Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Properties
2.2. Plant Materials and Treatments
2.3. Preparation of Experimental Plots and Growing Crops
2.4. Harvesting and Data Recording
2.5. Analysis of Soil Samples
2.6. Statistical Analysis
3. Results
3.1. Effect of Lime and Manure Amendment on Yield, Nutrient Content and Nutrient Uptake of T. Aman Rice (Binadhan 7)
3.1.1. Grain and Straw Yield
3.1.2. Nutrient Content
3.1.3. Nutrient Uptake
3.2. Residual Effect of Lime and Manure Amendment on Yield, Nutrient Content, and Nutrient Uptake of Maize (BARI Hybrid Maize-9)
3.2.1. Grain and Straw Yield
3.2.2. Nutrient Content
3.2.3. Nutrient Uptake
3.3. Total Rice Equivalent Yield of the T. Aman-Maize-Fallow Cropping Pattern
3.4. Effect of Lime and Organic Manure on Soil Properties
3.5. Relationship between Soil Properties and Yields of T. Aman Rice and Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Production Year Book of 2008; No. 67; Food and Agriculture Organization (FAO): Rome, Italy, 2008; p. 54. [Google Scholar]
- Singh, Y.; Dhar, D.; Agarwal, B. Influence of organic nutrient management on Basmati rice (Oryza sativa)–wheat (Triticum aestivum)–greengrsam (Vigna radiata) cropping system. Indian J. Agron. 2011, 56, 169–175. [Google Scholar]
- Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Akinbola, G.E.; Omueti, J.A.I.; Adigun, M.O.; Ajayi, O.R. Agronomic and Economic Evaluation of Organo-Mineral Fertilizer for Maize Production on an Alfisol in Southwestern Nigeria. In Proceedings of the 33rd Annual Conference of the Soil Science Society of Nigeria, Ado-Ekiti, Nigeria, 9–13 March 2009; pp. 130–137. [Google Scholar]
- KNOEMA. 2021. Available online: https://knoema.com/atlas/Bangladesh/topics/Agriculture/Crops-Production-Quantity-tonnes/Maize-production (accessed on 15 June 2021).
- FRG. Fertilizer Recommendation Guide 2018; Bangladesh Agricultural Research Council (BARC): Farmgate, Dhaka, 2018. [Google Scholar]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification-a critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef]
- Berihun, T.; Tolosa, S.; Kebede, F. Effect of biochar application on growth of garden pea (Pisum sativum L.) in acidic soils of buleworeda gedeo zone Southern Ethiopia. Int. J. Agron. 2017, 2017, 6827323. [Google Scholar] [CrossRef] [Green Version]
- Sanjay, S.; Lyngdoh, E.A.S. Restoration of degraded land in coal mine areas of Jaintia Hills, Meghalaya through phytoremediation. In Soil Water Conservation Bulletin; Indian Association of Soil and Water Conservationists: Dehradun, UK, 2019; Volume 4, pp. 17–24. [Google Scholar]
- Lyngdoh, E.A.S.; Sanjay, S. Phytoremediation effect on heavy metal polluted soils of Jaintia Hills in North Eastern Hill Region. Int. J. Curr. Microb. Appl. Sci. 2018, 7, 1734–1743. [Google Scholar] [CrossRef]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Til Res. 2014, 144, 184–194. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 2008, 99, 345–399. [Google Scholar] [CrossRef]
- Dinkecha, K.; Tsegaye, D. Effects of Liming on Physicochemical Properties and Nutrient Availability of Acidic Soils in Welmera Woreda, Central Highlands of Ethiopia. Biochem. Mol. Biol. 2017, 2, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.B.; Baligar, V.C. Acidic and alkaline soil constraints on plant mineral nutrition. In Plant Environment Interactions II; Marcel Dekker Inc.: Basel, NY, USA, 2000; pp. 133–177. [Google Scholar]
- Sanjay, S.; Maurya, A. Critical limits of soil available phosphorous for rapeseed (Brassica Compestris var. Toria) growing acidic soils of Meghalaya. J. Exp. Agric. Sci. 2018, 6, 732–738. [Google Scholar] [CrossRef]
- Singh, S.; Sanjay, S. Temporal soil fertility with nitrogen sources in acidic soil of Meghalaya. Indian J. Agric. Sci. 2020, 90, 669–671. [Google Scholar]
- Singh, S.; Sanjay, S. Soil acidity and nutrient availability in Inceptisol of Meghalaya as influenced by Azolla incorporation. J. Nat. Res. Conserv. Manag. 2020, 1, 7–14. [Google Scholar]
- Sanjay, S.; Singh, S. Effect of nitrogen application through urea and Azolla on yield, nutrient uptake of rice and soil acidity indices in acidic soil of Meghalaya. J. Environ. Biol. 2020, 41, 139–146. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Ayalew, A. The influence of applying lime and NPK fertilizers on yield of maize and soil properties on acid soil of Areka, southern region of Ethiopia. Innov. Syst. Des. Eng. 2011, 2, 33–42. [Google Scholar]
- Jafer, D.G.; Hailu, G. Application of Lime for Acid Soil Amelioration and Better Soybean Performance in SouthWestern Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 95–100. [Google Scholar]
- Nduwumuremyi, A. Soil Acidification and Lime Quality: Sources of Soil Acidity, Effects on Plant Nutrients, Efficiency of Lime and Liming Requirements. Res. Rev. J. Agric. Allied Sci. 2013, 2, 26–34. [Google Scholar]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef]
- Bolan, N.S.; Rowarth, J.; De La Luz Mora, M.; Adriano, D.; Curtin, D. Biological transformation and bioavailability of nutrient elements in acid soils as affected by liming. Dev. Soil Sci. 2008, 32, 413–446. [Google Scholar]
- Paradelo, R.; Virto, I.; Chenu, C. Net effect of liming on soil organic carbon stocks: A review. Agric. Ecosyst. Environ. 2015, 202, 98–107. [Google Scholar] [CrossRef]
- Banik, P.; Ghosal, P.K.; Sasmal, T.K.; Bhattacharya, S.; Sarkar, B.K.; Bagchi, D.K. Effect of Organic and Inorganic Nutrients for Soil Quality Conservation and Yield of Rainfed Low Land Rice in Sub-tropical Plateau Region. J. Agron. Crop Sci. 2006, 192, 331–343. [Google Scholar] [CrossRef]
- Siavoshi, M.; Nasiri, A.; Laware, S.L. Effect of organic fertilizer on growth and yield component in rice. J. Agric. Sci. 2011, 3, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Swain, M.R.; Laxminarayana, K.; Ray, R.C. Phosphorus solubilization by thermotolerant Bacillus subtilis isolated from cowdung microflora. Agric. Res. 2012, 1, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Sultana, B.S.; Mian, M.H.; Jahiruddin, M.; Rahman, M.M.; Siddique, M.N.E.A.; Sultana, J. Liming and Soil Amendments for Acidity Regulation and Nutrients Uptake by Potato-Mungbean-Rice Cropping Pattern in the Old Himalayan Piedmont Plain. Asian J. Agric. Hort. Res. 2019, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, M.S.; Majumdar, B.; Kumar, K.; Patiram, R.R.N. Effect of Phosphorus, FYM and lime on yield, P uptake by maize and forms of soil acidity in typic hapludalf of Meghalaya. J. Indian Soc. Soil Sci. 2002, 50, 254–258. [Google Scholar]
- Rahman, M.A.; Chikushi, J.; Duxbury, J.M.; Meisner, C.A.; Lauren, J.G.; Yasunaga, E. Chemical control of soil environment by lime and nutrients to improve the productivity of acidic alluvial soils under rice-wheat cropping system in Bangladesh. Environ. Control Biol. 2005, 43, 259–266. [Google Scholar] [CrossRef]
- Halim, A.; Siddique, M.N.E.A.; Sarker, B.C.; Islam, M.J.; Hossain, M.F.; Kamaruzzaman, M. Assessment of Nutrient Dynamics Affected by Different Levels of Lime in a Mungbean Field of the Old Himalayan Piedmont Soil in Bangladesh. J. Agric. Vet. Sci. 2014, 7, 101–112. [Google Scholar] [CrossRef]
- FAO. Land Resources Appraisal of Bangladesh for Agricultural Development; Report 2; Agro-Ecological Regions of Bangladesh, United Nations Development Programme, Food and Agriculture Organization: Rome, Italy, 1988; pp. 212–221. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis, Part 2; Page, M., Kenly, A., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Cole, C.U.; Watanable, F.S.; Deun, L.A. Estimation of Available P in Soil Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; p. 929. [Google Scholar]
- Rani, S.; Sukumari, P. Root Growth, Nutrient Uptake and Yield of Medicinal Rice Njavara under Different Establishment Techniques and Nutrient Sources. Am. J. Plant Sci. 2013, 4, 35343. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Jahan, R.; Uddin, S.; Harine, I.J.; Hoque, M.A.; Hassan, S.; Hassan, M.M.; Hossain, M.A. Lime and Organic Manure Amendment Enhances CropProductivity of Wheat–Mungbean–T. Aman CroppingPattern in Acidic Piedmont Soils. Agronomy 2021, 11, 1595. [Google Scholar] [CrossRef]
- Ghosh, A.B.; Bajaj, J.C.; Hasan, R.; Singh, D. Soil and Water Testing Methods. A Laboratory Manual; Division of Soil Science and Agricultural Chemistry, IARI: New Delhi, India, 1983; pp. 1–45. [Google Scholar]
- Walkey, A.J.; Black, A.I. Estimation of organic carbon by chromic acid titration method. J. Soil Sci. 1934, 25, 259–260. [Google Scholar]
- Bray, H.R.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soil. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; pp. 69–182. [Google Scholar]
- Chapman, H.D. Cation-exchange capacity. In Methods of Soil Analysis—Chemical and Microbiological Properties; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Pagani, A.; Mallarino, A.P. Soil pH and crop grain yield as affected by the source and rate of lime. Soil Sci. Soc. Am. J. 2012, 76, 1877–1886. [Google Scholar] [CrossRef]
- Álvarez, E.; Viadé, A.; Fernández-Marcos, M.L. Effect of liming with different sized limestone on the forms of aluminium in a Galician soil (NW Spain). Geoderma 2009, 152, 1–8. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Curtin, D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2003; pp. 215–272. [Google Scholar]
- Caires, E.F.; Garhuio, F.J.; Churka, S.; Barth, G.; Correa, J.C.L. Effects of Soil Acidity Amelioration by Surface Liming on No-till corn, soybean and wheat root growth and yield. Eur. J. Agron. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Ernani, P.R.; Bayer, C.; Maestri, L. Corn yield as affected by liming and tillage system on an acid Brazilian Oxisol. Agron. J. 2002, 94, 305–309. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Sims, J.T. Effects of Lime and Phosphorus Application on Phosphorus Runoff Risk. Water Air Soil Pollut. 2012, 2012, 223. [Google Scholar] [CrossRef]
- Tsakelidou, K. Effect of calcium carbonate as determined by lime requirement buffer pH methods on soil characteristics and yield of sorghum plants. Commun. Soil Sci. Plant Anal. 2000, 31, 1249–1260. [Google Scholar] [CrossRef]
- Tang, C.; Rene, Z.; Diatloff, E.; Gazey, C. Response of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crop Res. 2003, 80, 235–244. [Google Scholar] [CrossRef]
- Patiram, R.R.N.; Prasad, R.N. Effects of liming on aluminum yield wheat in acidic soil. J. Indian Soc. Soil Sci. 1990, 38, 719–722. [Google Scholar]
- Asrat, M.; Gebrekidan, H.; Yli–Halla, H.; Bedadi, B.; Negassa, W. Effect of integrated use of lime, manure and mineral P fertilizer on bread wheat (Triticum aestivum) yield, P uptake and status of residual soil P on acidic soils of Gozamin district, North–Western Ethiopia. J. Agric. For. Fish 2014, 3, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.K.; Chang, C.; Clayton, G.W. Cattle manure and lime amendments to improve crop production of acidic soils in northern Alberta. Can. J. Soil Sci. 2002, 82, 227–238. [Google Scholar] [CrossRef]
- Sukristiyonubowo, S.; Wibowo, H.; Dariah, A. Management of acid newly opened wetland rice fields. Glob. Adv. Res. J. Agric. Sci. 2013, 2, 174–180. [Google Scholar]
- Liao, P.; Liu, L.; He, Y.X.; Tang, G.; Zhang, J.; Zeng, Y.J.; Wu, Z.M.; Huang, S. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system. Acta Agron. Sin. 2020, 46, 84–92. [Google Scholar] [CrossRef]
- Bordoloi, P. Productivity Enhancement of Maize (Zea mays) through Liming under Rain Fed Condition of Northeast India. Int. J. Current Microb. Appl. Sci. 2020, 11, 2875–2881. [Google Scholar]
- Andric, L.; Rastija, M.; Teklic, T.; Kovacevic, V. Response of maize and soybeans to liming. Turk. J. Agric. 2012, 36, 415–420. [Google Scholar] [CrossRef]
- Kumar, M.; Hazarika, S.; Choudhury, B.U.; Ramesh, T.; Verma, B.C.; Bordoloi, L.J. Liming and Integrated Nutrient Management for Enhancing Maize Productivity on Acidic Soils of Northeast India. Indian J. Hill Farm 2012, 25, 35–37. [Google Scholar]
- Sharma, P.D.; Baruah, T.C.; Maji, A.K.; Patiram. Management of Acid Soils in NEH Region; Technical Bulletin; Natural Resource Management Division (ICAR), Krishi Anusandhan Bhawan-II, Pusa Campus: New Delhi, India, 2006; p. 14. [Google Scholar]
- Naher, U.A.; Hashem, M.A.; Mitra, B.K.; Uddin, M.K.; Saleque, M.A. Effect of Rice Straw and Lime on Phosphorus and Potassium Mineralization from Cowdung and Poultry Manure under Covered and Uncovered Conditions in the Tropical Environment. Pak. J. Biol. Sci. 2004, 7, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Yagi, R.; Ferreira, M.E.; Cruz, M.; Barbosa, J. Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure. Sci. Agric. 2003, 60, 549–557. [Google Scholar] [CrossRef]
- Kisić, I.; Bašić, F.; Mešić, M.; Butorac, A.; Vađić, Ž. The Effect of Fertilization and Limingon Some Soil Chemical Properties of Eutric Gleysol. Agric. Conspec. Sci. 2004, 69, 43–49. [Google Scholar]
- Samuel, A.D. Effects of liming and fertilization on the dehydrogenase and catalase activities. Rev. Chem. 2019, 70, 3464–3468. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Tit, D.M.; Melinte, C.E.; Purza, L.; Badea, G.E. Effects of long-term application of organic and mineral fertilizers on soil enzymes. Rev. Chem. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Oprea, O.B.; Apostol, L.; Bungau, S.; Cioca, G.; Samuel, A.D.; Badea, M.; Gaceu, L. Researches on the chemical composition and the rheological properties of wheat and grape epicarp flour mixes. Rev. Chim. 2018, 69, 70–75. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Nitu, T.T.; Uddin, S.; Siddaka, A.; Sarker, P.; Khan, S.; Jahiruddin, M.; Müller, C. Carbon and nitrogen accumulation in soils under conservation agriculture practices decreases with nitrogen application rates. Appl. Soil Ecol. 2021, 168, 104178. [Google Scholar] [CrossRef]
- Samuel, A.D.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic indicators of soil quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
- Cheng, Y.; Wang, J.; Mary, B.; Zhang, J.B.; Cai, Z.C.; Chang, S.X. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol. Biochem. 2013, 57, 848–857. [Google Scholar] [CrossRef]
- Fageria, N.K. Soil quality vs. environmentally-based agricultural management practices. Commun. Soil Sci. Plant Anal. 2002, 33, 2301–2329. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of soil acidity of South American soils for sustainable crop production. Adv. Agron. 2014, 128, 221–275. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, G.A.; van der Velde, M.; Bastos, A.C. A quantitative reviewof the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2018, 19, 1393–1406. [Google Scholar] [CrossRef]
- Meena, R.S.; Dhakal, Y.; Bohra, J.S.; Singh, S.P.; Singh, M.K.; Sanodiya, P. Influence of Bioinor-ganic Combinations on Yield, Quality and Economics of Mungbean. Am. J. Expert. Agric. 2015, 8, 159–166. [Google Scholar] [CrossRef]
- Liao, P.; Huang, S.; van Gestel, N.C.; Zeng, Y.J.; Wu, Z.M.; van Groenigen, K.J. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Res. 2018, 216, 217–224. [Google Scholar] [CrossRef]
- Kovačević, V.; Rastija, M. Impacts of liming by dolomite on the maize and barley grain yields. Poljoprivreda 2010, 16, 3–8. [Google Scholar]
- Chang, C.S.; Sung, J.M. Nutrient uptake and yield responses of peanuts and rice to lime and fused magnesium phosphate in an acid soil. Field Crops Res. 2004, 89, 319–325. [Google Scholar] [CrossRef]
Manure | C (%) | N (%) | P (%) | S (%) | C:N | C:P | C:S | pH |
---|---|---|---|---|---|---|---|---|
Cow dung (CD) | 33.14 | 1.27 | 0.50 | 0.28 | 26.2 | 66.8 | 118.4 | 7.7 |
Poultry manure (PM) | 33.54 | 3.08 | 2.33 | 0.56 | 10.9 | 14.4 | 59.9 | 8.2 |
Treatments | N Content (%) | P Content (%) | K Content (%) | S Content (%) | ||||
---|---|---|---|---|---|---|---|---|
Grain | Straw | Grain | Straw | Grain | Straw | Grain | Straw | |
T1 | 1.04 ± 0.060 e | 0.28 ± 0.016 d | 0.22 ± 0.013 e | 0.11 ± 0.006 g | 0.27 ± 0.016 h | 1.11 ± 0.064 e | 0.26 ± 0.015 g | 0.19 ± 0.011 g |
T2 | 1.11 ± 0.064 de | 0.33 ± 0.019 cd | 0.25 ± 0.014 c | 0.14 ± 0.008 f | 0.33 ± 0.019 f | 1.17 ± 0.068 cd | 0.28 ± 0.016 f | 0.21 ± 0.012 f |
T3 | 1.13 ± 0.065 cd | 0.35 ± 0.020 bc | 0.25 ± 0.015 bc | 0.16 ± 0.009 d | 0.35 ± 0.020 d | 1.19 ± 0.069 bc | 0.29 ± 0.017 e | 0.22 ± 0.013 e |
T4 | 1.13 ± 0.065 cd | 0.36 ± 0.021 abc | 0.23 ± 0.013 e | 0.15 ± 0.009 e | 0.31 ± 0.018 g | 1.16 ± 0.067 cde | 0.28 ± 0.016 f | 0.22 ± 0.013 e |
T5 | 1.19 ± 0.069 abcd | 0.39 ± 0.023 abc | 0.24 ± 0.014 d | 0.16 ± 0.009 d | 0.34 ± 0.020 e | 1.17 ± 0.068 cd | 0.29 ± 0.017 e | 0.23 ± 0.013 d |
T6 | 1.20 ± 0.069 abc | 0.39 ± 0.023 ab | 0.25 ± 0.014 c | 0.17 ± 0.010 c | 0.36 ± 0.021 c | 1.20 ± 0.069 de | 0.33 ± 0.019 d | 0.23 ± 0.014 d |
T7 | 1.22 ± 0.070 ab | 0.39 ± 0.023 abc | 0.26 ± 0.015 ab | 0.19 ± 0.011 a | 0.37 ± 0.021 b | 1.23 ± 0.071 ab | 0.35 ± 0.020 b | 0.25 ± 0.014 b |
T8 | 1.17 ± 0.068 bcd | 0.40 ± 0.023 ab | 0.25 ± 0.015 bc | 0.18 ± 0.011 b | 0.37 ± 0.021 b | 1.23 ± 0.071 ab | 0.34 ± 0.020 c | 0.25 ± 0.014 c |
T9 | 1.26 ± 0.073 a | 0.42 ± 0.024 a | 0.26 ± 0.015 a | 0.19 ± 0.011 a | 0.38 ± 0.022 a | 1.25 ± 0.072 a | 0.36 ± 0.021 a | 0.27 ± 0.015 a |
CV (%) | 0.04 | 0.03 | 0.003 | 0.002 | 0.001 | 0.00002 | 0.003 | 0.0023 |
SE (±) | 4.14 | 10.36 | 1.48 | 1.82 | 0.79 | 2.48 | 1.19 | 1.18 |
Treatments | N Content (%) | P Content (%) | K Content (%) | S Content (%) | ||||
---|---|---|---|---|---|---|---|---|
Grain | Straw | Grain | Straw | Grain | Straw | Grain | Straw | |
T1 | 1.35 ± 0.078 d | 0.35 ± 0.020 d | 0.17 ± 0.010 e | 0.13 ± 0.008 d | 0.28 ± 0.016 c | 1.11 ± 0.064 d | 0.28 ± 0.016 d | 0.14 ± 0.008 d |
T2 | 1.43 ± 0.083 c | 0.38 ± 0.022 cd | 0.21 ± 0.012 d | 0.15 ± 0.009 bcd | 0.33 ± 0.019 bc | 1.20 ± 0.069 c | 0.29 ± 0.017 c | 0.16 ± 0.01 c |
T3 | 1.46 ± 0.084 c | 0.40 ± 0.023 bcd | 0.21 ± 0.012 c | 0.17 ± 0.010 abcd | 0.33 ± 0.019 bc | 1.24 ± 0.072 bc | 0.30 ± 0.017 b | 0.16 ± 0.009 c |
T4 | 1.43 ± 0.083 c | 0.37 ± 0.021 cd | 0.21 ± 0.012 d | 0.14 ± 0.008 cd | 0.33 ± 0.019 bc | 1.20 ± 0.069 c | 0.29 ± 0.017 cd | 0.15 ± 0.009 c |
T5 | 1.47 ± 0.085 c | 0.39 ± 0.023 cd | 0.22 ± 0.013 c | 0.16 ± 0.009 abcd | 0.35 ± 0.020 ab | 1.22 ± 0.070 bc | 0.29 ± 0.017 cd | 0.16 ± 0.009 c |
T6 | 1.57 ± 0.091 b | 0.42 ± 0.024 abc | 0.22 ± 0.013 c | 0.18 ± 0.010 abcd | 0.37 ± 0.021 ab | 1.24 ± 0.072 bc | 0.30 ± 0.017 b | 0.17 ± 0.009 b |
T7 | 1.63 ± 0.094 ab | 0.45 ± 0.026 ab | 0.23 ± 0.013 b | 0.20 ± 0.012 ab | 0.38 ± 0.022 ab | 1.26 ± 0.073 ab | 0.30 ± 0.017 b | 0.17 ± 0.010 b |
T8 | 1.63 ± 0.094 ab | 0.45 ± 0.026 ab | 0.23 ± 0.013 ab | 0.19 ± 0.011 abc | 0.38 ± 0.022 ab | 1.27 ± 0.073 ab | 0.32 ± 0.018 a | 0.17 ± 0.010 ab |
T9 | 1.65 ± 0.095 a | 0.47 ± 0.027 a | 0.24 ± 0.014 a | 0.21 ± 0.012 a | 0.40 ± 0.023 a | 1.30 ± 0.075 a | 0.32 ± 0.018 a | 0.18 ± 0.010 a |
CV (%) | 0.03 | 0.03 | 0.003 | 0.00003 | 0.03 | 0.02 | 0.003 | 0.002 |
SE (±) | 2.75 | 8.15 | 1.75 | 19.61 | 10.50 | 2.39 | 1.35 | 1.82 |
Treatments | Soil pH | STN (%) | Available P (ppm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After T. Aman Rice Harvest | After Maize Harvest | Before | After T. Aman Rice Harvest | After Maize Harvest | Before | After T. Aman Rice Harvest | After Maize Harvest | |
T1 | 4.1 ± 0.01 g | 3.8 ± 0.01 g | 3.6 ± 0.01 g | 6.1 ± 0.03 h | 5.9 ± 0.03 h | 5.9 ± 0.03 i | 30.3 ± 0.02 b | 29.3 ± 0.61 d | 28.8 ± 1.24 d |
T2 | 4.6 ± 0.01 d | 4.7 ± 0.01 e | 4.9 ± 0.01 e | 6.3 ± 0.02 g | 7.1 ± 0.02 f | 7.9 ± 0.02 g | 30.6 ± 0.01 b | 31.8 ± 0.02 bc | 33.6 ± 0.01 bc |
T3 | 4.7 ± 0.01 ab | 4.9 ± 0.01 cd | 5.3 ± 0.01 cd | 6.5 ± 0.02 de | 7.5 ± 0.02 d | 8.8 ± 0.02 d | 30.7 ± 0.01 b | 32.4 ± 0.01 bc | 34.7 ± 0.01 bc |
T4 | 4.3 ± 0.02 f | 4.4 ± 0.02 f | 4.6 ± 0.02 f | 6.4 ± 0.01 ef | 6.8 ± 0.01 g | 7.4 ± 0.01 h | 30.7 ± 0.28 b | 31.4 ± 0.48 c | 32.7 ± 0.73 c |
T5 | 4.4 ± 0.01 e | 4.6 ± 0.01 e | 5.0 ± 0.01 e | 6.5 ± 0.02 cd | 7.3 ± 0.02 e | 8.2 ± 0.02 f | 30.5 ± 0.01 b | 31.7 ± 0.51 bc | 33.4 ± 1.03 bc |
T6 | 4.6 ± 0.01 cd | 4.8 ± 0.01 d | 5.2 ± 0.01 d | 6.6 ± 0.01 bc | 7.5 ± 0.02 d | 8.6 ± 0.02 e | 30.7 ± 0.01 b | 32.5 ± 0.01 bc | 35.0 ± 0.02 bc |
T7 | 4.7 ± 0.02 bc | 5.0 ± 0.02 bc | 5.4 ± 0.02 bc | 6.7 ± 0.02 b | 7.8 ± 0.02 c | 9.0 ± 0.02 c | 30.7 ± 0.02 b | 32.6 ± 0.02 bc | 35.0 ± 0.02 bc |
T8 | 4.7 ± 0.01 abc | 5.1 ± 0.01 b | 5.5 ± 0.02 b | 6.8 ± 0.02 a | 8.1 ± 0.02 b | 9.5 ± 0.02 b | 30.8 ± 0.01 b | 33.1 ± 0.01 b | 36.1 ± 0.01 b |
T9 | 4.8 ± 0.02 a | 5.2 ± 0.03 a | 5.8 ± 0.07 a | 6.9 ± 0.01 a | 8.2 ± 0.02 a | 10.0±0.02 a | 33.2 ± 0.26 a | 36.1 ± 0.29 a | 39.8 ± 0.32 a |
CV (%) | 0.58 | 0.61 | 0.96 | 0.46 | 0.45 | 0.43 | 0.69 | 1.59 | 2.85 |
Level of significance | *** | *** | *** | *** | *** | *** | *** | *** | *** |
T. Aman Rice | |||||||
Yield (t ha−1) | SOM (%) | STN (%) | Available P (ppm) | pH | EC (dS m−1) | CEC (cmolc/kg) | |
Yield (t ha−1) | 1 | ||||||
SOM (%) | 0.62 *** | 1 | |||||
STN (%) | 0.58 ** | 0.94 *** | 1 | ||||
Available P (ppm) | 0.61 *** | 0.81 *** | 0.75 *** | 1 | |||
pH | 0.58 ** | 0.76 *** | 0.66 *** | 0.98 *** | 1 | ||
EC (dS m−1) | 0.63 *** | 0.87 *** | 0.87 *** | 0.94 *** | 0.88 *** | 1 | |
CEC (cmolc/kg) | 0.41 * | 0.71 *** | 0.66 *** | 0.89 *** | 0.86 *** | 0.87 *** | 1 |
Maize | |||||||
Yield (t ha−1) | SOM (%) | TN (%) | Available P (ppm) | pH | EC (dS m−1) | CEC (cmolc/kg) | |
Yield(t ha−1) | 1 | ||||||
SOM (%) | 0.61 *** | 1 | |||||
TN (%) | 0.54 ** | 0.93 *** | 1 | ||||
Available P (ppm) | 0.81 *** | 0.80 *** | 0.70 *** | 1 | |||
pH | 0.80 *** | 0.82 *** | 0.69 *** | 0.98 *** | 1 | ||
EC (dS m−1) | 0.74 *** | 0.86 *** | 0.84 *** | 0.93 *** | 0.89 *** | 1 | |
CEC (cmolc/kg) | 0.69 *** | 0.75 *** | 0.86 *** | 0.92 *** | 0.91 *** | 0.88 *** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.R.; Akter, A.; Hoque, M.A.; Farzana, S.; Uddin, S.; Talukder, M.M.H.; Alsanie, W.F.; Gaber, A.; Hossain, M.A. Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils. Sustainability 2021, 13, 9808. https://doi.org/10.3390/su13179808
Islam MR, Akter A, Hoque MA, Farzana S, Uddin S, Talukder MMH, Alsanie WF, Gaber A, Hossain MA. Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils. Sustainability. 2021; 13(17):9808. https://doi.org/10.3390/su13179808
Chicago/Turabian StyleIslam, Mohammad Rafiqul, Afsana Akter, Mohammad Anamul Hoque, Sumaiya Farzana, Shihab Uddin, Mohammad Moyeed Hasan Talukder, Walaa F. Alsanie, Ahmed Gaber, and Mohammad Anwar Hossain. 2021. "Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils" Sustainability 13, no. 17: 9808. https://doi.org/10.3390/su13179808
APA StyleIslam, M. R., Akter, A., Hoque, M. A., Farzana, S., Uddin, S., Talukder, M. M. H., Alsanie, W. F., Gaber, A., & Hossain, M. A. (2021). Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils. Sustainability, 13(17), 9808. https://doi.org/10.3390/su13179808