A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat
Abstract
:1. Introduction
2. Surplus Heat in Industry
2.1. Low Temperature Surplus Heat Availability in Industry
2.2. Alternatives for Industrial Surplus Heat Utilization
- Miljøgartneriet greenhouse in Nærbø (Southern Norway), which uses surplus CO2 and warm wastewater from a nearby dairy plant [42],
- Tjeldbergodden Bioparken (Central Norway), in which the surplus heat in the cooling water from a methanol plant is used in post-smolt and lumpfish farming [47].
- Eramet Kvinesdal (Southern Norway) for the production of turbot utilizing surplus heat from the production of silicomanganese by Stolt Sea Farm [48].
- Reykjanes Resource Park (Southwest Iceland) for the production of Senegalese sole with surplus heat from the cooling water of a geothermal power plant by Stolt Sea Farm [49].
3. Identification of Agricluster Components and Surplus Heat Utilization Possibilities
3.1. Greenhouse Production
3.2. Fish Production
- require a high rearing temperature for utilizing the majority of the surplus heat,
- can obtain a premium price due to higher investments in land-based aquaculture, and
- have a market in Europe but are currently produced outside Europe due to the high temperature required for rearing.
- flow through aquaculture and
- recirculating aquaculture systems (RAS).
3.3. Seaweed Drying
3.4. Insect Farming
4. Synergies between Agricluster Components
4.1. Biomass Waste for Insect Rearing
4.2. Seaweed and Insects for Fish Feed Production
4.3. Aquaponics for Combined Greenhouse and Fish Growing
5. Improved Utilization of Surplus Thermal Energy in an Integrated Agricluster
- The integration of the individual processes leads to an improved utilization of the available resources by considering the waste of one process as the resource for another.
- Integrating the individual processes into a single agricluster allows a reduction in transport costs and emissions as less input to the system is required. This is specifically relevant for substitution of emission-intensive feedstock such as soy-based fish feed or fishmeal.
- Exploiting synergies, nutrient cycling, as well as mass and energy integration can lead to an efficient utilization of by-products and waste reduction, enabling the reduction of the environmental and climate footprint of the food production system.
- The majority of the considered food production processes require more heat in the winter than in the summer, as the heat is utilized for space or water heating. As an exception, seaweed drying, which is highly energy intensive, requires heat in the summer due to the harvest season and may balance the overall energy demand.
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAP | Common Agricultural Policy |
CHP | combined heat and power |
EAFRD | European Agricultural Fund for Rural Development |
GHG | greenhouse gas |
IMTA | integrated multitrophic aquaculture |
PCM | phase change materials |
RAS | recirculating aquaculture system |
References
- European Commission. A European Green Deal; European Commission: Brussels, Belgium, 2019.
- EU. Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union 2018, L 328, 210–230. [Google Scholar]
- European Commission. Circular Economy Action Plan; European Commission: Brussels, Belgium, 2020.
- Muscio, A.; Sisto, R. Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy. Sustainability 2020, 12, 5554. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020.
- Fu, C.; Anantharaman, R.; Jordal, K.; Gundersen, T. Thermal efficiency of coal-fired power plants: From theoretical to practical assessments. Energy Convers. Manag. 2015, 105, 530–544. [Google Scholar] [CrossRef] [Green Version]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Kullmann, F.; Markewitz, P.; Stolten, D.; Robinius, M. Combining the worlds of energy systems and material flow analysis: A review. Energy Sustain. Soc. 2021, 11, 13. [Google Scholar] [CrossRef]
- Edwards, C.A. The importance of integration in sustainable agricultural systems. Agric. Ecosyst. Environ. 1989, 27, 25–35. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Woolley, E.; Luo, Y.; Simeone, A. Industrial waste heat recovery: A systematic approach. Sustain. Energy Technol. Assess. 2018, 29, 50–59. [Google Scholar] [CrossRef]
- Ammar, Y.; Joyce, S.; Norman, R.; Wang, Y.; Roskilly, A.P. Low grade thermal energy sources and uses from the process industry in the UK. Appl. Energy 2012, 89, 3–20. [Google Scholar] [CrossRef]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Johnson, I.; Choate, W.T.; Davidson, A. Waste Heat Recovery. Technology and Opportunities in U.S. Industry; Technical Report; EERE Publication and Product Library: Laurel, MD, USA, 2008. [CrossRef]
- Sollesnes, G.; Helgerud, H. Potensialstudie for Utnyttelse av Spillvarme fra Norsk Industri [Study of the Potential for Utilization of Surplus Heat from Norwegian Industry]; Technical Report; ENOVA: Oslo, Norway, 2009. [Google Scholar]
- Grip, C.E. Steel and sustainability: Scandinavian perspective. Ironmak. Steelmak. 2005, 32, 235–241. [Google Scholar] [CrossRef]
- Regjeringen (Norwegian Government). Business and Industry in Norway—The Metals Industry; Regjeringen (Norwegian Government): Oslo, Norway, 2001.
- Norsk Industri. Om Aluminiumsbransjen [About the Aluminum Industry]; Norsk Industri: Oslo, Norway, 2021. [Google Scholar]
- Cullen, J.M.; Allwood, J.M. Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods. Environ. Sci. Technol. 2013, 47, 3057–3064. [Google Scholar] [CrossRef] [Green Version]
- Saevarsdottir, G.; Kvande, H.; Welch, B.J. Aluminum Production in the Times of Climate Change: The Global Challenge to Reduce the Carbon Footprint and Prevent Carbon Leakage. JOM 2020, 72, 296–308. [Google Scholar] [CrossRef]
- Nowicki, C.; Gosselin, L. An overview of opportunities for waste heat recovery and thermal integration in the primary aluminum industry. JOM 2012, 64, 990–996. [Google Scholar] [CrossRef]
- Bouhabila, E.; Næss, E.; Einejord, V.; Kristjansson, K. An innovative compact heat exchanger solution for aluminium off-gas cooling and heat recovery. In TMS Light Metals; Springer: Cham, Switzerland, 2013; pp. 793–797. [Google Scholar]
- De Gromard, A.; Lim, C.; Bouhabila, E.; Cloutier, B.; Frainais, M. Development on electrolytic cell gas cooling. In TMS Light Metals; Springer: Berlin/Heidelberg, Germany, 2014; pp. 623–628. [Google Scholar]
- Verbraak, P.; Turco, T.; Klut, P.; Dupon, E.; Engel, E. Pot gas cooling technologies. In TMS Light Metals; The Minerals, Metals & Materials Society (TMS) Light Metals, Light Metals Digital Library: Pittsburgh, PA, USA, 2014; pp. 635–639. [Google Scholar]
- Sørhuus, A.; Wedde, G.; Rye, K.; Nyland, G. Increased energy efficiency and reduced HF emissions with new heat exchanger. In TMS Light Metals; The Minerals, Metals & Materials Society (TMS) Light Metals, Light Metals Digital Library: Pittsburgh, PA, USA, 2010; pp. 249–254. [Google Scholar]
- Al Qassab, H.; Mohd, S.; Wedde, G.; Sørhuus, A. Hex retrofit enables smelter capacity expansion. In TMS Light Metals; The Minerals, Metals & Materials Society (TMS) Light Metals, Light Metals Digital Library: Pittsburgh, PA, USA, 2012; pp. 815–820. [Google Scholar]
- Sørhuus, A.; Ose, S.; Nilsen, B. Possible use of 25 MW thermal energy recovered from the potgas at Alba line 4. In TMS Light Metals; Springer: Berlin/Heidelberg, Germany, 2015; pp. 631–636. [Google Scholar]
- Cascella, F.; Gaboury, S.; Sorin, M.; Teyssedou, A. Proof of concept to recover thermal wastes from aluminum electrolysis cells using Stirling engines. Energy Convers. Manag. 2018, 172, 497–506. [Google Scholar] [CrossRef]
- Barzi, Y.M.; Assadi, M.; Parham, K. A waste heat recovery system development and analysis using ORC for the energy efficiency improvement in aluminium electrolysis cells. Int. J. Energy Res. 2018, 42, 1511–1523. [Google Scholar] [CrossRef]
- Law, R.; Harvey, A.; Reay, D. Opportunities for low-grade heat recovery in the UK food processing industry. Appl. Therm. Eng. 2013, 53, 188–196. [Google Scholar] [CrossRef]
- Oluleye, G.; Jobson, M.; Smith, R. A hierarchical approach for evaluating and selecting waste heat utilization opportunities. Energy 2015, 90, 5–23. [Google Scholar] [CrossRef]
- Oluleye, G.; Jiang, N.; Smith, R.; Jobson, M. A novel screening framework for waste heat utilization technologies. Energy 2017, 125, 367–381. [Google Scholar] [CrossRef]
- Kavvadias, K.C.; Quoilin, S. Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment. Appl. Energy 2018, 216, 452–465. [Google Scholar] [CrossRef]
- Fang, H.; Xia, J.; Zhu, K.; Su, Y.; Jiang, Y. Industrial waste heat utilization for low temperature district heating. Energy Policy 2013, 62, 236–246. [Google Scholar] [CrossRef]
- Fitó, J.; Ramousse, J.; Hodencq, S.; Wurtz, F. Energy, exergy, economic and exergoeconomic (4E) multicriteria analysis of an industrial waste heat valorization system through district heating. Sustain. Energy Technol. Assess. 2020, 42, 100894. [Google Scholar] [CrossRef]
- Naturårdsverket. Goda möjligheter Med Spillvärme—En Utvärdering av LIP-Finansierade Spillvärmeprojekt; Technical Report; Naturvårdsverket: Stockholm, Sweden, 2005.
- SSB (Statistics Norway). Karmøy, Rogaland, Befolkning (Population of Karmøy, Rogaland). Available online: www.ssb.no/kommunefakta/karmoy (accessed on 27 August 2021).
- SSB (Statistics Norway). Sunndal, Møre og Romsdal, Befolkning (Population of Sunndal, Møre og Romsdal). Available online: www.ssb.no/kommunefakta/sunndal (accessed on 27 August 2021).
- Lauterbach, C.; Schmitt, B.; Jordan, U.; Vajen, K. The potential of solar heat for industrial processes in Germany. Renew. Sustain. Energy Rev. 2012, 16, 5121–5130. [Google Scholar] [CrossRef]
- Saha, B.K.; Chakraborty, B.; Dutta, R. Estimation of waste heat and its recovery potential from energy-intensive industries. Clean Technol. Environ. Policy 2020, 22, 1795–1814. [Google Scholar] [CrossRef]
- Gerres, T.; Chaves Ávila, J.P.; Llamas, P.L.; San Román, T.G. A review of cross-sector decarbonisation potentials in the European energy intensive industry. J. Clean. Prod. 2019, 210, 585–601. [Google Scholar] [CrossRef]
- Miljøgartneriet AS. Available online: https://miljogartneriet.no/hjem (accessed on 15 April 2021).
- Industrial Symbiosis Grows Tomatoes. Available online: http://advantage-environment.com/food/industrial-symbiosis-grows-tomatoes/ (accessed on 24 November 2020).
- Elleholms Tomatodling AB. Miljö (Environment). Available online: www.elleholmstomater.se/miljo/ (accessed on 15 April 2021).
- Pettersen, T.R.; Dæhlin, E.; Eidem, P.A.; Berglihn, O.T. Investigating the Potential for Increased Energy Utilisation and Reduced CO2 Emissions at Mo Industrial Park. Energies 2020, 13, 4627. [Google Scholar] [CrossRef]
- Mo Industripark AS. Bedrifter i Mo Industripark. Available online: https://www.mip.no/mo-industripark/bedrifter-i-mo-industripark (accessed on 15 April 2021).
- Tjeldbergodden Utvikling AS (TBU). Bioparken. Available online: https://www.tbu.no/en/bioparken/ (accessed on 15 April 2021).
- Eramet Norway. Eramet Norway Kvinesdal. Available online: https://eramet.no/var-virksomhet/kvinesdal/ (accessed on 15 April 2021).
- HS Orka. Resource Park. Available online: www.resourcepark.is/companies/ (accessed on 15 April 2021).
- Barbier, M.; Araújo, R.; Rebours, C.; Jacquemin, B.; Holdt, S.L.; Charrier, B. Development and objectives of the PHYCOMORPH European Guidelines for the Sustainable Aquaculture of Seaweeds (PEGASUS). Bot. Mar. 2020, 63, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Lupton, D.; Turner, B. Food of the Future? Consumer Responses to the Idea of 3D-Printed Meat and Insect-Based Foods. Food Foodways 2018, 26, 269–289. [Google Scholar] [CrossRef]
- FAO. Tomato. Available online: www.fao.org/land-water/databases-and-software/crop-information/tomato/en/ (accessed on 9 September 2019).
- Verheul, M.J.; Maessen, H.; Grimstad, S. Optimizing a Year-Round Cultivation System of Tomato Under Artificial Light; KU Leuven: Leuven, Belgium, 2012; pp. 389–394. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Dyck, M.; Wang, J.; Zou, X. Yields and Nutritional of Greenhouse Tomato in Response to Different Soil Aeration Volume at two depths of Subsurface drip irrigation. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Bævre, O.A.; Bø, L.Ø.; Jelsa, R.; Randeberg, E.; Verheul, M. Energi til Norsk Veksthusnæring-Bruk av Naturgass som Energibærer og CO2-Kilde; Bioforsk Vest: Ås, Norway, 2006. [Google Scholar]
- Shen, Y.; Wei, R.; Xu, L. Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature. Energies 2018, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Boulard, T.; Raeppel, C.; Brun, R.; Lecompte, F.; Hayer, F.; Carmassi, G.; Gaillard, G. Environmental impact of greenhouse tomato production in France. Agron. Sustain. Dev. 2011, 31, 757–777. [Google Scholar] [CrossRef] [Green Version]
- SSB. Increased Vegetable Production. 2017. Available online: www.ssb.no/en/jord-skog-jakt-og-fiskeri/artikler-og-publikasjoner/increased-vegetable-production (accessed on 9 September 2019).
- Landbruksdirektoratet. Markedsrapport 2018. Vurdering av Markedene for Norske Landbruksvarer; Technical Report; Landbruksdirektoratet Avdeling Handel og Industri: Oslo, Norway, 2019. [Google Scholar]
- OFG. Totaloversikten 2018-Opplysningskontoret for Frukt og Grønt; Technical Report; Opplysningskontoret for Frukt og Grønt: Langhus, Norway, 2019. [Google Scholar]
- Åsbø, B. Import tomater 2018. Available online: https://www.grontprodusentene.no/statistikk/2018 (accessed on 27 August 2021).
- Ridder, M. Annual Volume of Tomatoes Imported into Norway from 2010 to 2018. Available online: https://www.statista.com/statistics/646301/annual-import-volume-of-tomatoes-into-norway (accessed on 27 August 2021).
- Løvdal, T.; Van Droogenbroeck, B.; Eroglu, E.C.; Kaniszewski, S.; Agati, G.; Verheul, M.; Skipnes, D. Valorization of Tomato Surplus and Waste Fractions: A Case Study Using Norway, Belgium, Poland, and Turkey as Examples. Foods 2019, 8, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kvitvær, A.; Verheul, M.; Leeuwen, G. Muligheter til Dyrking av Eksotiske Veksthusgrønnsaker i Norge; Technical Report; NIBIO: Særheim, Norway, 2017. [Google Scholar]
- De León-Sifuentes, W.E. Evaluación Ambiental de la Producción de Tomate Bajo Condiciones Protegidas en las Palmas de Gran Canaria, España, Mediante la Utilización de la Metodología del Análisis del ciclo de Vida (ACV). Ph.D. Thesis, Universidad Autónoma de Barcelona, Barcelona, Spain, 2009. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación (MAPA, Ministry of Agriculture, Fisheries and Food). Encuesta sobre Superficies y Rendimientos Cultivos (ESYRCE); Resumen de resultados España y Comunidades Autónomas MAPA: Madrid, Spain, 2018. [Google Scholar]
- Heuvelink, E. (Ed.) Tomatoes; Volume 27 of Agriculture Series Crop Production Science in Horticulture, 2nd ed.; CABI: Wallingford, UK, 2018; Volume 27. [Google Scholar]
- Peet, M.; Welles, G.H. Greenhouse tomato production. In Tomatoes (Crop Production Science in Horticulture); Heuvelink, E., Ed.; Wageningen University: Wageningen, The Netherlands, 2005. [Google Scholar]
- Orozco, L.; Rico-Romero, L.; Escartín, E.F. Microbiological Profile of Greenhouses in a Farm Producing Hydroponic Tomatoes. J. Food Prot. 2008, 71, 60–65. [Google Scholar] [CrossRef]
- Pérez Neira, D.; Soler Montiel, M.; Delgado Cabeza, M.; Reigada, A. Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Sci. Total Environ. 2018, 628–629, 1627–1636. [Google Scholar] [CrossRef]
- Hille, J.; Solli, C.; Refsgaard, K.; Krokann, K.; Berglann, H. Environmental and Climate Analysis for the Norwegian Agriculture and Food Sector and Assessment of Actions; Norwegian Agricultural Economics Research Institute: Bergen, Norway, 2012. [Google Scholar]
- Bosona, T.; Gebresenbet, G. Life cycle analysis of organic tomato production and supply in Sweden. J. Clean. Prod. 2018, 196, 635–643. [Google Scholar] [CrossRef]
- Theurl, M.C.; Haberl, H.; Erb, K.H.; Lindenthal, T. Contrasted greenhouse gas emissions from local versus long-range tomato production. Agron. Sustain. Dev. 2014, 34, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Verheul, M.J.; Thorsen, S.M. Klimagassregnskap for Norske Veksthusprodukter; Bioforsk: Særheim, Norway, 2010. [Google Scholar]
- Karlsson, H. Seasonal Vegetables: An Environmental Assessment of Seasonal Food. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2012. [Google Scholar]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.Y.; van Zelm, R.; Benítez-López, A.; Kulak, M.; Sim, S.; King, J.M.H.; Huijbregts, M.A.J. Variability of Greenhouse Gas Footprints of Field Tomatoes Grown for Processing: Interyear and Intercountry Assessment. Environ. Sci. Technol. 2018, 52, 135–144. [Google Scholar] [CrossRef]
- González, A.D.; Frostell, B.; Carlsson-Kanyama, A. Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation. Food Policy 2011, 36, 562–570. [Google Scholar] [CrossRef]
- Andrews, R.; Pearce, J. Environmental and economic assessment of a greenhouse waste heat exchange. J. Clean. Prod. 2011, 19, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Skjervold, V. Status on Surplus Heat Database 2017. Available online: https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2670510/D4.2_2017.01+surplus+heat+database+status.pdf?sequence=1 (accessed on 27 August 2021).
- MET (Norwegian Meteorological Institute) Norway. eKlima. Available online: eklima.met.no (accessed on 27 August 2021).
- Mujumdar, A. Principles, classification and selection of dryers. In Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Atuonwu, J.C.; Jin, X.; van Straten, G.; van Deventer Antonius, H.C.; van Boxtel, J. Reducing energy consumption in food drying: Opportunities in desiccant adsorption and other dehumidification strategies. Procedia Food Sci. 2011, 1, 1799–1805. [Google Scholar] [CrossRef] [Green Version]
- Khazaei, J.; Chegini, G.R.; Bakhshiani, M. A Novel Alternative Method for Modeling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices: Superposition Technique. Dry. Technol. 2008, 26, 759–775. [Google Scholar] [CrossRef]
- Reinoso Moreno, J.; Pinna-Hernández, G.; Fernández Fernández, M.; Sánchez Molina, J.; Rodríguez Díaz, F.; López Hernández, J.; Acién Fernández, F. Optimal processing of greenhouse crop residues to use as energy and CO2 sources. Ind. Crop. Prod. 2019, 137, 662–671. [Google Scholar] [CrossRef]
- Jayathunge, K.G.L.R.; Stratakos, A.C.; Delgado-Pando, G.; Koidis, A. Thermal and non-thermal processing technologies on intrinsic and extrinsic quality factors of tomato products: A review. J. Food Process. Preserv. 2019, 43, e13901. [Google Scholar] [CrossRef] [Green Version]
- Kips, L.; De Paepe, D.; Van Meulebroek, L.; Van Poucke, C.; Larbat, R.; Bernaert, N.; Van Pamel, E.; De Loose, M.; Raes, K.; Van Droogenbroeck, B. A novel spiral-filter press for tomato processing: Process impact on phenolic compounds, carotenoids and ascorbic acid content. J. Food Eng. 2017, 213, 27–37. [Google Scholar] [CrossRef]
- Goodman, C.; Fawcett, S.; Barringer, S. Flavor, Viscosity, and Color Analyses of Hot and Cold Break Tomato Juices. J. Food Sci. 2002, 67, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Ayer, N.W.; Tyedmers, P.H. Assessing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- Løland, A.; Aldrin, M.; Steinbakk, G.H.; Huseby, R.B.; Grøttum, J.A.; Quinn, T.J. Prediction of biomass in Norwegian fish farms. Can. J. Fish. Aquat. Sci. 2011, 68, 1420–1434. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.F.M.; Kawanna, M. Optimum water temperature boosts the growth performance of Nile tilapia (Oreochromis niloticus) fry reared in a recycling system. Aquac. Res. 2008, 39, 670–672. [Google Scholar] [CrossRef]
- Badiola, M.; Basurko, O.; Gabiña, G.; Mendiola, D. Integration of energy audits in the Life Cycle Assessment methodology to improve the environmental performance assessment of Recirculating Aquaculture Systems. J. Clean. Prod. 2017, 157, 155–166. [Google Scholar] [CrossRef]
- Espinal, C.A.; Matulić, D. Recirculating Aquaculture Technologies. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 35–76. [Google Scholar] [CrossRef] [Green Version]
- Badiola, M.; Basurko, O.; Piedrahita, R.; Hundley, P.; Mendiola, D. Energy use in Recirculating Aquaculture Systems (RAS): A review. Aquac. Eng. 2018, 81, 57–70. [Google Scholar] [CrossRef]
- Liu, Y.; Rosten, T.W.; Henriksen, K.; Hognes, E.S.; Summerfelt, S.; Vinci, B. Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquac. Eng. 2016, 71, 1–12. [Google Scholar] [CrossRef] [Green Version]
- D’Orbcastel, E.R.; Blancheton, J.P.; Aubin, J. Towards environmentally sustainable aquaculture: Comparison between two trout farming systems using Life Cycle Assessment. Aquac. Eng. 2009, 40, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Stévant, P.; Rebours, C.; Chapman, A. Seaweed aquaculture in Norway: Recent industrial developments and future perspectives. Aquac. Int. 2017, 25, 1373–1390. [Google Scholar] [CrossRef] [Green Version]
- Titlyanov, E.A.; Titlyanova, T.V. Seaweed cultivation: Methods and problems. Russ. J. Mar. Biol. 2010, 36, 227–242. [Google Scholar] [CrossRef]
- Andersen, M. Opportunities and Risks of Seaweed Biofuels in Aviation; Technical Report; The Bellona Foundation: Oslo, Norway, 2017. [Google Scholar]
- Djaeni, M.; Sari, D.A. Low Temperature Seaweed Drying Using Dehumidified Air. Procedia Environ. Sci. 2015, 23, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Stévant, P.; Indergård, E.; Ólafsdóttir, A.; Marfaing, H.; Larssen, W.E.; Fleurence, J.; Roleda, M.Y.; Rustad, T.; Slizyte, R.; Nordtvedt, T.S. Effects of drying on the nutrient content and physico-chemical and sensory characteristics of the edible kelp Saccharina latissima. J. Appl. Phycol. 2018, 30, 2587–2599. [Google Scholar] [CrossRef]
- Silva, A.; Abreu, H.; Silva, A.; Cardoso, S. Effect of Oven-Drying on the Recovery of Valuable Compounds from Ulva rigida, Gracilaria sp. and Fucus vesiculosus. Mar. Drugs 2019, 17, 90. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A. Present and future needs for algae and algal products. In Proceedings of the Fourteenth International Seaweed Symposium, Brest, France, 16–21 August 1992; Developments in Hydrobiology. Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Van Oirschot, R.; Thomas, J.B.E.; Gröndahl, F.; Fortuin, K.P.; Brandenburg, W.; Potting, J. Explorative environmental life cycle assessment for system design of seaweed cultivation and drying. Algal Res. 2017, 27, 43–54. [Google Scholar] [CrossRef]
- Philis, G.; Gracey, E.O.; Gansel, L.C.; Fet, A.M.; Rebours, C. Comparing the primary energy and phosphorus consumption of soybean and seaweed-based aquafeed proteins—A material and substance flow analysis. J. Clean. Prod. 2018, 200, 1142–1153. [Google Scholar] [CrossRef]
- Strømmen, I.; Eikevik, T.M.; Alves-Filho, O.; Syverud, K.; Jonassen, O. Low temperature drying with heat pumps new generations of high quality dried products. In Proceedings of the 2nd Nordic Drying Conference, Aarhus, Denmark, 19–23 October 2002. [Google Scholar]
- Mujumdar, A. Handbook of Industrial Drying, 4th ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kumar, C.; Karim, M.A. Microwave-convective drying of food materials: A critical review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Hart, O. Pulse Combustion Drying with Superheated Steam. In Proceedings of the Nordic Baltic Drying Conference, Hamburg, Germany, 7–9 June 2017. [Google Scholar]
- Joint FAO/WHO Food Standards Programme. Comments of Lao PDR: Development of Regional Standard for Edible Crickets and Their Products; Technical Report; Joint FAO/WHO Food Standards Programme: Rome, Italy, 2010. [Google Scholar]
- Fowles, T.M.; Nansen, C. Insect-Based Bioconversion: Value from Food Waste. In Food Waste Management: Solving the Wicked Problem; Närvänen, E., Mesiranta, N., Mattila, M., Heikkinen, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 321–346. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hagemann, A.; Reitan, K.; Ejlertsson, J.; Wollan, H.; Handå, A.; Malzahn, A. Potential of the polychaete Hediste diversicolor fed on aquaculture and biogas side streams as an aquaculture food source. Aquac. Environ. Interact. 2019, 11, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A.; Oonincx, D. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 35, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tran, G.; Gnaedinger, C.; Melin, C. Mealworm (Tenebrio Molitor); Technical Report; Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO; FAO: Rome, Italy, 2019. [Google Scholar]
- Dortmans, B.; Diener, S.; Verstappen, B.; Zurbrugg, C. Black Soldier Fly Biowaste Processing—A Step-by-Step Guide; Technical Report; Eawag: Swiss Federal Institute of Aquatic Science and Technology: Dibendorf, Switzerland, 2017. [Google Scholar]
- Ingraham, C. Maggots: A taste of food’s future. The Washington Post. 2019. Available online: https://www.washingtonpost.com/business/2019/07/03/maggots-could-revolutionize-global-food-supply-heres-how/ (accessed on 20 November 2020).
- Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O.F. Müller) (Annelida: Polychaeta). Hydrobiologia 2002, 470, 203–218. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef]
- Park, J.B.; Choi, W.H.; Kim, S.H.; Jin, H.J.; Han, Y.S.; Lee, Y.s.; Kim, N.J. Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. Int. J. Ind. Entomol. 2014, 28, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Chia, S.Y.; Tanga, C.M.; Khamis, F.M.; Mohamed, S.A.; Salifu, D.; Sevgan, S.; Fiaboe, K.K.M.; Niassy, S.; van Loon, J.J.A.; Dicke, M.; et al. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE 2018, 13, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Ozoh, P.; Jones, N. Capacity adaptation of Hediste (Nereis) diversicolor embryogenesis to salinity, temperature and copper. Mar. Environ. Res. 1990, 29, 227–243. [Google Scholar] [CrossRef]
- Cadinu, L.A.; Barra, P.; Torre, F.; Delogu, F.; Madau, F.A. Insect Rearing: Potential, Challenges, and Circularity. Sustainability 2020, 12, 4567. [Google Scholar] [CrossRef]
- Dias, G.M.; Ayer, N.W.; Khosla, S.; Van Acker, R.; Young, S.B.; Whitney, S.; Hendricks, P. Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. J. Clean. Prod. 2017, 140, 831–839. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Van Dyk, J.; Gama, R.; Morrison, D.; Swart, S.; Pletschke, B. Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew. Sustain. Energy Rev. 2013, 26, 521–531. [Google Scholar] [CrossRef]
- Avelino, A. Saccharification of tomato pomace for the production of biomass. Bioresour. Technol. 1997, 61, 159–162. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed. Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Invertapro, Insects for a Circular Economy. 2020. Available online: https://www.invertapro.com/products (accessed on 28 March 2021).
- Gold, M.; Cassar, C.M.; Zurbrügg, C.; Kreuzer, M.; Boulos, S.; Diener, S.; Mathys, A. Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 2020, 102, 319–329. [Google Scholar] [CrossRef]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- Del Campo, L.M.; Ibarra, P.; Gutierrez, X.; Takle, H.R. Utilization of Sludge from Recirculation Aquaculture Systems; Technical Report; Nofima AS: Ås, Norway, 2010. [Google Scholar]
- Gahukar, R. Edible Insects Farming: Efficiency and Impact on Family Livelihood, Food Security, and Environment Compared With Livestock and Crops. In Insects as Sustainable Food Ingredients; Elsevier: Berlin/Heidelberg, Germany, 2016; pp. 85–111. [Google Scholar] [CrossRef]
- Madau, F.A.; Arru, B.; Furesi, R.; Pulina, P. Insect Farming for Feed and Food Production from a Circular Business Model Perspective. Sustainability 2020, 12, 5418. [Google Scholar] [CrossRef]
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef] [Green Version]
- IPIFF. Regulation (EU) 2015/2283 on Novel Foods-Briefing Paper on the Provisions Relevant to the Commercialization of Insect-Based Products Intended for Human Consumption in the EU; IPIFF: Brussels, Belgium, 2019. [Google Scholar]
- Mattilsynet (Norwegian Food Safety Authority). Insekter til Bruk i fôr. 2020. Available online: https://www.mattilsynet.no/mat_og_vann/produksjon_av_mat/ny_mat/insekter_som_mat.22375 (accessed on 25 November 2020).
- Skretting. Sustainability Report. Skretting Sustainability Performance; Skretting: Stavanger, Norway, 2019. [Google Scholar]
- Winther, U.; Hognes, E.S.; Jafarzadeh, S.; Ziegler, F. Greenhouse Gas Emissions of Norwegian Seafood Products in 2017. Available online: https://www.sintef.no/contentassets/25338e561f1a4270a59ce25bcbc926a2/report-carbon-footprint-norwegian-seafood-products-2017_final_040620.pdf/ (accessed on 29 November 2020).
- MacLeod, M.J.; Hasan, M.R.; Robb, D.H.F.; Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 2020, 10, 11679. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Waagbø, R.; Biancarosa, I.; Pelusio, N.; Li, Y.; Krogdahl, Å.; Lock, E.J. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 2018, 491, 72–81. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbø, R.; Krogdahl, Å.; Lock, E.J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef] [PubMed]
- Chopin, T.; Robinson, S.; Troell, M.; Neori, A.; Buschmann, A.; Fang, J. Multitrophic Integration for Sustainable Marine Aquaculture. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 2463–2475. [Google Scholar] [CrossRef]
- Lennard, W.; Goddek, S. Aquaponics: The Basics. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 113–143. [Google Scholar] [CrossRef] [Green Version]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Haïssam Jijakli, M.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Wuertz, S.; Körner, O.; Bläser, I.; Reuter, M.; Keesman, K.J. Decoupled Aquaponics Systems. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 201–229. [Google Scholar] [CrossRef] [Green Version]
- Delaide, B.; Monsees, H.; Gross, A.; Goddek, S. Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 247–266. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Körner, O. A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments. Agric. Syst. 2019, 171, 143–154. [Google Scholar] [CrossRef]
- Palm, H.; Strauch, S.; Knaus, U.; Wasenitz, B. Das FischGlasHaus-eine Innovationsinitiative zur energie- und nährstoffeffizienten Produktion unterschiedlicher Fisch- und Pflanzenarten in Mecklenburg-Vorpommern (“Aquaponik in MV”). Fisch. Fisch. M-V 2016, 1, 38–47. [Google Scholar]
- Skar, S.L.G.; Liltved, H.; Kledal, P.R.; Høgberget, R.; Björnsdottir, R.; Homme, J.M.; Oddsson, S.; Paulsen, H.; Drengstig, A.; Savidov, N.; et al. Aquaponics NOMA (Nordic Marine)-New Innovations for Sustainable Aquaculture in the Nordic Countries; Technical Report; Nordic Innovation: Oslo, Norway, 2015. [Google Scholar]
- Beckers, S. Aquaponics: A positive impact circular economy approach TO feeding cities. J. Field Actions 2019, 20, 78–84. [Google Scholar]
- Seghetta, M.; Hou, X.; Bastianoni, S.; Bjerre, A.B.; Thomsen, M. Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers—A step towards a regenerative bioeconomy. J. Clean. Prod. 2016, 137, 1158–1169. [Google Scholar] [CrossRef]
- Turnšek, M.; Morgenstern, R.; Schröter, I.; Mergenthaler, M.; Hüttel, S.; Leyer, M. Commercial Aquaponics: A Long Road Ahead. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 453–485. [Google Scholar] [CrossRef] [Green Version]
- Nikolaisen, M.; Andresen, T. System impact of heat exchanger pressure loss in ORCs for smelter off-gas waste heat recovery. Energy 2021, 215, 118956. [Google Scholar] [CrossRef]
- Royo, P.; Acevedo, L.; Ferreira, V.J.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries. Energy 2019, 173, 1030–1040. [Google Scholar] [CrossRef]
- Beck, A.; Sevault, A.; Drexler-Schmid, G.; Schöny, M.; Kauko, H. Optimal Selection of Thermal Energy Storage Technology for Fossil-Free Steam Production in the Processing Industry. Appl. Sci. 2021, 11, 1063. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Lúa, A.; Straus, J.; Skjervold, V.T.; Durakovic, G.; Nordtvedt, T.S. A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat. Sustainability 2021, 13, 9786. https://doi.org/10.3390/su13179786
Reyes-Lúa A, Straus J, Skjervold VT, Durakovic G, Nordtvedt TS. A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat. Sustainability. 2021; 13(17):9786. https://doi.org/10.3390/su13179786
Chicago/Turabian StyleReyes-Lúa, Adriana, Julian Straus, Vidar T. Skjervold, Goran Durakovic, and Tom Ståle Nordtvedt. 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat" Sustainability 13, no. 17: 9786. https://doi.org/10.3390/su13179786
APA StyleReyes-Lúa, A., Straus, J., Skjervold, V. T., Durakovic, G., & Nordtvedt, T. S. (2021). A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat. Sustainability, 13(17), 9786. https://doi.org/10.3390/su13179786