Nitrogen Use Efficiency and Excretion in Grazing Cows with High and Low Milk Urea Nitrogen Breeding Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Their Management
2.2. Herbage Measurements and Samplings
2.3. Live Weight, Milk Yield, and Composition
2.4. Estimation of Breeding Values for Milk Urea Nitrogen
2.5. Metabolisable Energy and Protein Analyses
2.6. Statistical Analyses
3. Results
4. Discussion
Metabolisable Protein Balance and Nitrogen Partitioning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wales, W.J.; Kolver, E.S. Challenges of feeding dairy cows in Australia and New Zealand. Anim. Prod. Sci. 2017, 57, 1366–1383. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.P.; Veerkamp, R.F.; Dillon, P. Phenotypic profiles for body weight, body condition score, energy intake, and energy balance across different parities and concentrate feeding levels. Livest. Sci. 2006, 104, 1–12. [Google Scholar] [CrossRef]
- Kolver, E.S.; Muller, L.D. Performance and nutrient intake of high producing Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 1998, 81, 1403–1411. [Google Scholar] [CrossRef]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; France, J. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J. Anim. Feed Sci. 2000, 9, 1–32. [Google Scholar]
- Hristov, A.N.; Ropp, J.K.; Grandeen, K.L.; Abedi, S.; Etter, R.P.; Melgar, A.; Foley, A.E. Effect of carbohydrate source on ammonia utilization in lactating dairy cows. J. Anim. Sci. 2005, 83, 408–421. [Google Scholar] [CrossRef] [Green Version]
- Lapierre, H.; Berthiaume, R.; Raggio, G.; Thivierge, M.C.; Doepel, L.; Pacheco, D.; Dubreuil, P.; Lobley, G.E. The route of absorbed nitrogen into milk protein. Anim. Sci. 2005, 80, 11–22. [Google Scholar] [CrossRef]
- Oenema, J.; Burgers, S.; Verloop, K.; Hooijboer, A.; Boumans, L.; ten Berge, H. Multiscale effects of management, environmental conditions, and land use on nitrate leaching in dairy farms. J. Environ. Qual. 2010, 39, 2016–2028. [Google Scholar] [CrossRef]
- Oenema, O.; Wrage, N.; Velthof, G.L.; van Groenigen, J.W.; Dolfing, J.; Kuikman, P.J. Trends in Global Nitrous Oxide Emissions from Animal Production Systems. Nutr. Cycl. Agroecosyst. 2005, 72, 51–65. [Google Scholar] [CrossRef]
- De Klein, C.A.M.; Monaghan, R.M.; Alfaro, M.; Gourley, C.J.P.; Oenema, O.; Powell, J.M. Nitrogen performance indicators for dairy production systems. Soil Res. 2017, 55, 479–488. [Google Scholar] [CrossRef]
- Franklin, P.A. Dissolved oxygen criteria for freshwater fish in New Zealand: A revised approach. N. Z. J. Mar. Freshw. Res. 2014, 48, 112–126. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Penno, J.W.; Sprosen, M.S. Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application. J. Agric. Sci. 1999, 132, 215–225. [Google Scholar] [CrossRef]
- Shepherd, M.; Lucci, G. A review of the effect of autumn N fertilizer on pasture N concentration and an assessment of the potential effects on nitrate leaching risk. In Proceedings of the New Zealand Grassland Association, Tauranga, New Zealand. 2013, pp. 197–202. Available online: https://www.nzgajournal.org.nz/index.php/ProNZGA/article/view/2900 (accessed on 26 August 2021).
- Mulligan, F.J.; Dillon, P.; Callan, J.J.; Rath, M.; O’Mara, F.P. Supplementary concentrate type affects nitrogen excretion of grazing dairy cows. J. Dairy Sci. 2004, 87, 3451–3460. [Google Scholar] [CrossRef]
- Amanlou, H.; Farahani, T.A.; Farsuni, N.E. Effects of rumen undegradable protein supplementation on productive performance and indicators of protein and energy metabolism in Holstein fresh cows. J. Dairy Sci. 2017, 100, 3628–3640. [Google Scholar] [CrossRef]
- Haque, M.N.; Rulquin, H.; Andrade, A.; Faverdin, P.; Peyraud, J.L.; Lemosquet, S. Milk protein synthesis in response to the provision of an“ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. J. Dairy Sci. 2012, 95, 5876–5887. [Google Scholar] [CrossRef]
- Kaufman, J.D.; Pohler, K.G.; Mulliniks, J.T.; Rius, A.G. Lowering rumen-degradable and rumen-undegradable protein improved amino acid metabolism and energy utilization in lactating dairy cows exposed to heat stress. J. Dairy Sci. 2018, 101, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows. J. Dairy Sci. 2015, 98, 3182–3196. [Google Scholar] [CrossRef] [Green Version]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar]
- Nousiainen, J.; Shingfield, K.J.; Huhtanen, P. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar]
- Beatson, P.R.; Meier, S.; Cullen, N.G.; Eding, H. Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion. Animal 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.J.; Beck, M.R.; Garrett, K.; Barrell, G.K.; Al-Marashdeh, O.; Gregorini, P. Grazing dairy cows with low milk urea nitrogen breeding values excrete less urinary urea nitrogen. Sci. Total Environ. 2020, 739, 139994. [Google Scholar] [CrossRef]
- Correa-Luna, M.; Donaghy, D.; Kemp, P.; Schutz, M.; López-Villalobos, N. Efficiency of Crude Protein Utilisation in Grazing Dairy Cows: A Case Study Comparing Two Production Systems Differing in Intensification Level in New Zealand. Animals 2020, 10, 36. [Google Scholar] [CrossRef]
- DairyNZ. Facts & Figures; DairyNZ: Hamilton, AL, USA, 2017. [Google Scholar]
- Baker, R.D. Estimating herbage intake from animal performance. In Herbage Intake Handbook, 2nd ed.; British Grassland Society: Dunston, UK, 2004; p. 191. [Google Scholar]
- Corson, D.C.; Waghorn, G.C.; Ulyatt, M.J.; Lee, J. NIRS: Forage analysis and livestock feeding. In Proceedings of the New Zealand Grassland Association, Hawkes Bay, New Zealand. 1999, pp. 127–132. Available online: https://www.grassland.org.nz/publications/nzgrassland_publication_507.pdf (accessed on 26 August 2021).
- Givens, D.I.; Rymer, C.; Cottrill, B.R.; Offer, N.W.; Thomas, C. Protein requirement and supply. In Feed into Milk: A New Applied Feeding System for Dairy Cows; Press, N.U., Ed.; Nottingham University Press: Nottingham, UK, 2004; pp. 21–40. [Google Scholar]
- Macdonald, K.A.; Macmillan, K.L. Condition score and liveweight in Jersey and Friesian cows. In Proceedings of 45th Ruakura Farmers Conference; Farm Advisory Division, Department of Agriculture: Hamilton, New Zealand, 1993; pp. 47–50. [Google Scholar]
- Arunvipas, P.; Van Leeuwen, J.A.; Dohoo, I.R.; Keefe, G.P. Evaluation of the reliability and repeatability of automated milk urea nitrogen testing. Can. J. Vet. Sci. 2003, 67, 60–63. [Google Scholar]
- López-Villalobos, N.; Correa-Luna, M.; Burke, J.L.; Sneddon, N.W.; Schutz, M.M.; Donaghy, D.J.; Kemp, P.D. Genetic parameters for milk urea concentration and milk traits in New Zealand grazing dairy cattle. N. Z. J. Anim. Sci. Prod. 2018, 78, 56–61. [Google Scholar]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Thomson, R. ASReml User Guide Release 3.0; VSN International: Hemel Hempstead, UK, 2009. [Google Scholar]
- Peyraud, J.L.; Vérité, R.; Delaby, L. Nitrogen excretion by dairy cows: Effect of the diet and of the level of production. Fourrages 1995, 142, 131–144. [Google Scholar]
- Reed, K.F.; Moraes, L.E.; Casper, D.P.; Kebreab, E. Predicting nitrogen excretion from cattle. J. Dairy Sci. 2015, 98, 3025–3035. [Google Scholar] [CrossRef]
- Spanghero, M.; Kowalski, Z.M. Critical analysis of N balance experiments with lactating cows. Livest. Prod. Sci. 1997, 52, 113–122. [Google Scholar] [CrossRef]
- Morris, R.; Staines, M.; Little, S. Rumen8, 3.3.0.5; Western Dairy & Dairy Australia: Bunbury, Australia, 2018. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: New York, NY, USA.
- Reed, K.F.; Bonfa, H.C.; Dijkstra, J.; Casper, D.P.; Kebreab, E. Estimating the energetic cost of feeding excess dietary nitrogen to dairy cows. J. Dairy Sci. 2017, 100, 7116–7126. [Google Scholar] [CrossRef] [Green Version]
- Sebek, L.; van Riel, J.; de Jong, G. The Breeding Value for Milkurea as Predictor for the Efficiency of Protein Utilization in Dairy Cows; Animal Science Group of Wageningen UR: Wageningen, The Netherlands, 2007. [Google Scholar]
- Wood, G.M.; Boettcher, P.J.; Jamrozik, J.; Jansen, G.B.; Kelton, D.F. Estimation of genetic parameters for concentrations of milk urea nitrogen. J. Dairy Sci. 2003, 86, 2462–2469. [Google Scholar] [CrossRef]
- McNamara, S.; Murphy, J.J.; O′Mara, F.P.; Rath, M.; Mee, J.F. Effect of milking frequency in early lactation on energy metabolism, milk production and reproductive performance of dairy cows. Livest. Sci. 2008, 117, 70–78. [Google Scholar] [CrossRef]
- Clark, D.A.; Phyn, C.V.; Tong, M.J.; Collis, S.J.; Dalley, D.E. A systems comparison of once- versus twice-daily milking of pastured dairy cows. J. Dairy Sci. 2006, 89, 1854–1862. [Google Scholar] [CrossRef]
- Tacoma, R.; Fields, J.; Ebenstein, D.B.; Lam, Y.W.; Greenwood, S.L. Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows. J. Dairy Sci. 2017, 100, 7246–7261. [Google Scholar] [CrossRef] [Green Version]
- Spek, J.W.; Dijkstra, J.; Van Duinkerken, G.; Bannink, A. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.M.; Rotz, C.A.; Wattiaux, M.A. Potential use of milk urea nitrogen to abate atmospheric nitrogen emissions from wisconsin dairy farms. J. Environ. Qual. 2014, 43, 1169–1175. [Google Scholar] [CrossRef] [Green Version]
- Arunvipas, P.; Van Leeuwen, J.A.; Dohoo, I.R.; Keefe, G.P. Bulk tank milk urea nitrogen: Seasonal patterns and relationship to individual cow milk urea nitrogen values. Can. J. Vet. Sci. 2004, 68, 169–174. [Google Scholar]
- Aguilar, M.; Hanigan, M.D.; Tucker, H.A.; Jones, B.L.; Garbade, S.K.; McGilliard, M.L.; Stallings, C.C.; Knowlton, K.F.; James, R.E. Cow and herd variation in milk urea nitrogen concentrations in lactating dairy cattle. J. Dairy Sci. 2012, 95, 7261–7268. [Google Scholar] [CrossRef] [Green Version]
- Alderman, G.; Blake, J.S. The energy and protein requirements according to AFRC (1993) of high genetic merit dairy cows. Br. Soc. Anim. Sci. 1995, 19, 99–101. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.L.; Denham, S.C. Quantitative and dynamic aspects of nitrogen metabolism in the rumen: A modeling analysis. J. Anim. Sci. 1979, 49, 1631–1639. [Google Scholar]
Farm | High Intensity | Low Intensity | ||||
---|---|---|---|---|---|---|
Stage of Lactation 1 | Early | Mid | Late | Early | Mid | Late |
Ingredients (kg DM/day) | ||||||
Pasture 2 | 11.1 ±1.3 | 7.9 ± 1.4 | 9.7 ± 2.7 | 14.9 ± 3.3 | 12.1 ± 2.6 | 9.1 ± 1.6 |
Herb-mix crop 3 | 3.5 ± 2.1 | 1.4 ± 1.5 | ||||
Turnips crop | 1.7 ± 0.8 | 0.5 ± 1.1 | ||||
Pasture silage | 3.5 ± 1.3 | 1.3 ± 2.2 | 2.4 ± 1.2 | |||
Lucerne crop | 3.1 ± 3.2 | |||||
Maize silage | 4.4 ± 0.5 | 4.1 ± 0.6 | 5.1 ± 0.7 | |||
Concentrate 4 | 3.0 ± 0.3 | 3.3 ± 0.5 | 2.5 ± 0.3 | |||
Dried distillers grains | 1.0 ± 0.1 | |||||
Measured chemical composition (% DM unless otherwise stated) | ||||||
Energy, MJ ME 5/kg DM | 11.3 ± 0.1 | 11.2 ± 0.2 | 10.6 ± 0.3 | 11.5 ± 0.2 | 11.1 ± 0.6 | 10.5 ± 0.8 |
Crude protein | 14.5 ± 0.1 | 14.7 ± 0.6 | 16.2 ± 1.0 | 18.6 ± 2.1 | 18.9 ± 2.1 | 20.4 ± 1.4 |
Energy: CP ratio, MJ ME/kg DM to CP% | 0.78 | 0.76 | 0.65 | 0.62 | 0.59 | 0.51 |
Neutral detergent fibre | 35.4 ± 0.2 | 35.8 ± 1.3 | 39.7 ± 1.9 | 43.8 ± 3.3 | 42.5 ± 4.0 | 42.4 ± 2.8 |
Acid detergent fibre | 19.3 ± 0.3 | 19.5 ± 0.5 | 21.2 ± 0.6 | 22.0 ± 2.1 | 22.0 ± 2.0 | 23.9 ± 1.9 |
Rumen-undegradable protein 6, CP% | 28.4 | 29 | 28.2 | 29.3 | 31.4 | 27.9 |
Rumen-degradable protein, CP% | 71.6 | 71 | 71.8 | 70.7 | 68.6 | 72.1 |
Farm | High Intensity | Low Intensity | ||
---|---|---|---|---|
Trait | Low MUNBV | High MUNBV | Low MUNBV | High MUNBV |
N | 68 | 70 | 82 | 86 |
Mean cow genetic merit ($BW) 1 | 78.09 ± 32.69 | 84.40 ± 35.75 | 88.32 ± 40.68 | 90.31 ± 38.27 |
Mean MUN 2 breeding value | 0.12 ± 1.09 | 3.08 ± 0.84 | -0.57 ± 1.44 | 3.24 ± 1.32 |
Lactation length, days | 269 ± 4 | 273 ± 4 | 274 ± 3 | 277 ± 3 |
Milk yield, kg | 4934 ± 99 b | 5282 ± 99 a | 3900 ± 86 y | 4369 ± 83 x |
Milk solids yield, kg | 420 ± 8 | 431 ± 8 | 368 ± 7 y | 397 ± 7 x |
Fat yield, kg | 231 ± 5 a | 236 ± 5 b | 208 ± 4 y | 222 ± 4 x |
Protein yield, kg | 188 ± 4 | 195 ± 4 | 160 ± 3 y | 175 ± 3 x |
Lactose yield, kg | 280 ± 5 | 291 ± 5 | 198 ± 5 y | 221 ± 5 x |
Somatic cell score 3 | 4.93 ± 0.15 | 5.2 ± 0.2 | 5.71 ± 0.13 | 5.65 ± 0.13 |
Live weight, kg | 479 ± 7 | 473 ± 7 | 475 ± 6 | 479 ± 6 |
Live weight loss 4, kg | 34 ± 4 a | 30 ± 4 b | 13 ± 4 y | 19 ± 4 x |
Body condition score | 4.31 ± 0.04 a | 4.19 ± 0.04 b | 4.73 ± 0.03 x | 4.53 ± 0.03 y |
Body condition score loss 5 | 0.42 ± 0.03 b | 0.49 ± 0.03 a | 0.28 ± 0.02 y | 0.41 ± 0.02 x |
Dry-matter intake, kg/day | 18.12 ± 0.14 | 18.19 ± 0.14 | 15.67 ± 0.07 y | 16.19 ± 0.07 x |
MUN, mg/dL | 8.20 ± 0.30 b | 11.40 ± 0.29 a | 11.11 ± 0.25 y | 15.46 ± 0.24 x |
MUN yield, g | 429.97 ± 13.63 b | 620.74 ± 13.57 a | 425.61 ± 11.82 y | 632.90 ± 11.44 x |
Farm | High Intensity | Low Intensity | ||
---|---|---|---|---|
Item 1 | Low MUNBV | High MUNBV | Low MUNBV | High MUNBV |
N intake | 423.2 ± 6.3 | 427.2 ± 6.2 | 476.5 ± 3.5 x | 493.0 ± 3.4 y |
N milk | 111.2 ± 1.7 | 113.8 ± 1.7 | 90.7 ± 1.4 x | 98.5 ± 1.3 y |
N retained | 1.2 ± 0.6 b | 2.1 ± 0.6 a | 2.7 ± 0.5 | 1.9 ± 0.5 |
N in faeces | 153.1 ± 1.9 | 154.0 ± 1.8 | 146.4 ± 1.1 x | 151.4 ± 1.1 y |
N in urine | 149.0 ± 4.6 | 150.4 ± 4.5 | 237.1 ± 2.4 | 241.1 ± 2.3 |
NUE, g/g | 0.26 ± 0.03 | 0.27 ± 0.02 | 0.19 ± 0.02 y | 0.20 ± 0.01 x |
Farm | High Intensity | Low Intensity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | Low MUNBV | High MUNBV | Low MUNBV | High MUNBV | ||||||||
Stage of Lactation 1 | Early | Mid | Late | Early | Mid | Late | Early | Mid | Late | Early | Mid | Late |
Metabolisable energy, MJ/day | ||||||||||||
Requirements | 209.2 | 216.3 | 219.2 | 209.8 | 216.8 | 225.6 | 185.4 | 178.4 | 174.0 | 194.0 | 184.0 | 182.0 |
Supply | 209.7 | 233.8 | 233.1 | 210.6 | 234.0 | 241.2 | 180.2 | 185.5 | 187.2 | 185.9 | 192.4 | 194.9 |
Balance | 0.5 | 17.5 | 13.9 | 0.8 | 17.2 | 15.6 | −5.2 | 7.1 | 13.2 | −8.1 | 8.4 | 12.9 |
Metabolisable protein, g/day | ||||||||||||
Requirements | 1792 | 1797 | 1700 | 1806 | 1805 | 1756 | 1525 | 1509 | 1344 | 1619 | 1494 | 1432 |
Supply | 1739 | 1843 | 2115 | 1744 | 1857 | 2190 | 2000 | 1915 | 1967 | 2106 | 2013 | 2079 |
Balance | −53 | 46 | 415 | −62 | 52 | 434 | 475 | 406 | 623 | 487 | 519 | 647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Luna, M.; Donaghy, D.; Kemp, P.; Schutz, M.; López-Villalobos, N. Nitrogen Use Efficiency and Excretion in Grazing Cows with High and Low Milk Urea Nitrogen Breeding Values. Sustainability 2021, 13, 9827. https://doi.org/10.3390/su13179827
Correa-Luna M, Donaghy D, Kemp P, Schutz M, López-Villalobos N. Nitrogen Use Efficiency and Excretion in Grazing Cows with High and Low Milk Urea Nitrogen Breeding Values. Sustainability. 2021; 13(17):9827. https://doi.org/10.3390/su13179827
Chicago/Turabian StyleCorrea-Luna, Martín, Daniel Donaghy, Peter Kemp, Michael Schutz, and Nicolás López-Villalobos. 2021. "Nitrogen Use Efficiency and Excretion in Grazing Cows with High and Low Milk Urea Nitrogen Breeding Values" Sustainability 13, no. 17: 9827. https://doi.org/10.3390/su13179827
APA StyleCorrea-Luna, M., Donaghy, D., Kemp, P., Schutz, M., & López-Villalobos, N. (2021). Nitrogen Use Efficiency and Excretion in Grazing Cows with High and Low Milk Urea Nitrogen Breeding Values. Sustainability, 13(17), 9827. https://doi.org/10.3390/su13179827