Novel Approach to Synthesize Nanostructured Gallium Oxide for Devices Operating in Harsh Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
The Growth Mechanism of Ga2O3 Nanostructures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bringezu, S.; Potočnik, J.; Schandl, H.; Lu, Y.; Ramaswami, A.; Swilling, M.; Suh, S. Multi-Scale Governance of Sustainable Natural Resource Use—Challenges and Opportunities for Monitoring and Institutional Development at the National and Global Level. Sustainability 2016, 8, 778. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M. Trust in sustainable natural resource development. Nat. Hum. Behav. 2019, 3, 542. [Google Scholar] [CrossRef]
- Raipure, S.; Mehetre, D. Wireless sensor network based pollution monitoring system in metropolitan cities. In Proceedings of the 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2–4 April 2015; pp. 1835–1838. [Google Scholar]
- Ullah, S.; Branquinho, R.; Mateus, T.; Martins, R.; Fortunato, E.; Rasheed, T.; Sher, F. Solution Combustion Synthesis of Transparent Conducting Thin Films for Sustainable Photovoltaic Applications. Sustainability 2020, 12, 10423. [Google Scholar] [CrossRef]
- Fleischer, M.; Meixner, H. Characterization and crystallite growth of semiconducting high-temperature-stable Ga2O3 thin films. J. Mater. Sci. Lett. 1992, 11, 1728–1731. [Google Scholar] [CrossRef]
- Bavasso, I.; Vilardi, G.; Stoller, M.; Chianese, A.; Di Palma, L. Perspectives in Nanotechnology Based Innovative Applications For The Environment. Chem. Eng. Trans. 2016, 47, 55–60. [Google Scholar]
- Yu, X.-Y.; Liu, Z.-G.; Huang, X.-J. Nanostructured metal oxides/hydroxides-based electrochemical sensor for monitoring environmental micropollutants. Trends Environ. Anal. Chem. 2014, 3, 28–35. [Google Scholar] [CrossRef]
- Tucureanu, M.; Rusănescu, C.; Purdea, L. Polluting Emissions from Incineration and Waste Installations. Rev. Chim. 2019, 70, 2385–2387. [Google Scholar] [CrossRef]
- Rusănescu, C.; Murad, E.; Jinescu, C.; Rusanescu, M. The Impact of Biochar on the Soil. Rev. Chim. 2018, 69, 2197–2202. [Google Scholar] [CrossRef]
- Enescu, M.; Elena Valentina, S.; Rusănescu, C.; Popescu, I. The Effect of the Action of Impurities Present in Methanol as a Basis for Automobile Fuel and Their Impact on the Environment. Rev. Chim.-Buchar. Orig. Ed. 2019, 70, 4260–4265. [Google Scholar]
- Luque, P.; Mántaras, D.A.; Sanchez, L. Artificial Intelligence Applied to Evaluate Emissions and Energy Consumption in Commuter Railways: Comparison of Liquefied Natural Gas as an Alternative Fuel to Diesel. Sustainability 2021, 13, 7112. [Google Scholar] [CrossRef]
- Villa, T.F.; Gonzalez, F.; Miljievic, B.; Ristovski, Z.D.; Morawska, L. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives. Sensors 2016, 16, 1072. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.W.; Wei, G.; Vincent, T.; Volans, K.; Tremlett, P.; Wotherspoon, T.; Dyer, D.C. A Gas Sensor System for Harsh Environment Applications. Procedia Eng. 2015, 120, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, N.M.; Vaz, F.; Cunha, L.; Cavaleiro, A. Au-WO3 Nanocomposite Coatings for Localized Surface Plasmon Resonance Sensing. Materials 2020, 13, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, A. β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies. J. Mater. 2019, 5, 542–557. [Google Scholar] [CrossRef]
- Rafique, S.; Han, L.; Zhao, H. (Invited) Ultrawide Bandgap β-Ga2O3 Thin Films: Growths, Properties and Devices. ECS Trans. 2017, 80, 203–216. [Google Scholar] [CrossRef]
- Fleischer, M.; Meixner, H. Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films. Sens. Actuators B Chem. 1992, 6, 257–261. [Google Scholar] [CrossRef]
- Fleischer, M.; Höllbauer, L.; Meixner, H. Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases. Sens. Actuators B Chem. 1994, 18, 119–124. [Google Scholar] [CrossRef]
- Réti, F.; Fleischer, M.; Perczel, I.V.; Meixner, H.; Giber, J. Detection of reducing gases in air by β-Ga2O3 thin films using self-heated and externally (oven-) heated operation modes. Sens. Actuators B Chem. 1996, 34, 378–382. [Google Scholar] [CrossRef]
- Wang, J.C.; Shie, D.C.; Lei, T.F.; Lee, C.L. Turnaround of hysterisis for capacitance-voltage characteristics of hafnium oxynitride dielectrics. Appl. Phys. Lett. 2004, 84, 1531–1533. (In English) [Google Scholar] [CrossRef] [Green Version]
- Besleaga, C.; Stan, G.E.; Pintilie, I.; Barquinha, P.; Fortunato, E.; Martins, R. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor. Appl. Surf. Sci. 2016, 379, 270–276. (In English) [Google Scholar] [CrossRef]
- Gao, Z.; Romero, M.F.; Pampillon, M.A.; San Andres, E.; Calle, F. Thermal Assessment of AlGaN/GaN MOS-HEMTs on Si Substrate Using Gd2O3 as Gate Dielectric. IEEE Trans. Electron. Devices 2016, 63, 2729–2734. (In English) [Google Scholar] [CrossRef]
- Saeidi, A.; Biswas, A.; Ionescu, A.M. Modeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric. Solid-State Electron. 2016, 124, 16–23. (In English) [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Zhou, X.Y.; Guo, H.Y.; Gu, G.D.; Wang, Y.G.; Song, X.B.; Yin, J.Y.; Lv, Y.J.; Feng, Z.H. Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al2O3 Gate Dielectric. Chin. Phys. Lett. 2016, 33, 098501. (In English) [Google Scholar] [CrossRef]
- Xiao, D.Q.; He, G.; Liu, M.; Gao, J.; Jin, P.; Jiang, S.S.; Li, W.D.; Zhang, M.; Liu, Y.M.; Lv, J.G.; et al. Modification of optical and electrical properties of sol-gel-derived TiO2-doped ZrO2 gate dielectrics by annealing temperature. J. Alloy. Compd. 2016, 688, 252–259. (In English) [Google Scholar] [CrossRef]
- Passlack, M.; Hunt, N.E.J.; Schubert, E.F.; Zydzik, G.J.; Hong, M.; Mannaerts, J.P.; Opila, R.L.; Fischer, R.J. Dielectric-Properties of Electron-Beam Deposited Ga2o3 Films. Appl. Phys. Lett. 1994, 64, 2715–2717. (In English) [Google Scholar] [CrossRef]
- Robertson, J. High dielectric constant oxides. Eur. Phys. J.-Appl. Phys. 2004, 28, 265–291. (In English) [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Mao, H.; Gao, J.Y.; Chopdekar, R.V.; Takamura, Y.; Chowdhury, S.; Islam, M.S. An Investigation of Electrical and Dielectric Parameters of Sol-Gel Process Enabled beta-Ga2O3 as a Gate Dielectric Material. IEEE Trans. Electron. Dev. 2017, 64, 2047–2053. (In English) [Google Scholar] [CrossRef]
- Alhalaili, B.; Bunk, R.; Vidu, R.; Islam, S.M. Dynamics Contributions to the Growth Mechanism of Ga2O3 Thin Film and NWs Enabled by Ag Catalyst. Nanomaterials 2019, 9, 1272. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.G.; Wan, Y.M.; Cuevas, A. Silicon Surface Passivation by Gallium Oxide Capped With Silicon Nitride. IEEE J. Photovolt. 2016, 6, 900–905. (In English) [Google Scholar] [CrossRef]
- Jevasuwan, W.; Maeda, T.; Miyata, N.; Oda, M.; Irisawa, T.; Tezuka, T.; Yasuda, T. Self-limiting growth of ultrathin Ga2O3 for the passivation of Al2O3/InGaAs interfaces. Appl. Phys. Express 2014, 7, 011201. (In English) [Google Scholar] [CrossRef]
- Lin, C.F.; Lin, C.M.; Jiang, R.H. Micro-Square-Array InGaN-Based Light-Emitting Diode with an Insulated Ga2O3 Layer through a Photoelectrochemical Process. Jpn. J. Appl. Phys. 2012, 51, 01AG03. (In English) [Google Scholar] [CrossRef]
- Seok, O.; Ahn, W.; Han, M.K.; Ha, M.W. Effect of Ga2O3 sputtering power on breakdown voltage of AlGaN/GaN high-electron-mobility transistors. J. Vac. Sci. Technol. B 2013, 31, 011203. (In English) [Google Scholar] [CrossRef]
- Shih, H.Y.; Chu, F.C.; Das, A.; Lee, C.Y.; Chen, M.J.; Lin, R.M. Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors. Nanoscale Res. Lett. 2016, 11, 1–9. (In English) [Google Scholar] [CrossRef] [Green Version]
- Ulman, K.; Nguyen, M.T.; Seriani, N.; Gebauer, R. Passivation of surface states of alpha-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study. J. Chem. Phys. 2016, 144, 094701. (In English) [Google Scholar] [CrossRef]
- Alhalaili, B.; Vidu, R.; Islam, M.S. The Growth of Ga2O3 Nanowires on Silicon for Ultraviolet Photodetector. Sensors 2019, 19, 5301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detz, H.; Kriz, M.; MacFarland, D.; Lancaster, S.; Zederbauer, T.; Capriotti, M.; Andrews, A.M.; Schrenk, W.; Strasser, G. Nucleation of Ga droplets on Si and SiOx surfaces. Nanotechnology 2015, 26, 315601. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glickman, E.; Levenshtein, M.; Budic, L.; Eliaz, N. Interaction of liquid and solid gallium with thin silver films: Synchronized spreading and penetration. Acta Mater. 2011, 59, 914–926. (In English) [Google Scholar] [CrossRef]
- Alhalaili, B.; Dryden, D.M.; Vidu, R.; Ghandiparsi, S.; Cansizoglu, H.; Gao, Y.; Saif Islam, M. High-aspect ratio micro- and nanostructures enabled by photo-electrochemical etching for sensing and energy harvesting applications. Appl. Nanosci. 2018, 8, 1171–1177. [Google Scholar] [CrossRef]
- Mostafa, A.; Medraj, M. Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl). Materials 2017, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Z.; Li, N.; Duan, P.P.; Sun, X.W.; Chu, B.L.; He, Q.Y. Properties and Photocatalytic Activity of beta-Ga2O3 Nanorods under Simulated Solar Irradiation. J. Nanomater. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zinkevich, M.; Aldinger, F. Thermodynamic assessment of the gallium-oxygen system. J. Am. Ceram. Soc. 2004, 87, 683–691. (In English) [Google Scholar] [CrossRef]
- Girija, K.; Thirumalairajan, S.; Mastelaro, V.R.; Mangalaraj, D. Catalyst free vapor–solid deposition of morphologically different β-Ga2O3 nanostructure thin films for selective CO gas sensors at low temperature. Anal. Methods 2016, 8, 3224–3235. [Google Scholar] [CrossRef]
- Butt, D.P.; Park, Y.; Taylor, T.N. Thermal vaporization and deposition of gallium oxide in hydrogen. J. Nucl. Mater. 1999, 264, 71–77. (In English) [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R. Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices. Phys. Status Solidi-Rapid Res. Lett. 2013, 7, 781–792. (In English) [Google Scholar] [CrossRef]
- Assal, J.; Hallstedt, B.; Gauckler, L.J. Thermodynamic assessment of the silver-oxygen system. J. Am. Ceram. Soc. 1997, 80, 3054–3060. (In English) [Google Scholar] [CrossRef]
- Martienssen, W.W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Alhalaili, B.; Mao, H.; Dryden, D.M.; Cansizoglu, H.; Bunk, R.J.; Vidu, R.; Woodall, J.; Islam, M.S. Influence of Silver as a Catalyst on the Growth of β-Ga2O3 Nanowires on GaAs. Materials 2020, 13, 5377. [Google Scholar] [CrossRef]
- Wang, Y. Current methods for GaN synthesis and the limitations. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1676, p. 012002. [Google Scholar] [CrossRef]
- Alhalaili, B.; Vidu, R.; Mao, H.W.; Islam, M.S. Comparative Study of Growth Morphologies of Ga2O3 Nanowires on Different Substrates. Nanomaterials 2020, 10, 1920. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhalaili, B.; Vidu, R.; Popescu, I.N.; Samyamanthula, D.R.; Islam, M.S. Novel Approach to Synthesize Nanostructured Gallium Oxide for Devices Operating in Harsh Environmental Conditions. Sustainability 2021, 13, 10197. https://doi.org/10.3390/su131810197
Alhalaili B, Vidu R, Popescu IN, Samyamanthula DR, Islam MS. Novel Approach to Synthesize Nanostructured Gallium Oxide for Devices Operating in Harsh Environmental Conditions. Sustainability. 2021; 13(18):10197. https://doi.org/10.3390/su131810197
Chicago/Turabian StyleAlhalaili, Badriyah, Ruxandra Vidu, Ileana Nicoleta Popescu, Dhanu Radha Samyamanthula, and M. Saif Islam. 2021. "Novel Approach to Synthesize Nanostructured Gallium Oxide for Devices Operating in Harsh Environmental Conditions" Sustainability 13, no. 18: 10197. https://doi.org/10.3390/su131810197
APA StyleAlhalaili, B., Vidu, R., Popescu, I. N., Samyamanthula, D. R., & Islam, M. S. (2021). Novel Approach to Synthesize Nanostructured Gallium Oxide for Devices Operating in Harsh Environmental Conditions. Sustainability, 13(18), 10197. https://doi.org/10.3390/su131810197