Negligible Levels of Mycotoxin Contamination in Durum Wheat and Groundnuts from Non-Intensive Rainfed Production Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Durum Wheat
2.1.1. Description of Ethiopian Sites
2.1.2. Durum Wheat Samples
- small seed multiplication plots (3 m2)
- experimental plots (100 m2) from Ayba research station
- farmers’ field (plot average size of 0.25 ha)
2.2. Groundnut
2.2.1. Description of Ugandan Sites
2.2.2. Groundnut Samples
2.3. Analytical Methods
2.3.1. Determination of DON, 3AcDON, 15 AcDON, DON 3G, NIV, T-2/HT-2, and OTA in Durum Wheat Flour by LC-MS/MS
2.3.2. Determination of Aflatoxins in Groundnuts by HPLC-FL
3. Results and Discussion
3.1. Mycotoxin Detection in Durum Wheat from Ethiopia
3.2. Mycotoxin Detection in Groundnuts from Uganda
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cinar, A.; Onbaşı, E. Mycotoxins: The Hidden Danger in Foods. In Mycotoxins and Food Safety; Sabuncuoğlu, S., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78984-874-8. [Google Scholar]
- IARC Working Group. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Chemical Agents and Related Occupations. A Review of Human Carcinogens; Sup 7, 56, 82; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100F. [Google Scholar]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 Contamination in Maize in Europe Increases Due to Climate Change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, R.R.M.; Lima, N. How Will Climate Change Affect Mycotoxins in Food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Van der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling Climate Change Impacts on Mycotoxin Contamination. World Mycotoxin J. 2016, 9, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Gareis, M.; Wolff, J. Relevance of Mycotoxin Contaminated Feed for Farm Animals and Carryover of Mycotoxins to Food of Animal Origin. Mycoses 2000, 43, 79–83. [Google Scholar]
- MacLachlan, D.J. Estimating the Transfer of Contaminants in Animal Feedstuffs to Livestock Tissues, Milk and Eggs: A Review. Anim. Prod. Sci. 2011, 51, 1067–1078. [Google Scholar] [CrossRef]
- Lacey, J. Natural occurrence of mycotoxins in growing and conserved forage crops. In Mycotoxins and Animal Foods; CRC Press: Boca Raton, FL, USA, 1991; pp. 363–397. [Google Scholar]
- Blandino, M.; Haidukowski, M.; Pascale, M.; Plizzari, L.; Scudellari, D.; Reyneri, A. Integrated Strategies for the Control of Fusarium Head Blight and Deoxynivalenol Contamination in Winter Wheat. Field Crop. Res. 2012, 133, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Blandino, M.; Reyneri, A.; Vanara, F. Effect of Plant Density on Toxigenic Fungal Infection and Mycotoxin Contamination of Maize Kernels. Field Crop. Res. 2008, 106, 234–241. [Google Scholar] [CrossRef]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; Ismail, A.; El Khoury, A. Mycotoxins: Factors Influencing Production and Control Strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Park, D.L.; Njapau, H.; Boutrif, E. Minimizing Risks Posed by Mycotoxins Utilizing the HACCP Concept. FAO Food Nutr. Agric. J. 1999, 23, 49–56. [Google Scholar]
- Kaaya, A.N.; Harris, C.; Eigel, W. Peanut Aflatoxin Levels on Farms and in Markets of Uganda. Peanut Sci. 2006, 33, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Christie, M.E.; Kyamureku, P.; Kaaya, A.; Devenport, A. Farmers, Peanuts, and Aflatoxins in Uganda: A Gendered Approach. Dev. Pract. 2015, 25, 4–18. [Google Scholar] [CrossRef]
- Matumba, L.; Van Poucke, C.; Njumbe Ediage, E.; De Saeger, S. Keeping Mycotoxins Away from the Food: Does the Existence of Regulations Have Any Impact in Africa? Crit. Rev. Food Sci. Nutr. 2017, 57, 1584–1592. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- FAO. Innovation in Family Farming; The State of Food and Agriculture: Rome, Italy, 2014; ISBN 978-92-5-108536-3. [Google Scholar]
- Graeub, B.E.; Chappell, M.J.; Wittman, H.; Ledermann, S.; Kerr, R.B.; Gemmill-Herren, B. The State of Family Farms in the World. World Dev. 2016, 87, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wagacha, J.M.; Muthomi, J.W. Mycotoxin Problem in Africa: Current Status, Implications to Food Safety and Health and Possible Management Strategies. Int. J. Food Microbiol. 2008, 124, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Meijer, N.; Kleter, G.; Nijs, M.; Rau, M.; Derkx, R.; Fels-Klerx, H.J. The Aflatoxin Situation in Africa: Systematic Literature Review. Comp. Rev. Food Sci. Food Saf. 2021, 20, 2286–2304. [Google Scholar] [CrossRef]
- Kebede, H.; Liu, X.; Jin, J.; Xing, F. Current Status of Major Mycotoxins Contamination in Food and Feed in Africa. Food Control 2020, 110, 106975. [Google Scholar] [CrossRef]
- Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Nyamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A.; et al. Aflatoxin Contamination of Commercial Maize Products during an Outbreak of Acute Aflatoxicosis in Eastern and Central Kenya. Environ. Health Perspect. 2005, 113, 1763–1767. [Google Scholar] [CrossRef]
- Kamala, A.; Shirima, C.; Jani, B.; Bakari, M.; Sillo, H.; Rusibamayila, N.; Kimanya, M.; Gong, Y.Y.; Simba, A. Outbreak of an Acute Aflatoxicosis in Tanzania during 2016. World Mycotoxin J. 2018, 11, 311–320. [Google Scholar] [CrossRef]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and Human Disease: A Largely Ignored Global Health Issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef]
- Mengistu, D.K.; Kidane, Y.G.; Fadda, C.; Pè, M.E. Genetic Diversity in Ethiopian Durum Wheat (Triticum Turgidum Var Durum) Inferred from Phenotypic Variations. Plant Genet. Resour. 2018, 16, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, D.K.; Kiros, A.Y.; Mohammed, J.N.; Tsehaye, Y.; Fadda, C. Exploitation of Diversity within Farmers’ Durum Wheat Varieties Enhanced the Chance of Selecting Productive, Stable and Adaptable New Varieties to the Local Climatic Conditions. Plant Genet. Resour. 2019, 17, 401–411. [Google Scholar] [CrossRef]
- Jurkovic, D.; Cosic, J.; Vrandecic, K.; Drezner, G.; Josipovic, M. Influence of Sowing Date on the Occurrence of Fusarium Head Blight on Wheat—A Phytosanitary Food Safety Problem. Cereal Res. Commun. 2006, 34, 805–807. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L.; Xue, A.G. Planting Date and Nitrogen Effects on Fusarium Head Blight and Leaf Spotting Diseases in Spring Wheat. Agron. J. 2007, 99, 113–121. [Google Scholar] [CrossRef]
- Choo, T.M.; Martin, R.A.; Savard, M.E.; Blackwell, B. Effects of Planting Date and Earliness on Deoxynivalenol Contamination in Barley under Natural Epidemic Conditions. Can. J. Plant Sci. 2014, 94, 1363–1371. [Google Scholar] [CrossRef]
- Ogwang, B.A.; Chen, H.; Li, X.; Gao, C. Evaluation of the Capability of RegCM4.0 in Simulating East African climate. Theor. Appl. Climatol. 2016, 124, 303–313. [Google Scholar] [CrossRef]
- Nabalegwa, M.; Buyinza, M.; Lusiba, B. Changes in Soil Chemical and Physical Properties Due to Land Use Conversion in Nakasongola District, Uganda. Indones. J. Geogr. 2007, 38, 1. [Google Scholar]
- Nimusiima, A.; Basalirwa, C.P.K.; Majaliwa, J.G.M.; Otim-Nape, W.; Okello-Onen, J.; Rubaire-Akiiki, C.; Konde-Lule, J.; Ogwal-Byenek, S. Nature and Dynamics of Climate Variability in the Uganda Cattle Corridor. J. Environ. Sci. Technol. 2013, 7, 770–782. [Google Scholar] [CrossRef]
- De Santis, B.; Debegnach, F.; Gregori, E.; Russo, S.; Marchegiani, F.; Moracci, G.; Brera, C. Development of a LC-MS/MS Method for the Multi-Mycotoxin Determination in Composite Cereal-Based Samples. Toxins 2017, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Central Statistical Agency. Area and Production of Major Crops in Ethiopia (2017/18); The Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- FAOSTAT. The Food and Agriculture Organization Corporate Statistical Database; FAOSTAT: Rome, Italy, 2014. [Google Scholar]
- Brasesco, F.; Asgedom, D.; Sommacal, V.; Casari, G. Strategic Analysis and Intervention Plan for Wheat and Wheat Products in the Agro-Commodities Procurement Zone of the Pilot Integrated Agro-Industrial Park in Central-Eastern Oromia, Ethiopia; License: CC BY-NC-SA 3.0 IGO; FAO: Addis Ababa, Ethiopia, 2019; 104p. [Google Scholar]
- Biggeri, M.; Ciania, F.; Herrmann, R. Linking Small-Scale Farmers to the Durum Wheat Value Chain in Ethiopia: Assessing the Effects on Production and Wellbeing. Food Policy 2018, 79, 77–91. [Google Scholar] [CrossRef]
- Ayalew, A.; Fehrmann, H.; Lepschy, J.; Beck, R.; Abate, D. Natural Occurrence of Mycotoxins in Staple Cereals from Ethiopia. Mycopathologia 2006, 162, 57–63. [Google Scholar] [CrossRef]
- Worku, A.F.; Merkuz, A.; Kalsa, K.K.; Tenagashaw, M.W.; Habtu, N.G. Occurrence of Mycotoxins in Farm-Stored Wheat in Ethiopia. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14829–14847. [Google Scholar] [CrossRef]
- Ayelign, A.; De Saeger, S. Mycotoxins in Ethiopia: Current Status, Implications to Food Safety and Mitigation Strategies. Food Control 2020, 113, 107163. [Google Scholar] [CrossRef]
- Mamo, F.T.; Abate, B.A.; Tesfaye, K.; Nie, C.; Wang, G.; Liu, Y. Mycotoxins in Ethiopia: A Review on Prevalence, Economic and Health Impacts. Toxins 2020, 12, 648. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereals; Including Annexes on Ochratoxin A, Zearalenone, Fumonisins and Tricothecenes (CAC/RCP 51-2003); Prevention and Reduction of Food and Feed Contamination; World Health Organization/Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Mugisha, J.; Lwasa, S.; Mausch, K.; Mausch, K. Value Chain Analysis and Mapping for Groundnuts in Uganda; Socio-Economics Discussion Paper Series; ICRISAT: Nairobi, Kenya, 2014; p. 95. [Google Scholar]
- Asiki, G.; Seeley, J.; Srey, C.; Baisley, K.; Lightfoot, T.; Archileo, K.; Agol, D.; Abaasa, A.; Wakeham, K.; Routledge, M.N.; et al. A Pilot Study to Evaluate Aflatoxin Exposure in a Rural Ugandan Population. Trop. Med. Int. Health 2014, 19, 592–599. [Google Scholar] [CrossRef]
- PACA. Country-Led Aflatoxin and Food Safety Situation Analysis and Action Planning for Uganda: Final Report; Partnership for Aflatoxin Control in Africa. Final Report; African Union Commission: Addis Ababa, Ethiopia, 2017. [Google Scholar]
- Kitya, D.; Bbosa, G.S.; Mulogo, E. Aflatoxin Levels in Common Foods of South Western Uganda: A Risk Factor to Hepatocellular Carcinoma: Aflatoxin in Foods and Hepatocellular Carcinoma. Eur. J. Cancer Care 2009, 19, 516–521. [Google Scholar] [CrossRef]
- Osuret, J.; Musinguzi, G.; Mukama, T.; Ali Halage, A.; Kaaya Nati, A.; Ssempebwa, J.C.; Wang, J.-S. Aflatoxin Contamination of Selected Staple Foods Sold for Human Consumption in Kampala Markets, Uganda. J. Biol Sci. 2016, 16, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Baluka, S.A.; Schrunk, D.; Imerman, P.; Kateregga, J.N.; Camana, E.; Wang, C.; Rumbeiha, W.K. Mycotoxin and Metallic Element Concentrations in Peanut Products Sold in Ugandan Markets. Cogent Food Agric. 2017, 3, 1313925. [Google Scholar] [CrossRef]
- Acur, A.; Arias, R.S.; Odongo, S.; Tuhaise, S.; Ssekandi, J.; Adriko, J.; Muhanguzi, D.; Buah, S.; Kiggundu, A. Genetic Diversity of Aflatoxin-Producing Aspergillus Flavus Isolated from Selected Groundnut Growing Agro-Ecological Zones of Uganda. BMC Microbiol. 2020, 20, 252. [Google Scholar] [CrossRef]
Variety ID | Site | Year | Seed Source a | Sampling b | Days to Flowering | Days to Maturity | Moisture Content (%) |
---|---|---|---|---|---|---|---|
5654 | Ayba | 2017 | 1 | 1 | 93 | 138 | 10.1 |
5679 | Ayba | 2017 | 1 | 1 | 100 | 144 | 10.4 |
8208 | Ayba | 2017 | 1 | 1 | 87 | 136 | 9.9 |
8210 | Ayba | 2017 | 1 | 1 | N/A | N/A | N/A |
206551 | Ayba | 2017 | 1 | 1 | 88 | 142 | 9.6 |
206556 | Ayba | 2017 | 1 | 1 | 96 | 148 | 9.3 |
Dinglet | 2017 | 1 | 1 | ||||
208167 | Ayba | 2017 | 1 | 1 | 93 | 144 | 10.4 |
208228 | Ayba | 2017 | 1 | 1 | 91 | 146 | 10.5 |
208286 | Ayba | 2017 | 1 | 1 | 101 | 147 | 10.2 |
Dinglet | 2017 | 1 | 1 | ||||
208304 | Ayba | 2017 | 1 | 1 | 96 | 138 | 10.1 |
208315 | Ayba | 2017 | 1 | 1 | 88 | 140 | 10.4 |
Dinglet | 2017 | 1 | 1 | ||||
208317 | Ayba | 2017 | 1 | 1 | 84 | 138 | 11 |
208332 | Dinglet | 2017 | 1 | 1 | N/A | N/A | N/A |
208474 | Ayba | 2017 | 2 | 1 | 87 | 138 | 9.4 |
208479 | Ayba | 2017 | 1 | 1 | N/A | N/A | N/A |
208873 | Ayba | 2017 | 1 | 1 | 83 | 138 | 10.6 |
210803 | Dinglet | 2017 | 1 | 1 | 85 | 138 | 10.4 |
212564 | Ayba | 2017 | 1 | 1 | 84 | 142 | 10 |
213310 | Ayba | 2017 | 1 | 1 | 89 | 140 | 11.1 |
Dinglet | 2017 | 1 | 1 | 89 | 140 | 11.1 | |
214357 | Ayba | 2017 | 1 | 1 | 92 | 143 | 11 |
Dinglet | 2017 | 1 | 1 | ||||
214571 | Ayba | 2017 | 1 | 1 | 91 | 143 | 9.2 |
222197 | Ayba | 2017 | 1 | 1 | N/A | N/A | N/A |
Dinglet | 2017 | 1 | 1 | ||||
222854 | Geregera | 2018 | 3 | 1 | 86 | 134 | 10.1 |
Geregera | 2019 | 3 | 3 | ||||
Geregera | 2019 | 3 | 4 | ||||
Geregera | 2019 | 3 | 4 | ||||
227056 | Ayba | 2017 | 1 | 1 | 77 | 119 | 10.4 |
227061 | Ayba | 2017 | 1 | 1 | 91 | 117 | 10.7 |
234498 | Dinglet | 2017 | 1 | 1 | 90 | 143 | 10.8 |
236271 | Ayba | 2017 | 1 | 1 | 95 | 142 | 10.5 |
236282 | Ayba | 2017 | 1 | 1 | 80 | 148 | 10.2 |
236300 | Geregera | 2018 | 3 | 1 | 90 | 141 | 10.1 |
238573 | Geregera | 2019 | 3 | 3 | 85 | 137 | 9.9 |
Geregera | 2019 | 3 | 3 | ||||
Geregera | 2019 | 3 | 5 | ||||
238576 | Geregera | 2018 | 3 | 1 | 85 | 135 | 10.4 |
Chiraferas | Hagreselam | 2019 | 3 | 1 | |||
R2B6P31 | Ayba | 2017 | 1 | 1 | N/A | N/A | N/A |
Rigeat | Ayba | 2017 | 2 | 1 | N/A | N/A | N/A |
Ayba | 2019 | 3 | 1 | ||||
Ayba | 2019 | 3 | 1 | ||||
Hagreselam | 2019 | 3 | 1 | ||||
SSD14 | Dinglet | 2017 | 1 | 1 | N/A | N/A | N/A |
Wehabit | Ayba | 2017 | 2 | 1 | N/A | N/A | N/A |
Ayba | 2019 | 3 | 1 | ||||
Ayba | 2019 | 3 | 1 | ||||
Ayba | 2019 | 3 | 1 | ||||
Ayba | 2019 | 3 | 1 | ||||
Hagreselam | 2019 | 3 | 1 | ||||
Yerer | Dinglet | 2017 | 1 | 1 | 87 | 140 | 10 |
Groundnut Variety Name | Modern/ Landrace | Seed Source | Year |
---|---|---|---|
Amuria | Unknown | Nakaseke | 2020 |
Black | Unknown | Nakasongola | 2019 |
Dok red | Landrace | Nakaseke | 2020 |
Dok Tan | Landrace | Nakaseke | 2019 |
2020 | |||
Egoromoit | Landrace | Nakaseke | 2020 |
Nakasongola | 2019 | ||
Emoi red Beauty | Landrace | Nakaseke | 2019 |
Emoi red | Landrace | Nakaseke | 2020 |
Etesoti | Landrace | Nakaseke | 2019 |
2020 | |||
India | Unknown | Nakaseke | 2019 |
2020 | |||
Kabonge red | Landrace | Nakaseke | 2019 |
Kabonge white | Landrace | Nakaseke | 2019 |
2020 | |||
Kagoogwa Omutono | Unknown | Nakaseke | 2019 |
Kawanda | Landrace | Nakaseke | 2019 |
2020 | |||
Mudugavu | Landrace | Nakaseke | 2020 |
Ogwara | Landrace | Nakaseke | 2019 |
2020 | |||
Nakasongola | 2019 | ||
Otira | Landrace | Nakaseke | 2019 |
2020 | |||
Serenut 2 | Modern | Nakaseke | 2019 |
2020 | |||
Serenut 4 | Modern | Nakaseke | 2019 |
Serenut 5 | Modern | Nakaseke | 2019 |
2020 | |||
Serenut 6 Tan | Modern | Nakaseke | 2020 |
Serenut 7 | Modern | Nakaseke | 2020 |
Serenut 8 | Modern | Nakaseke | 2020 |
Serenut 9 | Modern | Nakaseke | 2020 |
Serenut 10 | Modern | Nakaseke | 2019 |
2020 | |||
Serenut 11 | Modern | Nakaseke | 2020 |
Serenut 11 Tan | Modern | Nakaseke | 2019 |
2020 | |||
Nakasongola | 2019 | ||
Serenut 12 | Modern | Nakaseke | 2020 |
Serenut 14 | Modern | Nakaseke | 2019 |
2020 | |||
Serenut 14 red | Modern | Nakaseke | 2019 |
Tendo | Modern | Nakaseke | 2019 |
2020 | |||
Unknown | Unknown | Nakasongola | 2019 |
Abaita Aababiri market | Unknown | Entebbe market | 2020 |
Entebbe Central market | Unknown | Entebbe market | 2020 |
N. of Samples | Incidence | Range (µg/kg) | Study | |
---|---|---|---|---|
DON | 179 | 9.5% | 0.35–1.14 | Worku et al., 2017 [39] |
OTA A | 179 | 20.1% | 2.5–148.8 | |
DON | 23 | 14.3% | 0.05–0.11 | Ayalew et al., 2006 [38] |
OTA A | 107 | 23.4% | 19.6 (average) | |
NIV | 23 | 4.3% | 0.04 |
Groundnut Variety Name | 2019 n = 23 Samples | 2020 n = 37 Samples | ||||||
---|---|---|---|---|---|---|---|---|
AFB1 µg/kg | AFB2 µg/kg | AFG1 µg/kg | AFG2 µg/kg | AFB1 µg/kg | AFB2 µg/kg | AFG1 µg/kg | AFG2 µg/kg | |
Amuria | - | - | - | - | 0.17 | ≤LOD | 0.13 | ≤LOD |
Black | 0.80 | 0.13 | 0.94 | <LOQ | - | - | - | - |
Dok red | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Dok Tan | 0.08 | <LOQ | ≤LOD | <LOQ | 0.14 | ≤LOD | 0.14 | ≤LOD |
Egolomoit * | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Emoi red Beauty | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
Etemoit | - | - | - | - | 0.14 | ≤LOD | ≤LOD | ≤LOD |
Etesoti | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
India | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Kabonge red | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
Kabonge white | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | 0.11 | ≤LOD |
Kagoogwa Omutono | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
Kawanda | 0.16 | <LOQ | 0.28 | <LOQ | ≤LOD | <LOD | ≤LOD | ≤LOD |
Mubugavu | - | - | - | - | ≤LOD | ≤LOD | 0.13 | ≤LOD |
Ongwara 1 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Ongwara 2 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
Otira | ≤LOD | ≤LOD | 0.08 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 2 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 4 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
Serenut 5 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 6 Tan | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 7 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 8 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 9 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 10 | 0.60 | 0.06 | 0.61 | <LOQ | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 11 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 11 Tan 1 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 11 Tan 2 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
Serenut 12 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Serenut 14 | ≤LOD | ≤LOD | ≤LOD | ≤LOD | 0.14 | ≤LOD | ≤LOD | ≤LOD |
Serenut 14 Red | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
Tendo | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
Unknown | ≤LOD | ≤LOD | ≤LOD | ≤LOD | - | - | - | - |
AA market#1 | - | - | - | - | 0.17 | ≤LOD | ≤LOD | ≤LOD |
AA market#2 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
AA market#3 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
AA market#4 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
AA market#5 | - | - | - | - | 0.50 | 0.06 | 0.18 | <LOQ |
AA market#6 | - | - | - | - | 0.25 | <LOQ | 0.11 | ≤LOD |
EC market#1 | - | - | - | - | 0.41 | 0.06 | 0.16 | <LOQ |
EC market#2 | - | - | - | - | 0.19 | <LOQ | 0.09 | ≤LOD |
EC market#3 | - | - | - | - | ≤LOD | ≤LOD | ≤LOD | ≤LOD |
EC market#4 | - | - | - | - | 456.04 | 5.58 | 224.83 | 1.06 |
EC market#5 | - | - | - | - | 13.19 | 13.56 | 42.39 | 7.29 |
EC market#6 | - | - | - | - | 0.66 | ≤LOD | 1.52 | ≤LOD |
EC market#7 | - | - | - | - | 0.48 | ≤LOD | 1.95 | ≤LOD |
Source of Samples | Region | Year of Collection | Groundnut Type of Sample | N of Samples | % of Contaminated Samples | Reference |
---|---|---|---|---|---|---|
Kiboyo | E Uganda | 2003–2005 | grains | 25 | 80 | Kaaya et al., 2006 [13] |
Bugodi | E Uganda | 2003–2005 | grains | 20 | 75 | |
Gayaza | E Uganda | 2003–2005 | grains | 15 | 60 | |
Kabulamuliro | E Uganda | 2003–2005 | grains | 12 | 67 | |
SW Uganda | NA | flour | 3 | 100 | Kitya et al., 2009 [46] | |
Kampala Markets (5) | 2014 | grains | 20 | 60 | Osuret et al., 2016 [47] | |
2014 | groundnut paste | 20 | 100 | |||
Kampala Market | NA | groundnut paste | 33 | 66 | Baluka et al., 2017 [48] | |
Mubende | Western Savannah Grasslands | NA | - | - | 25 (40) | PACA 2017 [45] |
Kamwenge | NA | - | - | 30 (33) | ||
Masindi | NA | - | - | 20 (50) | ||
Iganga | Kioga plains | NA | - | - | 40 (50) | |
Soroti | NA | - | - | 60 (33) | ||
Tororo | 2017 | - | - | 20 (50) | ||
Gulu | North Eastern Savannah Grasslands | 2017 | - | - | 20 (0) | |
Amuria | - | - | 60 (17) | |||
Lira | 2017 | - | - | 20 (50) | ||
Nakaseke | Central Wooded Savannah | 2019 | grains | 18 | 0 | Present work |
2020 | grains | 24 | 22 | |||
Nakasongola | Kioga plains | 2019 | grains | 5 | 1 | |
Entebbe Markets | 2020 | grains | 13 | 9 (22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, P.; Mengistu, D.K.; Kidane, Y.G.; Nankya, R.; De Santis, B.; Moracci, G.; Debegnach, F.; Marsiglia, R.; Reverberi, M. Negligible Levels of Mycotoxin Contamination in Durum Wheat and Groundnuts from Non-Intensive Rainfed Production Systems. Sustainability 2021, 13, 10309. https://doi.org/10.3390/su131810309
De Santis P, Mengistu DK, Kidane YG, Nankya R, De Santis B, Moracci G, Debegnach F, Marsiglia R, Reverberi M. Negligible Levels of Mycotoxin Contamination in Durum Wheat and Groundnuts from Non-Intensive Rainfed Production Systems. Sustainability. 2021; 13(18):10309. https://doi.org/10.3390/su131810309
Chicago/Turabian StyleDe Santis, Paola, Dejene K. Mengistu, Yosef Gebrehawaryat Kidane, Rose Nankya, Barbara De Santis, Gabriele Moracci, Francesca Debegnach, Riccardo Marsiglia, and Massimo Reverberi. 2021. "Negligible Levels of Mycotoxin Contamination in Durum Wheat and Groundnuts from Non-Intensive Rainfed Production Systems" Sustainability 13, no. 18: 10309. https://doi.org/10.3390/su131810309
APA StyleDe Santis, P., Mengistu, D. K., Kidane, Y. G., Nankya, R., De Santis, B., Moracci, G., Debegnach, F., Marsiglia, R., & Reverberi, M. (2021). Negligible Levels of Mycotoxin Contamination in Durum Wheat and Groundnuts from Non-Intensive Rainfed Production Systems. Sustainability, 13(18), 10309. https://doi.org/10.3390/su131810309