = 132) | 1 (N = 112) | 2 (N = 11) | 3 (N = 9) | Sub-Total (N = 132) | 1 (N = 269) | 2 (N = 92) | 3 (N = 35) | |
CFL-HH | 51.6 | 24.1 | 12.5 | 43.2 | 93.8 | 94 | 88.9 | 93.2 | 30.3 | 7.1 | 11.1 | 26.5 | 53 | 59.1 | 51.4 |
CPR-HH | 78.6 | 76.7 | 65.6 | 73.6 | 93 | 89.5 | 86 | 89.5 | 90.6 | 69.7 | 72.2 | 77.4 | 86.9 | 82.5 | 77.8 |
NPD | 1.33 ± 1.6 | 2.21 ± 3.6 | 0.88 ± 1.3 | 1.49 ± 2.2 | 0.84 ± 1.9 | 0.7 ± 0.7 | 0.56 ± 0.7 | 0.75 ± 1.4 | 1.61 ± 0.9 | 1.79 ± 1 | 1.44 ± 0.5 | 1.62 ± 0.9 | 1.33 ± 1.4 | 1.33 ± 2.2 | 0.86 ± 0.9 |
NLD | 0.83 ± 1.2 | 0.48 ± 0.8 | 0.38 ± 0.7 | 0.73 ± 1.1 | 0.63 ± 1.3 | 0.72 ± 0.7 | 0.28 ± 0.4 | 0.61 ± 1 | 1.43 ± 0.9 | 1.57 ± 1 | 1.33 ± 0.5 | 1.44 ± 0.9 | 1.03 ± 1.1 | 0.77 ± 0.8 | 0.57 ± 0.6 |
NHD | 0.48 ± 0.6 | 0.59 ± 0.6 | 0.13 ± 0.3 | 0.48 ± 0.6 | 0.5 ± 0.5 | 0.66 ± 0.5 | 0.22 ± 0.4 | 0.52 ± 0.5 | 1.31 ± 0.9 | 1.93 ± 2.3 | 1.22 ± 0.4 | 1.37 ± 1.1 | 0.82 ± 0.8 | 0.83 ± 1.1 | 0.46 ± 0.6 |
LCF-HH | 21.9 | 33.3 | 50 | 27.5 | 18.8 | 66.7 | 50 | 35.3 | 59.4 | 0 | 0 | 37.3 | 11.9 | 16.1 | 11.4 |
NFC | 0.44 ± 0.6 | 0.52 ± 0.5 | 0.38 ± 0.5 | 0.45 ± 0.6 | 0.77 ± 0.4 | 0.78 ± 0.5 | 0.56 ± 0.5 | 0.74 ± 0.5 | 1.56 ± 1.4 | 1.5 ± 0.7 | 1.33 ± 0.5 | 1.54 ± 1.3 | 0.97 ± 1.1 | 0.81 ± 0.6 | 0.91 ± 1 |
RFL | 1.2 ± 1.1 | 0.62 ± 0.7 | 0.96 ± 1.6 | 1.1 ± 1.1 | 0.92 ± 0.8 | 1 ± 0.8 | 1.5 ± 1.1 | 1 ± 0.9 | 0.82 ± 0.8 | 0.47 ± 0.3 | 0.42 ± 0.3 | 0.75 ± 0.8 | 1 ± 0.9 | 0.82 ± 0.7 | 1.1 ± 1.2 |
Sub-Component (Indicators) | HL | ML | LL | Component | HL | ML | LL |
---|---|---|---|---|---|---|---|
M-HH | 0.803 | 0.833 | 0.909 | Sociodemographics | |||
Age HH | 0.641 | 0669 | 0.674 | 0.590 | 0.603 | 0.593 | |
FS-HH | 0.391 | 0.478 | 0.312 | ||||
LR-HH | 0.524 | 0.433 | 0.478 | ||||
D-HI | 0.211 | 0.374 | 0.242 | Access to Infrastructure | |||
D-Sc | 0.123 | 0.267 | 0.170 | 0.293 | 0.507 | 0.284 | |
D-MP | 0.117 | 0.401 | 0.202 | ||||
AT-HH | 0.939 | 0.879 | 0.992 | ||||
AE-HH | 0.280 | 0.652 | 0.100 | ||||
AHI-HH | 0.091 | 0.470 | 0.000 | ||||
TLU | 0.148 | 0.237 | 0.221 | Wealth | |||
Farmland | 0.182 | 0.240 | 0.176 | 0.252 | 0.293 | 0.212 | |
MV-PA | 0.122 | 0.156 | 0.188 | ||||
AC-HH | 0.515 | 0.258 | 0.068 | ||||
CA-HH | 0.029 | 0.032 | 0.021 | ||||
AFE-HH | 0.515 | 0.833 | 0.598 | ||||
EE-HH | 0.091 | 0.030 | 0.015 | Rural Technology | |||
PG-HH | 0.053 | 0.083 | 0.008 | ||||
WHT-HH | 0.409 | 0.045 | 0.152 | 0.126 | 0.091 | 0.119 | |
CF | 0.153 | 0.181 | 0.297 | ||||
OF | 0.090 | 0.212 | 0.260 | ||||
FPH | 0.047 | 0.012 | 0.093 | ||||
FIS | 0.040 | 0.073 | 0.012 | ||||
CDS | 0.525 | 0.576 | 0.402 | Livelihood Diversification | |||
ONFI | 0.127 | 0.164 | 0.118 | 0.229 | 0.278 | 0.175 | |
NFI | 0.078 | 0.163 | 0.075 | ||||
OFFI | 0.027 | 0.067 | 0.036 | ||||
ACS | 0.165 | 0.040 | 0.072 | ||||
AW-HH | 0.167 | 0.326 | 0.098 | ||||
IW-HH | 0.508 | 0.568 | 0.598 | ||||
ML-HH | 0.061 | 0.288 | 0.008 | ||||
VF-HH | 0.400 | 0.308 | 0.172 | ||||
FA-HH | 0.129 | 0.417 | 0.189 | Social Networks | |||
WUA-HH | 0.121 | 0.098 | 0.015 | 0.357 | 0.506 | 0.333 | |
NE-HH | 0.466 | 0.566 | 0.216 | ||||
TWUA-HH | 0.205 | 0.364 | 0.144 | ||||
MRI-HH | 0.932 | 0.773 | 0.758 | ||||
NCP-HH | 0.288 | 0.818 | 0.674 | ||||
Adaptive Capacity | 0.308 | 0.380 | 0.288 |
Indicators | HL | ML | LL | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (N = 94) | 2 (N = 30) | 3 (N = 8) | Sub-Total (N = 132) | 1 (N = 63) | 2 (N = 51) | 3 (N = 18) | Sub-Total (N = 132) | 1 (N = 112) | 2 (N = 11) | 3 (N = 9) | Sub-Total (N = 132) | 1 (N = 269) | 2 (N = 92) | 3 (N = 35) | |
M-HH | 82.1 | 75.9 | 75 | 80.3 | 73.4 | 90 | 100 | 83.3 | 91.7 | 92.9 | 77.8 | 90.9 | 84 | 86 | 88.8 |
Age HH | 42 ± 12 | 37 ± 11 | 48 ± 13 | 41 ± 12 | 41 ± 14 | 44 ± 13.1 | 42 ± 12 | 42 ± 13 | 39 ± 12 | 38 ± 7 | 35 ± 7 | 39 ± 11 | 40 ± 12 | 41 ± 12 | 42 ± 12 |
FS-HH | 3.8 ± 1.4 | 3.5 ± 1.5 | 3.9 ± 2 | 3.7 ± 1.6 | 3.7 ± 1.8 | 4.2 ± 1.7 | 3.9 ± 1.7 | 4.6 ± 1.7 | 5.9 ± 1.8 | 5 ± 1 | 4.8 ± 2 | 4 ± 1.8 | 4.2 ± 1.7 | 4.1 ± 1.7 | 4.1 ± 1.9 |
LR-HH | 40 ± 13 | 31 ± 12 | 48 ± 13 | 39 ± 13 | 39 ± 16 | 42 ± 15 | 38 ± 14 | 40 ± 15 | 38 ± 13 | 38 ± 7 | 35 ± 7 | 38 ± 13 | 39 ± 14 | 38 ± 14 | 40 ± 13 |
D-HI | 26 ± 19 | 23 ± 15 | 22 ± 8 | 25 ± 18 | 24 ± 27 | 48 ± 35 | 27 ± 28 | 34 ± 32 | 30 ± 20 | 27 ± 21 | 28 ± 16 | 30 ± 20 | 27 ± 22 | 37 ± 30 | 26 ± 21 |
D-Sc | 21 ± 23 | 22 ± 12 | 36 ± 13 | 22 ± 21 | 15 ± 9 | 17 ± 14 | 18 ± 14 | 16 ± 12 | 21 ± 15 | 22 ± 10 | 21 ± 7 | 21 ± 14 | 19 ± 18 | 19 ± 13 | 23 ± 14 |
D-MP | 26 ± 23 | 23 ± 12 | 26 ± 12 | 25 ± 20 | 39 ± 30 | 40 ± 32 | 15 ± 13 | 36 ± 30 | 37 ± 25 | 33 ± 13 | 35 ± 7 | 36 ± 10 | 33 ± 23 | 34 ± 26 | 23 ± 26 |
AT-HH | 100 | 100 | 100 | 100 | 92.2 | 90 | 66.7 | 87.9 | 99.1 | 100 | 100 | 99.2 | 97.8 | 94.6 | 82.9 |
AE-HH | 29.5 | 27 | 12.5 | 28 | 70.3 | 64 | 50 | 65.2 | 9.2 | 14.3 | 11.1 | 9.8 | 31 | 45 | 31.4 |
AHI-HH | 8.4 | 13.8 | 0 | 9.1 | 42.2 | 48 | 61.1 | 47 | 0 | 0 | 0 | 0 | 13.1. | 30.1 | 31.4 |
TLU | 6.3 ± 6 | 6 ± 9 | 12.8 ± 8 | 6.6 ± 7 | 2.9 ± 3 | 3 ± 2 | 5.3 ± 4 | 3.3 ± 3 | 11.3 ± 11 | 16.6 ± 16 | 14.8 ± 14 | 12 ± 12 | 7.5 ± 7 | 6 ± 9 | 9.5 ± 9 |
Farmland | 1.3 ± 1 | 0.9 ± 0.8 | 1.4 ± 2.1 | 1.2 ± 1.1 | 1 ± 1.2 | 1.3 ± 0.9 | 2.4 ± 1.9 | 1.3 ± 1.3 | 1.2 ± 1 | 0.7 ± 0.3 | 0.8 ± 1 | 1.1 ± 1 | 1.2 ± 1 | 1 ± 0.8 | 1.8 ± 1.9 |
MV-PA | 1289 ± 1284 | 927 ± 667 | 1007 ± 709 | 1193 ± 1153 | 2824 ± 3112 | 3148 ± 2984 | 4831 ± 3666 | 3220 ± 3189 | 1248 ± 982 | 1997 ± 1681 | 1729 ± 1418 | 1360 ± 1123 | 1639 ± 1923 | 2282 ± 2505 | 3159 ± 3226 |
AC-HH | 43.2 | 69 | 87.5 | 51.5 | 17.2 | 28 | 50 | 25.8 | 4.6 | 14.3 | 22.2 | 6.8 | 21.3 | 38.7 | 51.4 |
CA-HH | 3415 ± 12,696 | 3472 ± 6266 | 4043 ± 5204 | 3465 ± 11,204 | 721 ± 2734 | 1052 ± 2598 | 3972 ± 9709 | 1289 ± 4418 | 155 ± 1039 | 357 ± 907 | 2222 ± 5068 | 318 ± 1677 | 1446 ± 7819 | 1702 ± 4141 | 3538 ± 7705 |
AFE-HH | 52.6 | 44.8 | 62.5 | 51.5 | 82.8 | 88 | 72.2 | 83.3 | 60.6 | 64.3 | 44.4 | 59.8 | 63.1 | 71 | 62.9 |
EE-HH | 9.5 | 0 | 0 | 6.8 | 3.1 | 0 | 5.6 | 2.3 | 1.8 | 0 | 0 | 1.5 | 4.9 | 0 | 2.9 |
PG-HH | 5.3 | 3.4 | 12.5 | 5.3 | 6.3 | 4 | 27.8 | 8.3 | 1 | 0 | 0 | 1 | 3.7 | 3.2 | 17.1 |
WHT-HH | 33.7 | 58.6 | 62.5 | 40.9 | 6.3 | 0 | 11.1 | 4.5 | 7.3 | 50 | 55.6 | 15.2 | 16.4 | 25.8 | 34.3 |
CF | 146 ± 124 | 98 ± 49 | 173 ± 191 | 137 ± 118 | 405 ± 356 | 567 ± 594 | 1097 ± 639 | 561 ± 545 | 81 ± 89 | 136 ± 80 | 102 ± 88 | 88 ± 89 | 182 ± 234 | 356 ± 492 | 630 ± 672 |
OF | 54 ± 121 | 39 ± 97 | 93 ± 174 | 54 ± 119 | 47 ± 68 | 45 ± 57 | 15 ± 32 | 42 ± 61 | 31 ± 164 | 2.5 ± 5 | 1.5 ± 4 | 25 ± 150 | 43 ± 131 | 37 ± 70 | 29 ± 89 |
FPH | 31 ± 78 | 19 ± 38 | 19 ± 23 | 28 ± 68 | 2.5 ± 2 | 3.5 ± 3 | 45 ± 163 | 8.5 ± 60 | 1.5 ± 3.5 | 6 ± 6 | 1.5 ± 3 | 2 ± 4 | 12 ± 48 | 9 ± 22 | 28 ± 117 |
FIS | 20 ± 56 | 14 ± 23 | 40 ± 56 | 20 ± 51 | 17 ± 40 | 16 ± 29 | 3 ± 11 | 14 ± 34 | 2 ± 5 | 6 ± 6 | 3 ± 5 | 2 ± 5 | 12 ± 40 | 14 ± 25 | 11 ± 31 |
CDS | 3.06 ± 1 | 3.07 ± 1 | 3.63 ± 1 | 3.10 ± 1 | 2.49 ± 1 | 3.12 ± 1 | 3.56 ± 1 | 2.88 ± 11 | 1.89 ± 1 | 2.73 ± | 2.56 ± 1 | 2.01 ± 1 | 2.44 ± 1 | 3.05 ± 1 | 3.31 ± 1 |
ONFI | 7826 ± 10156 | 6998 ± 5280 | 7737 ± 5647 | 7639 ± 9044 | 18,035 ± 15,658 | 20,750 ± 25,329 | 16,172 ± 21,103 | 18,809 ± 20,454 | 15,907 ± 20,032 | 24,075 ± 24,560 | 29,555 ± 47,796 | 17,704 ± 23,386 | 13,551 ± 16,590 | 16,962 ± 21,959 | 17,685 ± 28,785 |
NFI | 2710 ± 5808 | 7236 ± 6766 | 31,593 ± 23,694 | 5455 ± 10,577 | 7528 ± 13,679 | 11,294 ± 16,709 | 25,627 ± 24,843 | 11,422 ± 17,597 | 1638 ± 7776 | 13,135 ± 14,788 | 20,444 ± 20,845 | 4140 ± 11,410 | 3424 ± 9274 | 10,306 ± 14,080 | 25,658 ± 23,279 |
OFFI | 555 ± 3432 | 2103 ± 4558 | 5950 ± 16,036 | 1222 ± 5338 | 1425 ± 3311 | 2842 ± 5965 | 10,255 ± 13,468 | 3165 ± 7109 | 308 ± 1643 | 4035 ± 6368 | 11,888 ± 18,428 | 1493 ± 6022 | 662 ± 2832 | 2791 ± 5603 | 9691 ± 15,109 |
ACS | 6593 ± 7980 | 7686 ± 7573 | 16,357 ± 13,191 | 7425 ± 8523 | 5184 ± 7970 | 6869 ± 21,699 | 6083 ± 9229 | 5945 ± 14,776 | 4957 ± 14,305 | 17,690 ± 22,007 | 17,444 ± 22,051 | 7159 ± 16,420 | 5591 ± 10,988 | 8753 ± 18,738 | 11,353 ± 14,941 |
AW-HH | 11.6 | 31 | 25 | 16.7 | 23.4 | 36 | 55.6 | 32.6 | 4.6 | 35.7 | 33.3 | 9.8 | 11.6 | 34.4 | 42.9 |
IW-HH | 48.4 | 55.2 | 62.5 | 50.8 | 53.1 | 56 | 72.2 | 56.8 | 58.7 | 71.4 | 55.6 | 59.8 | 53.7 | 58.1 | 65.7 |
ML-HH | 6.3 | 3.4 | 12.5 | 6.1 | 28.1 | 38 | 5.6 | 28.8 | 11.9 | 21.4 | 33.3 | 14.4 | 13.8 | 24.7 | 14.3 |
VF-HH | 2.61 ± 0.8 | 2.5 ± 0.6 | 2.75 ± 0.8 | 2.6 ± 0.8 | 2.58 ± 0.8 | 2.52 ± 0.7 | 2.44 ± 0.9 | 2.54 ± 0.8 | 1.97 ± 1 | 1.29 ± 0.4 | 1.44 ± 0.7 | 1.86 ± 0.9 | 2.34 ± 0.9 | 2.33 ± 0.7 | 2.26 ± 0.9 |
FA-HH | 11.6 | 13.8 | 25 | 12.9 | 43.8 | 48 | 16.7 | 41.7 | 20.2 | 14.3 | 11.1 | 18.9 | 22.8 | 32.3 | 17.1 |
WUA-HH | 11.6 | 10.3 | 25 | 12.1 | 9.4 | 12 | 5.6 | 9.8 | 2 | 0 | 0 | 1.5 | 7.1 | 9.7 | 8.6 |
NE-HH | 2.3 ± 1 | 2.2 ± 0.7 | 2.25 ± 0.4 | 2.3 ± 0.9 | 2.7 ± 1 | 3 ± 1 | 2.8 ± 1 | 2.8 ± 1 | 1 ± 0.8 | 1 ± 1 | 1 ± 1.5 | 1 ± 0.9 | 1.9 ± 1 | 2.5 ± 1 | 2.2 ± 1 |
TWUA-HH | 17.9 | 27.6 | 25 | 20.5 | 29.7 | 42 | 44.4 | 36.4 | 16.5 | 7.1 | 0 | 14.4 | 20.1 | 32.3 | 28.6 |
MRI-HH | 95.8 | 89.7 | 75 | 93.2 | 87.5 | 70 | 61.1 | 77.3 | 77.1 | 64.3 | 77.8 | 75.8 | 86.2 | 77.3 | 68.6 |
NCP-HH | 0.4 ± 0.7 | 0.3 ± 0.7 | 0.1 ± 0.3 | 0.3 ± 0.7 | 1.4 ± 1 | 1.7 ± 1 | 1.5 ± 1 | 1.5 ± 1 | 0.7 ± 0.6 | 0.9 ± 0.4 | 1.7 ± 1.3 | 0.8 ± 0.7 | 0.8 ± 0.9 | 1.1 ± 1 | 1.2 ± 1.3 |
Component | HL | ML | LL | Component | HL | ML | LL |
---|---|---|---|---|---|---|---|
Climate change | 0.590 | 0.603 | 0.593 | Exposure | |||
Drought Risk | 0.609 | 0.461 | 0.610 | 0.396 | 0.447 | 0.432 | |
Climate perception | 0.205 | 0.441 | 0.250 | ||||
Crop failure | 0.675 | 0.520 | 0.821 | Sensitivity | |||
Disease | 0.133 | 0.176 | 0.216 | 0.347 | 0.344 | 0.420 | |
Crisis | 0.234 | 0.336 | 0.222 | ||||
Sociodemographics | 0.590 | 0.603 | 0.593 | Adaptive capacity | |||
Access to infrastructure | 0.293 | 0.507 | 0.284 | ||||
Wealth | 0.252 | 0.293 | 0.212 | 0.308 | 0.380 | 0.288 | |
Rural technology | 0.126 | 0.091 | 0.119 | ||||
Livelihood diversification | 0.229 | 0.278 | 0.175 | ||||
Social networks | 0.357 | 0.506 | 0.333 | ||||
Overall DVI | 0.350 | 0.390 | 0.380 | ||||
DVI = Sensitivity × (Exposure − Adaptive capacity) | −3.045 | −4.257 | −1.956 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maru, H.; Haileslassie, A.; Zeleke, T.; Esayas, B. Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia. Sustainability 2021, 13, 9764. https://doi.org/10.3390/su13179764
Maru H, Haileslassie A, Zeleke T, Esayas B. Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia. Sustainability. 2021; 13(17):9764. https://doi.org/10.3390/su13179764
Chicago/Turabian StyleMaru, Husen, Amare Haileslassie, Tesfaye Zeleke, and Befikadu Esayas. 2021. "Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia" Sustainability 13, no. 17: 9764. https://doi.org/10.3390/su13179764
APA StyleMaru, H., Haileslassie, A., Zeleke, T., & Esayas, B. (2021). Analysis of Smallholders’ Livelihood Vulnerability to Drought across Agroecology and Farm Typology in the Upper Awash Sub-Basin, Ethiopia. Sustainability, 13(17), 9764. https://doi.org/10.3390/su13179764