Evaluation System Transformation of Multi-Scale Cultivated Land Quality and Analysis of Its Spatio-Temporal Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Methods
2.3.1. Cultivated Land Quality Evaluation Based on GIS
2.3.2. Spatial and Temporal Scale Transformation of the CLQ Evaluation System
Spatial Scale Transformation of the CLQ Evaluation System
Temporal Scale Transformation of the CLQ Evaluation System
2.3.3. Spatial Scale Variation Characteristics Analysis of CLQ
2.3.4. Temporal Scale Variation Characteristics Analysis of CLQ
3. Results and Analysis
3.1. Multi-Scale CLQ Evaluation Based on GIS
3.2. Spatial and Temporal Scale Transformation Results of CLQ
3.2.1. Spatial Scale Transformation Results of CLQ
3.2.2. Temporal Scale Transformation Results of CLQ
3.3. Spatial Scale Variation Characteristics Analysis of CLQ
3.3.1. Descriptive Statistical Analysis of Multi-Scale CLQ
3.3.2. Area Proportion Results Analysis of Multi-Scale CLQ
3.3.3. Spatial Distribution Results Analysis of Multi-Scale CLQ
3.3.4. Spatial Aggregation Results Analysis of Multi-Scale CLQ
3.4. Time Temporal Scale Variation Characteristics Analysis of CLQ
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pham, T.G.; Nguyen, H.T.; Kappas, M. Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 280–288. [Google Scholar] [CrossRef]
- Rogozan, G.C.; Micle, V.; Sur, I.M. Maps of heavy metals in Cluj County soils developed using the Regression-Kriging method. Environ. Eng. Manag. J. 2016, 15, 1035–1039. [Google Scholar] [CrossRef]
- Li, Y.Q.; Shi, K.F.; Wang, Y.H.; Yang, Q.Y. Quantifying and evaluating the cultivated areas suitable for fallow in Chongqing of China using multisource data. Land 2021, 10, 74. [Google Scholar] [CrossRef]
- Rondhi, M.; Pratiwi, P.A.; Handini, V.T.; Sunartomo, A.F.; Budiman, S.A. Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land 2018, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.S.; Cai, Y.L. Progress in the study of scale issues in land change science. Geograph. Res. 2010, 29, 1244–1256. [Google Scholar]
- Yang, Z.F.; Yu, T.; Hou, Q.Y.; Xia, X.Q.; Feng, H.Y.; Huang, C.L.; Wang, L.S.; Lv, Y.Y.; Zhang, M. Geochemical evaluation of land quality in China and its applications. J. Geochem. Explor. 2014, 139, 122–135. [Google Scholar] [CrossRef]
- Ma, R.M.; Ma, R.H.; Han, D.M.; Yun, W.J. Construction of cultivated land quality evaluation system in provincial level based on multilevel indicators. Trans. Chin. Soc. Agric. Eng. 2018, 34, 249–257. [Google Scholar]
- Jahanshiri, E.; Nizar, N.M.M.; Suhairi, T.A.S.T.M.; Gregory, P.J.; Mohamed, A.S.; Wimalasiri, E.M.; Azam-Ali, S.N. A land evaluation framework for agricultural diversification. Sustainability 2020, 12, 3110. [Google Scholar] [CrossRef] [Green Version]
- Nabiollahi, K.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Moradian, S. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecol. Indic. 2017, 83, 482–494. [Google Scholar] [CrossRef]
- Wang, Q.T.; Kong, X.B.; Yun, W.J.; Chen, W.Q.; Xin, Y.N.; Zhang, Q.P. The application of the method for cultivated land quality gradation in the new era: A case study in Pingshan county, Hebei province. China Land Sci. 2018, 32, 59–66. [Google Scholar]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; McDowell, R.W. Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture. Geoderma 2019, 352, 80–95. [Google Scholar] [CrossRef]
- Messing, I.; Fagerström, M.H.H.; Chen, L.D.; Fu, B.J. Criteria for land suitability evaluation in a small catchment on the Loess Plateau in China. Catena 2003, 54, 215–234. [Google Scholar] [CrossRef]
- Cheng, J.N.; Zhao, G.X.; Zhang, Z.X.; Wang, J. GIS supported comprehensive evaluation of cultivated land quality at small scale—A case study in Dingzhuang town of Shandong Province. J. Nat. Resour. 2009, 24, 536–544. [Google Scholar]
- Vasu, D.; Srivastava, R.; Patil, N.G.; Tiwary, P.; Chandran, P.; Singh, S.K. A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level. Land Use Policy 2018, 79, 146–163. [Google Scholar] [CrossRef]
- Li, W.Y.; Zhu, C.M.; Wang, H.; Xu, B.G. Multi-scale spatial autocorrelation analysis of cultivated land quality in Zhejiang province. Trans. Chin. Soc. Agric. Eng. 2016, 32, 239–245. [Google Scholar]
- Zhang, H.; Zhao, X.M.; Ouyang, Z.C.; Guo, X.; Li, W.F.; Kuang, L.H.; Ye, Y.C.; Huang, C.; Wang, X.Y. Multi-scale spatial autocorrelation analysis of cultivated land quality in China’s southern hillside areas: A case study of Lichuan county, Jiangxi province. Chin. J. Eco Agric. 2018, 26, 263–273. [Google Scholar]
- Sun, C.K.; Xu, J.L.; Yu, D.; Zhou, W.; Wang, J.P.; Liang, Z.B. Spatial distribution of cultivated land quality at different scales in Chongyi County. Chin. J. Eco Agric. 2019, 27, 601–612. [Google Scholar]
- Kiani, M.; Hernandez-Ramirez, G.; Quideau, S.; Smith, E.; Janzen, H.; Larney, F.J.; Puurveen, D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric. Ecosyst. Environ. 2017, 248, 123–135. [Google Scholar] [CrossRef]
- Lin, L.; Ye, Z.R.; Gan, M.Y.; Shahtahmassebi, A.R.; Weston, M.; Deng, J.S.; Lu, S.G.; Wang, K. Quality perspective on the dynamic balance of cultivated land in Wenzhou, China. Sustainability 2017, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.M.; Zhou, D.; Chang, X.; Lin, Z.L. A new grading system for evaluating China’s cultivated land quality. Land Degrad. Dev. 2020, 31, 1482–1501. [Google Scholar] [CrossRef]
- Wang, R.Y.; Zhao, G.X.; Li, T.; Yue, Y.D. GIS supported quantitative evaluation of cultivated land fertility. Trans. Chin. Soc. Agric. Eng. 2004, 20, 307–310. [Google Scholar]
- Zhao, R.; Wu, K.N.; Li, X.L.; Gao, N.; Yu, M.M. Discussion on the Unified Survey and evaluation of cultivated land quality at county scale for China’s 3rd national land survey: A case study of Wen County, Henan Province. Sustainability 2021, 13, 2513. [Google Scholar] [CrossRef]
- Huang, F.; Liu, D.; Tan, X.; Wang, J.; Chen, Y.; He, B. Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS. Comput. Geosci. 2011, 37, 426–434. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.W.; Li, Y.Q.; Zhou, S.N. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- The Ministry of Agriculture of the People’s Republic of China. Rules for Soil Quality Survey and Assessment (NY/T 1634-2008). 2008. Available online: https://www.chinesestandard.net/PDF/BOOK.aspx/NYT1634-2008 (accessed on 1 August 2021).
- General Administration of Quality Supervision, Inspection, Quarantine of the (AQSIQ), P.R.C., Standardization Administration of China (SAC). Cultivated Land Quality Grade (GB/T 33469-2016). 2016. Available online: https://www.chinesestandard.net/PDF/BOOK.aspx/GBT33469-2016 (accessed on 1 August 2021).
- Di Vita, G.; Zanchini, R.; Falcone, G.; D’Amico, M.; Brun, F.; Gulisano, G. Local, organic or protected? Detecting the role of different quality signals among Italian olive oil consumers through a hierarchical cluster analysis. J. Clean. Prod. 2021, 290, 125795. [Google Scholar] [CrossRef]
- Ocampo, L.; Ebisa, J.A.; Ombe, J.; Escoto, M.G. Sustainable ecotourism indicators with fuzzy Delphi method—A Philippine perspective. Ecol. Indic. 2018, 93, 874–888. [Google Scholar] [CrossRef]
- Hoang, H.T.; Truong, Q.H.; Nguyen, A.T.; Hens, L. Multicriteria evaluation of tourism potential in the central highlands of vietnam: Combining geographic information system (GIS), analytic hierarchy process (AHP) and principal component analysis (PCA). Sustainability 2018, 10, 3097. [Google Scholar] [CrossRef] [Green Version]
- Akter, M.; Jahan, M.; Kabir, R.; Karim, D.S.; Haque, A.; Rahman, M.; Salehin, M. Risk assessment based on fuzzy synthetic evaluation method. Sci. Total Environ. 2019, 658, 818–829. [Google Scholar] [CrossRef]
- Fathelrahman, E.M.; Ascough, J.C., II; Hoag, D.L.; Malone, R.W.; Heilman, P.; Wiles, L.J.; Kanwar, R.S. Continuum of risk analysis methods to assess tillage system sustainability at the experimental plot level. Sustainability 2011, 3, 1035–1063. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Das, A.; Pereira, P.; Mandal, A. Exploring the spatio-temporal dynamics of ecosystem health: A study on a rapidly urbanizing metropolitan area of Lower Gangetic Plain, India. Ecol. Indic. 2021, 125, 107584. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, X.L.; Hu, B.F.; Biswas, A.; Jiang, Q.S.; Liu, W.Y.; Wang, N.; Peng, J. Field-scale characterization of spatio-temporal variability of soil salinity in three dimensions. Remote Sens. 2020, 12, 4043. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Y. Review on spatial variability and scale effects of land quality. Prog. Geogr. 2005, 4, 28–35. [Google Scholar]
- Goenster-Jordan, S.; Jannoura, R.; Jordan, G.; Buerkert, A.; Joergensen, R.G. Spatial variability of soil properties in the floodplain of a river oasis in the Mongolian Altay Mountains. Geoderma 2018, 330, 99–106. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Jiang, J.H.; Xiao, P.N.; Wu, H. Spatial characteristics of cultivated land quality accounting for ecological environmental condition: A case study in hilly area of northern Hubei province, China. Sci. Total Environ. 2021, 774, 145765. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Wang, M.M.; Chen, H.S.; Zhang, W.; Wang, K.L. Influencing factors on soil nutrients at different scales in a karst area. Catena 2019, 175, 411–420. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Cheng, D.Q.; Chen, J.; Sun, Z.Y.; Zhang, H.N. Problems and analytical logic in building cultivated land productivity evaluation index system. Acta Pedol. Sin. 2015, 52, 1197–1208. [Google Scholar]
- Zhang, Y.L.; Zhou, Y.; Zhai, X.Y.; Guo, S.J.; Yu, L.; Huang, J.C.; Cheng, D.Q. Scale transformation method and its application of cultivated land productivity evaluation between county and city. Soil Water Conserv. 2015, 29, 327–331. [Google Scholar]
- Odeh, I.O.A.; Todd, A.J.; Triantafilis, J.; McBratney, A.B. Status and trends of soil salinity at different scales: The case for the irrigated cotton growing region of eastern Australia. Nutr. Cycl. Agroecosyst. 1998, 50, 99–107. [Google Scholar] [CrossRef]
- Luan, H.J.; Tian, Q.J.; Yu, T.; Hu, X.L.; Huang, Y.; Du, L.T.; Zhao, L.M.; Wei, X.; Han, J.; Zhang, Z.W.; et al. Modeling continuous scaling of NDVI based on fractal theory. Spectrosc. Spectral Anal. 2013, 33, 1857–1862. [Google Scholar]
- Su, B.W.; Zhao, G.X.; Dong, C. Spatiotemporal variability of soil nutrients and the responses of growth during growth stages of winter wheat in northern China. PLoS ONE 2018, 13, e0203509. [Google Scholar] [CrossRef] [PubMed]
- Vasu, D.; Singh, S.K.; Ray, S.K.; Duraisami, V.P.; Tiwary, P.; Chandran, P.; Nimkar, A.M.; Anantwar, S.G. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma 2016, 282, 70–79. [Google Scholar] [CrossRef]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Sonneveld, M.P.W.; Hack-ten Broeke, M.J.D.; Van Diepen, C.A.; Boogaard, H.L. Thirty years of systematic land evaluation in The Netherlands. Geoderma 2010, 156, 84–92. [Google Scholar] [CrossRef]
- Cao, J.J.; Zhou, Y.; Ye, Q.Q.; Yun, W.J.; Leng, G.Y. Reasearch on county-level cultivated land classification update methods based on the fuzzy matter-elementand Kriging interpolation method. Econ. Geogr. 2012, 32, 131–137. [Google Scholar]
- Qiu, Y.; Wang, Y.; Fu, B.J.; Wang, J.; Meng, Q.H. Spatiotemporal variation in soil quality and its relation to the environmental factors. Prog. Geogr. 2008, 4, 42–50. [Google Scholar]
The Second Survey | The Third Survey | |||||
---|---|---|---|---|---|---|
Laixi City | Qingdao City | Shandong Province | Laixi City | |||
Index | Weight | Weight | Weight | Index | Weight | |
Site conditions | Irrigation and drainage capacity | 0.2248 | 0.2083 | 0.1840 | Irrigation capacity | 0.1670 |
Geomorphic types | 0.0996 | 0.1537 | 0.1104 | Drainage capacity | 0.0400 | |
Slope | 0.1252 | Topography sites | 0.1230 | |||
Salinization | 0.0644 | Effective soil thickness | 0.1560 | |||
Physical properties | Cultivated layer texture | 0.0790 | 0.1282 | 0.1502 | Cultivated layer texture | 0.1030 |
Topsoil thickness | 0.1106 | 0.1955 | 0.1699 | Topsoil thickness | 0.0200 | |
Texture configuration | 0.0632 | 0.1238 | Texture configuration | 0.0700 | ||
Obstacle factors | 0.0474 | 0.0881 | Obstacle factors | 0.0200 | ||
Soil bulk density | 0.0300 | |||||
Chemical properties | Organic matter | 0.0835 | 0.1074 | 0.0931 | Organic matter | 0.0860 |
Available phosphorus | 0.0694 | 0.0658 | 0.0541 | Available phosphorus | 0.0530 | |
Rapidly available potassium | 0.0556 | 0.0530 | 0.0501 | Rapidly available potassium | 0.0420 | |
Available zinc | 0.0278 | PH | 0.0400 | |||
Available boron | 0.0139 | |||||
Environment conditions | Salinization | 0.0100 | ||||
Groundwater depth | 0.0100 | |||||
Farmland shelterbelt | 0.0100 | |||||
Biodiversity | 0.0100 | |||||
Cleanliness | 0.0100 |
Number | Min | Max | Mean | Median | SD | CV | ||
---|---|---|---|---|---|---|---|---|
County area | County-scale | 6730 | 0.271 | 0.961 | 0.797 | 0.793 | 0.095 | 11.90% |
City-scale | 1319 | 0.450 | 0.918 | 0.743 | 0.729 | 0.099 | 13.32% | |
Provincial-scale | 142 | 0.528 | 0.921 | 0.809 | 0.836 | 0.070 | 8.65% | |
City area | City-scale | 8800 | 0.480 | 0.986 | 0.768 | 0.780 | 0.116 | 15.10% |
Provincial-scale | 849 | 0.488 | 0.979 | 0.821 | 0.830 | 0.108 | 13.15% |
Grade | County Area | City Area | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
County-Scale | City-Scale | Provincial-Scale | County-Scale | Provincial-Scale | |||||||
High | 1 | 18.59 | 24.61 | 7.90 | 24.19 | 1.54 | 23.00 | 17.73 | 40.45 | 17.78 | 37.54 |
2 | 6.02 | 16.29 | 21.46 | 22.72 | 19.76 | ||||||
Medium | 3 | 27.49 | 58.86 | 43.46 | 61.51 | 41.58 | 61.42 | 27.76 | 42.68 | 18.74 | 44.65 |
4 | 31.37 | 18.05 | 19.84 | 14.92 | 25.91 | ||||||
Low | 5 | 14.85 | 16.53 | 13.88 | 14.30 | 15.14 | 15.58 | 10.10 | 16.87 | 6.81 | 17.81 |
6 | 1.68 | 0.42 | 0.44 | 6.77 | 11.00 |
Grade | The Second Survey (2007) | The Third Survey (2020) | |||
---|---|---|---|---|---|
High | 1 | 0.00 | 6.16 | 0.00 | 7.07 |
2 | 0.00 | 0.02 | |||
3 | 6.16 | 7.05 | |||
Medium | 4 | 6.63 | 65.78 | 7.30 | 67.16 |
5 | 28.24 | 28.64 | |||
6 | 30.91 | 31.22 | |||
Low | 7 | 4.53 | 28.06 | 4.70 | 25.77 |
8 | 1.44 | 1.67 | |||
9 | 9.42 | 8.44 | |||
10 | 12.67 | 10.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chang, C.; Zhao, Y.; Wang, Z.; Li, T.; Li, J.; Dou, J.; Fan, R.; Wang, Q.; Yang, J.; et al. Evaluation System Transformation of Multi-Scale Cultivated Land Quality and Analysis of Its Spatio-Temporal Variability. Sustainability 2021, 13, 10100. https://doi.org/10.3390/su131810100
Li Y, Chang C, Zhao Y, Wang Z, Li T, Li J, Dou J, Fan R, Wang Q, Yang J, et al. Evaluation System Transformation of Multi-Scale Cultivated Land Quality and Analysis of Its Spatio-Temporal Variability. Sustainability. 2021; 13(18):10100. https://doi.org/10.3390/su131810100
Chicago/Turabian StyleLi, Yinshuai, Chunyan Chang, Yongchang Zhao, Zhuoran Wang, Tao Li, Jianwei Li, Jiacong Dou, Ruibin Fan, Qiyao Wang, Jingwen Yang, and et al. 2021. "Evaluation System Transformation of Multi-Scale Cultivated Land Quality and Analysis of Its Spatio-Temporal Variability" Sustainability 13, no. 18: 10100. https://doi.org/10.3390/su131810100
APA StyleLi, Y., Chang, C., Zhao, Y., Wang, Z., Li, T., Li, J., Dou, J., Fan, R., Wang, Q., Yang, J., Zhang, S., & Zhao, G. (2021). Evaluation System Transformation of Multi-Scale Cultivated Land Quality and Analysis of Its Spatio-Temporal Variability. Sustainability, 13(18), 10100. https://doi.org/10.3390/su131810100