Offsetting the Impact of CO2 Emissions Resulting from the Transport of Maiêutica’s Academic Campus Community
Abstract
:1. Introduction
1.1. The Emissions of CO2 from Transports
1.2. The Capture of CO2 from the Atmosphere
1.3. Universities’ Role in Keeping Sustainable Practices
1.4. Maiêutica Academic Campus
1.5. Goals
2. Methods
2.1. Samples and Procedures
2.2. Estimation of Carbon Emissions
- —carbon emission per week (g CO2) per respondent,
- N—number of trips done to campus per week,
- —partial distance in a given transportation i (km)
- —number of occupants in a given car ( = 1 for other transports),
- —transport i’s average carbon emission (g CO2/km), and
- D—campus–home and home–campus total distance for each participant (km)
2.3. Estimation of Trees Needed to Capture CO2
3. Results
3.1. Sample
3.2. CO2 Emission Estimate
3.3. Number of Trees Needed to Capture CO2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EUROSTAT. Share of Fossil Fuels in Gross Available Energy. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210204-1 (accessed on 23 March 2021).
- State of the Environment Portal. Passenger Transport, Portugal. Available online: https://rea.apambiente.pt/content/passenger-transport?language=en (accessed on 23 March 2021).
- European Environment Agency. Annual European Union Greenhouse Gas Inventory 1990–2017 and Inventory Report 2019, Presented at the United Nations Framework Convention on Climate Change and the Kyoto Protocol 27 May 2019. Brussels. Available online: https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019 (accessed on 4 April 2021).
- Allen, M.R.; Dube, O.P.; Solecki, W.A.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Portner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland; Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter1_Low_Res.pdf (accessed on 20 March 2021).
- European Union. Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 Setting Emission Performance Standards for New Passenger Cars as Part of the Community’s Integrated Approach To Reduce CO2 Emissions from Light-Duty Vehicles. Off. J. Eur. Union 2009, 140, 5–6. [Google Scholar]
- European Union. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/201. Off. J. Eur. Union 2019, 151, 15. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 Climate Ambition. Investing in a Climate-Neutral Future for the Benefit of Our People; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Lal, R. Carbon sequestration. Phil. Trans. R. Soc. B 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Freund, P.; Ormerod, W.G. Progress towards storage of carbon dioxide. Energy Convers. Manag. 1997, 38, S199–S204. [Google Scholar] [CrossRef]
- Klara, S.M.; Srivastava, R.D.; McIlvried, H.G. Integrated collaborative technology development program for CO2 sequestration in geologic formations—United States Department of Energy R&D. Energy Convers. Manag. 2003, 44, 2699–2712. [Google Scholar]
- Rathnaweera, T.D.; Ranjith, P.G.; Perera, M.S.A. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yuan, L.; Sun, G.; Lv, J.; Zhang, Y. Experimental determination of CO2 diffusion coefficient in a brine-saturated core simulating reservoir condition. Energies 2021, 14, 540. [Google Scholar] [CrossRef]
- Ranjan, M.; Herzog, H.J. Feasibility of air capture. Energy Procedia 2011, 4, 2869–2876. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Land Use, Land Use Change and Forestry, Inter-Government Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- De Villiers, C.; Chen, S.; Jin, C.; Zhu, Y. Carbon sequestered in the trees on a university campus: A case study. Sustainability Accounting. Manag. Policy J. 2014, 5, 149–171. [Google Scholar]
- Saral, A.M.; SteffySelcia, S.; Devi, K. Carbon storage and sequestration by trees in VIT University campus. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 263, pp. 1–5. [Google Scholar]
- Bernal, B.; Murray, L.T.; Pearson, T.R.H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Sedjo, R.A.; Marland, G. Inter-trading permanent emissions credits and rented temporary carbon emissions offsets: Some issues and alternatives. Clim. Policy 2003, 3, 435–444. [Google Scholar] [CrossRef]
- Mancini, M.S.; Galli, A.; Niccolucci, V.; Lin, D.; Bastianoni, S.V.; Wackernagel, M.; Marchettini, N. Ecological footprint: Refining the carbon footprint calculation. Ecol. Indic. 2016, 61, 390–403. [Google Scholar] [CrossRef]
- Ferrer-Balas, D.; Lozano, R.; Huisingh, D.; Buckland, H.; Ysern, P.; Zilahy, G. Going beyond the rhetoric: System-wide changes in universities for sustainable societies. J. Clean. Prod. 2010, 18, 607–610. [Google Scholar] [CrossRef]
- Commitment to Sustainable Practices of Higher Education Institutions on the Occasion of the United Nations Conference on Sustainable Development 20–22 June 2012, Rio de Janeiro Rio+20. Available online: https://sustainabledevelopment.un.org/content/documents/1889HEI%20Declaration%20English%20new%20version.pdf (accessed on 15 April 2021).
- Larsen, H.N.; Pettersen, J.; Solli, C.; Hertwich, E.G. Investigating the carbon footprint of a university—The case of NTNU. J. Clean. Prod. 2013, 48, 39–47. [Google Scholar] [CrossRef]
- Alvarez, S.; Blanquer, M.; Rubio, A. Carbon footprint using the compound method based on financial accounts. The case of the School of Forestry Engineering, Technical University of Madrid. J. Clean. Prod. 2014, 66, 224–232. [Google Scholar] [CrossRef]
- Gómez, N.; Cadarso, M.Á.; Monsalve, F. Carbon footprint of a university in a multiregional model: The case of the University of Castilla-La Mancha. J. Clean. Prod. 2016, 138, 119–130. [Google Scholar] [CrossRef]
- Gibassier, D.; Michelon, G.; Cartel, M. The future of carbon accounting research: “We’ve pissed mother nature off, big time”. Sustain. Account. Manag. Policy J. 2020, 11, 477–485. [Google Scholar] [CrossRef]
- Diário da República, n.° 133/2020. 1ª Série, de 10 de Julho. Resolução do Conselho de Ministros n° 53/2020. Available online: https://dre.pt/home/-/dre/137618093/details/maximized (accessed on 18 April 2021).
- The Carbon Trust. Energy and Carbon Conversions. The Carbon Trust: London, UK, 2008; Available online: http://www.carbontrust.co.uk/publications/publicationdetail.htm?productid=CTV033 (accessed on 7 April 2021).
- European Environment Agency. Monitoring CO2 Emissions from New Passenger Cars and Vans in 2015 EEA Report No 27/2016; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Tsiakmakis, S.; Fontaras, G.; Ciuffo, B.; Samaras, Z. A simulation-based methodology for quantifying European passenger. Appl. Energy 2017, 199, 447–465. [Google Scholar] [CrossRef]
- Vilet, O.; Brouwer, A.S.; Kuramochi, T.; Broek, M.; Faaij, A. Energy use, cost and CO2 emissions of electric cars. J. Power Sources 2011, 196, 2298–2310. [Google Scholar]
- Metro do Porto. Sustainable Report 2018. Available online: https://www.metrodoporto.pt/uploads/document/file/486/RS2018.pdf (accessed on 22 April 2021).
- Trains of Portugal. Sustainable Report 2018. Available online: https://www.cp.pt/institucional/en/sustainable-management/sustainability-reports (accessed on 22 April 2021).
- Serviços de Transportes Coletivos do Porto. Sustainable Report 2011. Available online: https://www.stcp.pt/pt/institucional/sustentabilidade/relatorio-de-sustentabilidade/ (accessed on 26 April 2021).
- Portaria n.° 58/2019 de 11 de Fevereiro. Diário da República n° 29/2019–1.ª Série. Regulamento do Programa Regional de Ordenamento Florestal de entre Douro e Minho. Available online: https://dre.pt/home/-/dre/119386291/details/maximized (accessed on 28 April 2021).
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Bradford, M.A. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef] [PubMed]
- ICNF—Institute for the Conservation of Nature and Forest. 6th National Forest Inventory: Main Results. Summary Report, v1.0. 2019. Available online: http://www2.icnf.pt/portal/florestas/ifn/ifn6 (accessed on 22 April 2021).
- Bruck, B.P.; Incerti, V.; Iori, M.; Vignoli, M. Minimizing CO2 emissions in a practical daily carpooling problem. Comput. Oper. Res. 2017, 81, 40–50. [Google Scholar] [CrossRef]
- Pinto, B.-M.; Rossetti, R.J.F. A Graph-Based Study of the Impact of Carpooling on CO2 Emissions. In Proceedings of the 2020 Forum on Integrated and Sustainable Transportation Systems (FISTS), Delft, The Netherlands, 3–5 November 2020. [Google Scholar]
- Stephens, J.C.; Graham, A.C. Toward an empirical research agenda for sustainability in higher education: Exploring the transition management framework. J. Clean. Prod. 2010, 18, 611–618. [Google Scholar] [CrossRef]
- Fontaras, G.; Nikiforos-Georgios, Z.; Biagio, C. Fuel consumption and CO2 emissions from passenger cars in Europe—Laboratory versus real-world emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
Car | Average Carbon Emission (Ei) (gCO2/km) | Source |
---|---|---|
Age > 10 years old | ||
Gasoline | 207 | [27,28] |
Diesel | 197.9 | [27,28] |
LPG | 164.7 | [28] |
5 ≤ Age ≤ 10 years old | ||
Gasoline | 156.6 | [28] |
Diesel | 151.2 | [28] |
LPG | 137 | [28] |
Vehicles < 5 years old | ||
Gasoline | 128.5 | [28,29] |
Diesel | 126.9 | [28,29] |
LPG | 98.3 | [28] |
None (electric) | 52 | [30] |
Public Transport | Average Carbon Emission (Ei) Per Passenger (gCO2/Km) | Source |
---|---|---|
Metropolitan | 40 | [31] |
Train | 26.4 | [32] |
Bus | 82 | [33] |
Group | Percentage of Group Individuals by Used Vehicle: | |||
---|---|---|---|---|
Car | Metropolitan | Train | Bus | |
Prof Res. Staff | 94.4% | 5.1% | 0 | 0 |
Students | 52.8% | 34.6% | 5.6% | 7.0% |
Adm. Ser. Staff | 85.5% | 14.5% | 0% | 0% |
Group | Distance Travelled According to Transport (km/trip) | |||||||
---|---|---|---|---|---|---|---|---|
Car | Metro | Train | Bus | |||||
Mean | Half CI95 | Mean | Half CI95 | Mean | Half CI95 | Mean | Half CI95 | |
Teacher R. Staff | 46.1 | 11.2 | 14.4 | 9.7 | - | - | - | - |
Students | 39.7 | 4.5 | 25.0 | 3.6 | 42.1 | 13.3 | 19.7 | 7.7 |
Adm. S. Staff | 30.7 | 6.0 | 37.1 | 13.8 | - | - | - | - |
Car Age (Years) | Prof. R. Staff | Students | Adm. S. Staff |
---|---|---|---|
age ≤ 5 | 40.7% | 23.8% | 28.3% |
5 < age ≤ 10 | 32.3% | 25.2% | 39.6% |
age > 10 | 26.9% | 51.0% | 32.1% |
Group | Sample | Individual | Community (Population) | |||
---|---|---|---|---|---|---|
n | Emission (tCO2 year−1) | Emission (tCO2 year−1) | n | Emission (tCO2 year−1) | Emission (%) | |
Prof. R. Staff | 174 | 463 | 2.66 | 313 | 833 | 28.4 |
Students | 254 | 129 | 0.51 | 4000 | 2.031 | 69.1 |
Adm. S. Staff | 62 | 70 | 1.13 | 65 | 73 | 2.5 |
Total | 490 | 662 | 4378 | 2937 |
Species | Removal Rate 1 (tCO2 year−1) | Required Area (ha) | Number of Trees |
---|---|---|---|
Pine | 7.6 | 386 | 270,200 |
Eucalyptus | 37.9 | 77 | 53,900 |
Oak | 5.3 | 554 | 387,800 |
Species | % Coverage 2 | Required Area (ha) | Number of Trees |
---|---|---|---|
Pine | 49.1% | 67.7 | 47,390 |
Eucalyptus | 45.6% | 62.9 | 44,030 |
Oak | 5.3% | 7.3 | 5110 |
Total | 137.9 | 96,530 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veludo, G.; Cunha, M.; Sá, M.M.; Oliveira-Silva, C. Offsetting the Impact of CO2 Emissions Resulting from the Transport of Maiêutica’s Academic Campus Community. Sustainability 2021, 13, 10227. https://doi.org/10.3390/su131810227
Veludo G, Cunha M, Sá MM, Oliveira-Silva C. Offsetting the Impact of CO2 Emissions Resulting from the Transport of Maiêutica’s Academic Campus Community. Sustainability. 2021; 13(18):10227. https://doi.org/10.3390/su131810227
Chicago/Turabian StyleVeludo, Guilherme, Manuel Cunha, Maria Manuel Sá, and Carla Oliveira-Silva. 2021. "Offsetting the Impact of CO2 Emissions Resulting from the Transport of Maiêutica’s Academic Campus Community" Sustainability 13, no. 18: 10227. https://doi.org/10.3390/su131810227
APA StyleVeludo, G., Cunha, M., Sá, M. M., & Oliveira-Silva, C. (2021). Offsetting the Impact of CO2 Emissions Resulting from the Transport of Maiêutica’s Academic Campus Community. Sustainability, 13(18), 10227. https://doi.org/10.3390/su131810227