Estimating the Circularity Performance of an Emerging Industrial Symbiosis Network: The Case of Recycled Plastic Fibers in Reinforced Concrete
Abstract
:1. Introduction
2. Case Study
3. Literature Overview and Indicator Selection
3.1. Literature Overview
3.2. Indicator Selection
3.3. Criteria
- Legislation, for both inbound and outbound by-products;
- Class of by-product, for both inbound and outbound by-products;
- Use of by-product, for inbound by-products;
- Destination of by-product, for outbound by-products;
- Problems/risks, for both inbound and outbound by-products.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
By-Products | Legislation | Class of By-Product | Use of By-Product | Problems/Risks |
---|---|---|---|---|
PE-PP fibers | 5 | 3 | 1 | 1 |
Sand | 5 | 1 | 5 | 1 |
Rubber | 5 | 3 | 5 | 1 |
Bituminous membrane | 5 | 5 | 5 | 1 |
By-Products | Legislation | Class of By-Product | Use of By-Product | Problems/Risks |
---|---|---|---|---|
PE-PP fibers | 5 | 3 | 1 | 1 |
Sand | 5 | 1 | 3 | 1 |
Rubber | 5 | 3 | 3 | 1 |
Bituminous membrane | 5 | 5 | 3 | 1 |
By-Products | Legislation | Class of By-Product | Destination of By-Product | Problems/Risks | DiP |
---|---|---|---|---|---|
PE-PP fibers | 0.870 | 0.594 | 0.196 | 0.182 | 1.842 |
Sand | 0.870 | 0.198 | 0.980 | 0.182 | 2.23 |
Rubber | 0.870 | 0.594 | 0.980 | 0.182 | 2.626 |
Bituminous membrane | 0.870 | 0.990 | 0.980 | 0.182 | 3.022 |
By-Products | Legislation | Class of By-Product | Destination of By-Product | Problems/Risks | DoP |
---|---|---|---|---|---|
PE-PP fibers | 0.870 | 0.594 | 5.000 | 0.182 | 6.646 |
Sand | 0.870 | 0.198 | 5.000 | 0.182 | 6.250 |
Rubber | 0.870 | 0.594 | 5.000 | 0.182 | 6.646 |
Bituminous membrane | 0.870 | 0.990 | 5.000 | 0.182 | 7.042 |
By-Products | AiP | DiP | AiP × DiP | AoP | DoP | AoP × DoP |
---|---|---|---|---|---|---|
PE-PP fibers | 0.000 | 1.842 | 0.000 | 173.153 | 6.646 | 1150.772 |
Sand | 0.000 | 2.230 | 0.000 | 699.536 | 6.250 | 4372.101 |
Rubber | 0.000 | 2.626 | 0.000 | 477.901 | 6.646 | 3176.129 |
Bituminous membrane | 0.000 | 3.022 | 0.000 | 34.631 | 7.042 | 243.868 |
EIMi | 0 | EiMo | 8942.870 | |||
ISI | 0 |
By-Products | AiP | DiP | AiP × DiP | AoP | DoP | AoP × DoP |
---|---|---|---|---|---|---|
PE-PP fibers | 0.000 | 1.842 | 0.000 | 173.153 | 6.646 | 1150.772 |
Sand | 349.768 | 2.230 | 779.983 | 349.768 | 6.250 | 2186.050 |
Rubber | 238.950 | 2.626 | 627.484 | 238.950 | 6.646 | 1588.065 |
Bituminous membrane | 0.000 | 3.022 | 0.000 | 34.631 | 7.042 | 243.868 |
EIMi | 1935.428 | EiMo | 5168.754 | |||
ISI | 0.272 |
By-Products | AiP | DiP | AiP × DiP | AoP | DoP | AoP × DoP |
---|---|---|---|---|---|---|
PE-PP fibers | 138.522 | 1.842 | 255.158 | 34.631 | 6.646 | 230.154 |
Sand | 699.536 | 0.000 | 0.000 | 0.000 | 6.250 | 0.000 |
Rubber | 477.901 | 0.000 | 0.000 | 0.000 | 6.646 | 0.000 |
Bituminous membrane | 34.631 | 0.000 | 0.000 | 34.631 | 7.042 | 243.868 |
EIMi | 233.281 | EiMo | 474.022 | |||
ISI | 0.537 |
By-Products | AiP | DiP | AiP × DiP | AoP | DoP | AoP × DoP |
---|---|---|---|---|---|---|
PE-PP fibers | 173.153 | 1.842 | 318.947 | 0.000 | 6.646 | 0.000 |
Sand | 699.536 | 2.230 | 1559.966 | 0.000 | 6.250 | 0.000 |
Rubber | 477.901 | 2.626 | 1254.968 | 0.000 | 6.646 | 0.000 |
Bituminous membrane | 34.631 | 3.022 | 104.653 | 0.000 | 7.042 | 0.000 |
EIMi | 4289.767 | EiMo | 0 | |||
ISI | 3238.534 |
References
- Hossain, M.U.; Ng, S.T. Critical consideration of buildings’ environmental impact assessment towards adoption of circular economy: An analytical review. J. Clean. Prod. 2018, 205, 763–780. [Google Scholar] [CrossRef]
- Ekins, P.; Hughes, N.; Bringezu, S.; Arden Clarke, C.; Fischer-Kowalski, M.; Graedel, T.; Hajer, M.; Hashimoto, S.; Hatfield-Dodds, S.; Havlik, P.; et al. Resource Efficiency: Potential and Economic Implications. International Resource Panel Report. 2017. Available online: https://www.resourcepanel.org/sites/default/files/documents/document/media/resource_efficiency_report_march_2017_web_res.pdf (accessed on 6 September 2021).
- Soni, N.; Shukla, D.K. Analytical study on mechanical properties of concrete containing crushed recycled coarse aggregate as an alternative of natural sand. Constr. Build. Mater. 2021, 266, 120595. [Google Scholar] [CrossRef]
- Ulsen, C.; Antoniassi, J.L.; Martins, I.M.; Kahn, H. High quality recycled sand from mixed CDW—Is that possible? J. Mater. Res. Technol. 2021, 12, 29–42. [Google Scholar] [CrossRef]
- Zhang, J.; Ouyang, Y.; Ballesteros-Pérez, P.; Li, H.; Philbin, S.P.; Li, Z.; Skitmore, M. Understanding the impact of environmental regulations on green technology innovation efficiency in the construction industry. Sustain. Cities Soc. 2021, 65. [Google Scholar] [CrossRef]
- Gervasio, H.; Dimova, S. Model for Life Cycle Assessment (LCA) of Buildings; Publications Office of the European Union: Luxembourg, 2018; ISBN 9789279799730. [Google Scholar]
- Braulio-Gonzalo, M.; Bovea, M.D. Relationship between green public procurement criteria and sustainability assessment tools applied to office buildings. Environ. Impact Assess. Rev. 2020, 81, 106310. [Google Scholar] [CrossRef]
- COM(2008) 400, Public Procurement for a Better Environment, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Union: Brussels, Belgium, 2008.
- D.Lgs. 50/2016. Attuazione Delle Direttive 2014/23/UE, 2014/24/UE e 2014/25/UE Sull’aggiudicazione dei Contratti di Concessione, Sugli Appalti Pubblici e Sulle Procedure D’appalto Degli Enti Erogatori nei Settori Dell’acqua, Dell’energia, Dei trasporti e. 2017. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2016-04-19&atto.codiceRedazionale=16G00062 (accessed on 6 September 2021).
- Benachio, G.L.F.; Freitas, M.d.C.D.; Tavares, S.F. Circular economy in the construction industry: A systematic literature review. J. Clean. Prod. 2020, 260, 121046. [Google Scholar] [CrossRef]
- Sellitto, M.A.; Murakami, F. Destination of the waste generated by a steelmaking plant: A case study in Latin America. Aestimum 2020, 77, 127–144. [Google Scholar] [CrossRef]
- Leising, E.; Quist, J.; Bocken, N. Circular Economy in the building sector: Three cases and a collaboration tool. J. Clean. Prod. 2018, 176, 976–989. [Google Scholar] [CrossRef]
- Barbosa, F.S.; Scavarda, A.J.; Sellitto, M.A.; Marques, D.I.L. Sustainability in the winemaking industry: An analysis of Southern Brazilian companies based on a literature review. J. Clean. Prod. 2018, 192, 80–87. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN-CENELEC Management Centre). CWA 17354 Industrial Symbiosis: Core Elements and Implementation Approaches. 2018. Available online: https://ftp.cencenelec.eu/EN/ResearchInnovation/CWA/CWA17354.pdf (accessed on 6 September 2021).
- Sellitto, M.A.; Murakami, F.K.; Butturi, M.A.; Marinelli, S.; Kadel, J.N.; Rimini, B. Barriers, drivers, and relationships in industrial symbiotic initiatives of two steelmaking plants. Sustain. Prod. Consum. 2020, 26, 443–454. [Google Scholar] [CrossRef]
- Associazione Nazionale Produttori Aggregati Riciclati (ANPAR) L’ End of Waste dei Rifiuti Inerti. Position Paper. 2018. Available online: http://anpar.org/wp-content/uploads/2018/12/Position-Paper-ANPAR-su-EW-30-Settembre-2018.pdf (accessed on 6 September 2021).
- Butturi, M.A.; Marinelli, S.; Gamberini, R.; Rimini, B. Ecotoxicity of Plastics from Informal Waste Electric and Electronic Treatment and Recycling. Toxics 2020, 8, 99. [Google Scholar] [CrossRef]
- Felicio, M.; Amaral, D.; Esposto, K.; Durany, X.G. Industrial symbiosis indicators to manage eco-industrial parks as dynamic systems. J. Clean. Prod. 2016, 118, 54–64. [Google Scholar] [CrossRef]
- Fraccascia, L.; Giannoccaro, I.; Albino, V. Ecosystem indicators for measuring industrial symbiosis. Ecol. Econ. 2021, 183, 106944. [Google Scholar] [CrossRef]
- Kosmol, L.; Maiwald, M.; Pieper, C.; Plötz, J.; Schmidt, T. An indicator-based method supporting assessment and decision-making of potential by-product exchanges in industrial symbiosis. J. Clean. Prod. 2021, 289, 125593. [Google Scholar] [CrossRef]
- European Commission (EU). EU Construction and Demolition Waste Management Protocol. Off. J. Eur. Union. 2016. Available online: https://ec.europa.eu/growth/content/eu-construction-and-demolition-waste-protocol-0_en (accessed on 6 September 2021).
- European Council Directive 2008/98/CE of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off. J. Eur. Union 2008, L312, 1–59.
- De Pascale, A.; Arbolino, R.; Szopik-Depczyńska, K.; Limosani, M.; Ioppolo, G. A systematic review for measuring circular economy: The 61 indicators. J. Clean. Prod. 2021, 281, 124942. [Google Scholar] [CrossRef]
- Li, W. Comprehensive evaluation research on circular economic performance of eco-industrial parks. Energy Procedia 2011, 5, 1682–1688. [Google Scholar]
- Neves, A.; Azevedo, S.G.; Godina, R.; Matias, J.C.O. Environmental, Economic, and Social Impact of Industrial Symbiosis: Methods and Indicators Review. In Proceedings of the Springer Proceedings in Mathematics and Statistics, Lisbon, Portugal, 22–24 February 2019; Volume 281, pp. 63–71. [Google Scholar] [CrossRef]
- Mantese, G.C.; Amaral, D.C. Identification and qualitative comparison of performance indicators of industrial symbiosis. Rev. Produção Online 2016, 16, 1329. [Google Scholar] [CrossRef] [Green Version]
- Fraccascia, L.; Giannoccaro, I. What, where, and how measuring industrial symbiosis: A reasoned taxonomy of relevant indicators. Res. Conserv. Recycl. 2020, 157, 104799. [Google Scholar] [CrossRef]
- Park, H.S.; Behera, S.K. Methodological aspects of applying eco-efficiency indicators to industrial symbiosis networks. J. Clean. Prod. 2014, 64, 478–485. [Google Scholar] [CrossRef]
- Lütje, A.; Wohlgemuth, V. Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting. Adm. Sci. 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Adam, V.; Wu, Q.; Nowack, B. Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. NanoImpact 2021, 22, 100312. [Google Scholar] [CrossRef]
- Marinelli, S.; Butturi, M.A.; Rimini, B.; Gamberini, R.; Marinello, S. Evaluating the environmental benefit of energy symbiosis networks in eco-industrial parks. IFAC-PapersOnLine 2020, 53, 13082–13087. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, L. Application review of LCA (Life Cycle Assessment) in circular economy: From the perspective of PSS (Product Service System). Procedia CIRP 2019, 83, 210–217. [Google Scholar] [CrossRef]
- Alavi, B.; Tavana, M.; Mina, H. A Dynamic Decision Support System for Sustainable Supplier Selection in Circular Economy. Sustain. Prod. Consum. 2021, 27, 905–920. [Google Scholar] [CrossRef]
- Barbudo, A.; Ayuso, J.; Lozano, A.; Cabrera, M.; López-Uceda, A. Recommendations for the Management of Construction and Demolition Waste in Treatment Plants. Proceedings 2018, 2, 1278. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Singhal, S.; Jain, N.K.; Bhaskar, K. Construction and demolition waste recycling: Investigating the role of theory of planned behavior, institutional pressures and environmental consciousness. J. Clean. Prod. 2020, 263, 121405. [Google Scholar] [CrossRef]
- Ruiz, L.A.L.; Ramón, X.R.; Domingo, S.G. The circular economy in the construction and demolition waste sector—A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- Goepel, K.D. Implementing the Analytic Hierarchy Process as a Standard Method for Multi-Criteria Decision Making in Corporate Enterprises—A New AHP Excel Template with Multiple Inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, Malaysia, 23–36 June 2013. [Google Scholar] [CrossRef] [Green Version]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert. Syst. App. 2011, 38, 14336–14345. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, M.A.; Borchardt, M.; Pereira, G.M.; Gomes, L. Environmental performance assessment of a provider of logistical services in an industrial supply chain. Theor. Found Chem. Eng. 2012, 46, 691–703. [Google Scholar] [CrossRef]
- Signorini, C.; Volpini, V. Mechanical Performance of Fiber Reinforced Cement Composites Including Fully-Recycled Plastic Fibers. Fibers 2021, 9, 16. [Google Scholar] [CrossRef]
By-Products | Percentage [%] | Total Amount per Year [tons] |
---|---|---|
PE-PP fibers | 12.5 | 173.15 |
Rubber | 34.5 | 699.53 |
Silica sand | 50.5 | 477.90 |
Bituminous membrane | 2.5 | 34.63 |
Criteria | Weight/ Confidence Intervals | Evaluation | Value |
---|---|---|---|
Legislation | 17.4% (±3.0 pp) | Good practices | 1 |
General requirement | 3 | ||
Specific legal requirement | 5 | ||
Class of by-product | 19.8% (±3.0 pp) | Non-hazardous—inert | 1 |
Non-hazardous—non-inert | 3 | ||
Hazardous | 5 | ||
Use of by-product | 18.6% (±4.4 pp) | Treatment by both the giving and receiving company | 1 |
Treatment by the giving company | 3 | ||
Treatment not required | 5 | ||
Destination of by-product | 25.1% (±5.0 pp) | Another network, with pretreatment | 1 |
Another network, without pretreatment | 3 | ||
Landfill or incineration | 5 | ||
Problems/ Risks | 18.2% (±1.6 pp) | Rare | 1 |
Possible | 3 | ||
Frequent | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinelli, S.; Butturi, M.A.; Rimini, B.; Gamberini, R.; Sellitto, M.A. Estimating the Circularity Performance of an Emerging Industrial Symbiosis Network: The Case of Recycled Plastic Fibers in Reinforced Concrete. Sustainability 2021, 13, 10257. https://doi.org/10.3390/su131810257
Marinelli S, Butturi MA, Rimini B, Gamberini R, Sellitto MA. Estimating the Circularity Performance of an Emerging Industrial Symbiosis Network: The Case of Recycled Plastic Fibers in Reinforced Concrete. Sustainability. 2021; 13(18):10257. https://doi.org/10.3390/su131810257
Chicago/Turabian StyleMarinelli, Simona, Maria Angela Butturi, Bianca Rimini, Rita Gamberini, and Miguel Afonso Sellitto. 2021. "Estimating the Circularity Performance of an Emerging Industrial Symbiosis Network: The Case of Recycled Plastic Fibers in Reinforced Concrete" Sustainability 13, no. 18: 10257. https://doi.org/10.3390/su131810257
APA StyleMarinelli, S., Butturi, M. A., Rimini, B., Gamberini, R., & Sellitto, M. A. (2021). Estimating the Circularity Performance of an Emerging Industrial Symbiosis Network: The Case of Recycled Plastic Fibers in Reinforced Concrete. Sustainability, 13(18), 10257. https://doi.org/10.3390/su131810257