Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm
Abstract
:1. Introduction
- HGAFSA, capable of solving a higher-order ELD, is developed and used to solve several higher-order ELD problems, including 13, 40, 110, 140, 160, and 463 unit systems.
- An ELD encoder algorithm is developed and linked to the developed HGAFSA to form a HGAFSA-based ELD algorithm that minimizes any ELD cost function better than every algorithm mentioned in the available literature.
- The effectiveness of the developed HGAFSA is demonstrated on six ELD systems, including the 463-unit system. Annual savings in fuel costs of $3.254 m, $0.38235 m, $2135.7, $9.5563 m, and $1.1588 m for the 13, 40, 110, 140, and 160 units, respectively, for the first five systems are achieved, compared to costs reported in the available literature.
2. Formulation of ELD
2.1. The Cost Function
- Functions of fixed cost (defined by a straight line with a zero (0) gradient).
- Functions of variable cost (defined by a straight line with positive gradient and having no intercept).
- Functions of mixed cost (defined by a line having single or multiple gradient(s) and intercept(s)).
2.2. Artificial Fish Swarm Algorithm
2.2.1. Praying
2.2.2. Swarm
2.2.3. Chasing
2.3. Genetic Algorithm
2.3.1. Reproduction
2.3.2. Crossover
2.3.3. Mutation
3. Formulation of Hybrid Genetic–Artificial Fish Swarm Algorithm
- GA
- (a)
- Reproduction;
- (b)
- Crossover;
- (c)
- Mutation.
- AFSA
- (a)
- Praying;
- (b)
- Swarming;
- (c)
- Chasing.
3.1. Decoder Function
- Lower boundary of the desired decoded output;
- Higher boundary of the desired decoded output;
- Number of bits per parameter.
Algorithm 1: The decoder function |
3.2. Encoder Function
3.3. Population Update
Algorithm 2: Population updated |
3.4. Model of the Economic Load Dispatch Problem
Algorithm 3: ELD Encoder |
3.5. The Proposed HGAFSA-Based Higher-Order ELD Algorithm
4. Performance Validation
4.1. Test System 1
- Optimum Curve: Defines the total power generated (Demand + Losses) by the system of generating units;
- Upper Limit Curve: Defines the maximum power that can be generated by the system of generating units;
- Lower Limit Curve: Defines the minimum power generated by the system of generating units.
4.2. Test System 2
4.3. Test System 3
4.4. Test System 4
4.5. Test System 5
4.6. Test System 6
4.7. Sensitivity Analysis
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Wang, J.; Zhang, Y.; Fan, Y.; Bao, G.; Wang, X. Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Sources. Sustainability 2020, 12, 1083. [Google Scholar] [CrossRef] [Green Version]
- Chouhdry, Z.U.R.; Hasan, K.M.; Raja, M.A.Z. Design of reduced search space strategy based on integration of Nelder–Mead method and pattern search algorithm with application to economic load dispatch problem. Neural Comput. Appl. 2018, 30, 3693–3705. [Google Scholar] [CrossRef]
- Zhang, Q.; Zou, D.; Duan, N.; Shen, X. An adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problem. Appl. Soft Comput. 2019, 78, 641–669. [Google Scholar] [CrossRef]
- Babatunde, O.; Munda, J.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Rocha, A.M.A.; Fernandes, E.M. Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems. Swarm Evol. Comput. 2014, 14, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Sarfraz, M.; Ayyub, M.; Tariq, M.; Chakrabortty, R.K.; Ryan, M.J.; Alamri, B. A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment. Sustainability 2021, 13, 7170. [Google Scholar] [CrossRef]
- Mehmood, F.; Ashraf, N.; Alvarez, L.; Malik, T.N.; Qureshi, H.K.; Kamal, T. Grid integrated photovoltaic system with fuzzy based maximum power point tracking control along with harmonic elimination. Trans. Emerg. Telecommun. Technol. 2020, e3856. [Google Scholar] [CrossRef]
- Ellahi, M.; Abbas, G.; Satrya, G.B.; Usman, M.R.; Gu, J. A Modified Hybrid Particle Swarm Optimization With Bat Algorithm Parameter Inspired Acceleration Coefficients for Solving Eco-Friendly and Economic Dispatch Problems. IEEE Access 2021, 9, 82169–82187. [Google Scholar] [CrossRef]
- Bernardon, D.; Mello, A.; Pfitscher, L.; Canha, L.; Abaide, A.; Ferreira, A. Real-time reconfiguration of distribution network with distributed generation. Electr. Power Syst. Res. 2014, 107, 59–67. [Google Scholar] [CrossRef]
- Atwa, Y.; El-Saadany, E.; Salama, M.; Seethapathy, R. Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst. 2010, 25, 360–370. [Google Scholar] [CrossRef]
- Mahmoud, K.; Abdel-Nasser, M.; Mustafa, E.; Ali, Z.M. Improved Salp–Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems. Sustainability 2020, 12, 576. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.S.; Tajuddin, M.F.N.; Adzman, M.R.; Ramli, M.A.M.; Mekhilef, S. Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy. Sustainability 2019, 11, 683. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Abdelminaam, D.S.; Said, M.; Houssein, E.H. Recent Methodology-Based Gradient-Based Optimizer for Economic Load Dispatch Problem. IEEE Access 2021, 9, 44322–44338. [Google Scholar] [CrossRef]
- Alanazi, M.S. A Modified Teaching—Learning-Based Optimization for Dynamic Economic Load Dispatch Considering Both Wind Power and Load Demand Uncertainties With Operational Constraints. IEEE Access 2021, 9, 101665–101680. [Google Scholar] [CrossRef]
- Dhebar, Y.; Deb, K. A computationally fast multimodal optimization with push enabled genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference Companion; ACM: New York, NY, USA, 2017; pp. 191–192. [Google Scholar]
- Fang, N.; Zhou, J.; Zhang, R.; Liu, Y.; Zhang, Y. A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 2014, 62, 617–629. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Jubril, A.M.; Komolafe, O.A.; Alawode, K.O. Solving multi-objective economic dispatch problem via semidefinite programming. IEEE Trans. Power Syst. 2013, 28, 2056–2064. [Google Scholar] [CrossRef]
- Dharamjit, D. Load flow analysis on IEEE 30 bus system. Int. J. Sci. Res. Publ. 2012, 2, 1–6. [Google Scholar]
- Sivagnanam, G.; Mauryan, K.C.; Maheswar, R.; Subramanian, R. An Efficient ITA Algorithm to Solve Economic Load Dispatch with Valve Point Loading Effects. Int. J. Print. Packag. Allied Sci. 2017, 2017, 121–128. [Google Scholar]
- Khoa, T.; Vasant, P.; Singh, B.; Dieu, V. Solving Economic Dispatch By Using Swarm Based Mean-Variance Mapping Optimization (MVMOS). Glob. Technoloptim 2015, 6, 184. [Google Scholar]
- Al-Bahrani, L.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations. Sustainability 2021, 13, 1274. [Google Scholar] [CrossRef]
- Jiang, C.; Wan, L.; Sun, Y.; Li, Y. The application of PSO-AFSA method in parameter optimization for underactuated autonomous underwater vehicle control. Math. Probl. Eng. 2017, 2017, 7482. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.F.P.; Rocha, A.M.A.; Fernandes, E.M. An artificial fish swarm algorithm based hyperbolic augmented Lagrangian method. J. Comput. Appl. Math. 2014, 259, 868–876. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Ali, S.; Khan, B.; Ullah, Z.; Mehmood, C.; Jawad, M.; Farid, U.; Haider, A. Stochastic wind energy management model within smart grid framework: A joint Bi-directional service level agreement (SLA) between smart grid and wind energy district prosumers. Renew. Energy 2019, 134, 1017–1033. [Google Scholar] [CrossRef]
- Ali, S.M.; Ullah, Z.; Mokryani, G.; Khan, B.; Hussain, I.; Mehmood, C.A.; Farid, U.; Jawad, M. Smart grid and energy district mutual interactions with demand response programs. IET Energy Syst. Integr. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Chatterjee, S.; Laudato, M.; Lynch, L.A. Genetic algorithms and their statistical applications: An introduction. Comput. Stat. Data Anal. 1996, 22, 633–651. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Liu, H.; Liu, B.; Wu, Y.; Xiong, A.; Dong, T. Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory. Fluid Phase Equilibria 2013, 356, 11–17. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chattopadhyay, P.K. Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEee Trans. Power Syst. 2010, 25, 1955–1964. [Google Scholar] [CrossRef]
- Vlachogiannis, J.G.; Lee, K.Y. Economic load dispatch—A comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO. IEEE Trans. Power Syst. 2009, 24, 991–1001. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.S.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96, 237–245. [Google Scholar] [CrossRef]
- Ellahi, M.; Abbas, G. A Hybrid Metaheuristic Approach for the Solution of Renewables-Incorporated Economic Dispatch Problems. IEEE Access 2020, 8, 127608–127621. [Google Scholar] [CrossRef]
- Roy, P.K.; Bhui, S. Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch problem. Int. J. Electr. Power Energy Syst. 2013, 53, 937–948. [Google Scholar] [CrossRef]
- Mandal, B.; Roy, P.K.; Mandal, S. Economic load dispatch using krill herd algorithm. Int. J. Electr. Power Energy Syst. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Weise, T. Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems. Inf. Sci. 2010, 180, 2405–2420. [Google Scholar] [CrossRef]
- Chiang, C.L. Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans. Power Syst. 2005, 20, 1690–1699. [Google Scholar] [CrossRef]
- Muralikrishnan, N.; Jebaraj, L.; Rajan, C.C.A. A Comprehensive Review on Evolutionary Optimization Techniques Applied for Unit Commitment Problem. IEEE Access 2020, 8, 132980–133014. [Google Scholar] [CrossRef]
- Vishwakarma, K.K.; Dubey, H.M.; Pandit, M.; Panigrahi, B.K. Simulated annealing approach for solving economic load dispatch problems with valve point loading effects. Int. J. Eng. Sci. Technol. 2012, 4, 60–72. [Google Scholar] [CrossRef]
Parameters | Assumptions | ||
---|---|---|---|
Annual peak load and load factor | 10,000 MW and 60 % | Annual energy produced | MW × 8760 h/year × 0.60 = 5.256 kWh |
Average annual heat rate for converting fuel to electric energy | 10,550.56 KJ/kWh | Annual fuel consumption | 10,550.56 KJ/kWh × 5.256 × 10 kWh = 55.45 × 10 KJ |
Annual fuel cost (corresponds to oil price at $18/bbl) | $3.00/1.055 GJ | Annual fuel cost | 55.45 × 10 × 3/1.055 × 10 $/J $1.5767 million |
Parameter | Algorithm | Abbreviation | Value |
---|---|---|---|
Population Size | GA, AFSA | Psize | 64 |
Number of Parameters | GA, AFSA | NoP | 32 |
Visual Distance | AFSA | VD | 0.875 to 1 |
Crowdness Factor | AFSA | CF | 0.09 to 0.5 |
Step Size | AFSA | Ssize | 0.00125 to 0.1 |
Max. Iteration | GA, AFSA | Max_Iter | 10,000 |
Mutation Rate | GA | MR | 0.4 to 0.75 |
Selection Probability | GA | SProb | 0.375 to 0.5 |
Number of Bits | GA | NoB | 8 |
No. of Gen. Units | HGAFSA (MW) | OGWO (MW) | GWO (MW) | OIWO (MW) | SDE (MW) | ORCCRO (MW) |
---|---|---|---|---|---|---|
1 | 628.32 | 628.29 | 628.16 | 628.31 | 628.32 | 628.32 |
2 | 299.20 | 299.18 | 298.92 | 299.19 | 299.20 | 299.20 |
3 | 299.20 | 297.50 | 298.22 | 299.19 | 299.20 | 299.20 |
4 | 159.73 | 159.72 | 159.72 | 159.73 | 159.73 | 159.73 |
5 | 159.73 | 159.73 | 159.72 | 159.73 | 159.73 | 159.73 |
6 | 159.73 | 159.72 | 159.72 | 159.73 | 159.73 | 159.73 |
7 | 159.73 | 159.73 | 159.71 | 159.73 | 159.73 | 159.73 |
8 | 151.73 | 159.73 | 159.67 | 159.73 | 159.73 | 159.73 |
9 | 148.02 | 159.73 | 159.66 | 159.73 | 144.74 | 144.72 |
10 | 114.79 | 77.39 | 77.39 | 77.39 | 113.12 | 112.14 |
11 | 95.58 | 114.74 | 114.60 | 113.10 | 92.40 | 92.40 |
12 | 92.40 | 92.39 | 92.38 | 92.35 | 92.40 | 92.40 |
13 | 92.40 | 92.37 | 92.35 | 92.39 | 92.40 | 92.40 |
Fuel Cost ($/h) | 24,141.26 | 24,512.72 | 24,514.47 | 24,514.83 | 24,514.90 | 24,513.91 |
Power Loss (MW) | 40.11 | 40.28 | 40.29 | 40.36 | 40.09 | 40.11 |
No. of Gen. Units | HGAFSA (MW) | OGWO (MW) | GWO (MW) | OIWO (MW) | SDE (MW) | ORCCRO (MW) | GAAPI (MW) | QOTLBO (MW) | KHA (MW) |
---|---|---|---|---|---|---|---|---|---|
1 | 113.96 | 114 | 114 | 113.9908 | 110.06 | 111.68 | 114 | 114 | 114 |
2 | 113.69 | 114 | 114 | 114 | 112.41 | 112.16 | 114 | 114 | 114 |
3 | 120 | 120 | 120 | 119.99 | 120 | 119.98 | 120 | 107.82 | 120 |
4 | 179.74 | 183.57 | 181.04 | 182.51 | 188.72 | 182.18 | 190 | 190 | 190 |
5 | 96.97 | 87.81 | 87.83 | 88.42 | 85.91 | 87.28 | 97 | 88.37 | 88.59 |
6 | 140 | 140 | 140 | 140 | 140 | 139.85 | 140 | 140 | 105.51 |
7 | 300 | 300 | 300 | 299.99 | 250.19 | 298.15 | 300 | 300 | 300 |
8 | 284.8 | 300 | 300 | 292.06 | 290.68 | 286.89 | 300 | 300 | 300 |
9 | 289.02 | 300 | 300 | 299.88 | 300 | 293.38 | 300 | 300 | 300 |
10 | 279.65 | 279.72 | 279.97 | 279.70 | 282.01 | 279.34 | 205.25 | 211.20 | 280.67 |
11 | 168.81 | 243.61 | 243.62 | 168.81 | 180.82 | 162.35 | 226.3 | 317.27 | 243.53 |
12 | 94 | 94.17 | 94.14 | 94 | 168.74 | 94.12 | 204.72 | 163.76 | 168.80 |
13 | 484.04 | 484.27 | 484.45 | 484.07 | 469.96 | 486.44 | 346.48 | 481.57 | 484.11 |
14 | 484.05 | 484.33 | 484.23 | 484.04 | 484.17 | 487.02 | 434.32 | 480.54 | 484.16 |
15 | 484.04 | 484.04 | 484.24 | 484.03 | 487.73 | 483.39 | 431.34 | 483.76 | 485.23 |
16 | 484.08 | 484.07 | 484.03 | 484.08 | 482.3 | 484.51 | 440.22 | 480.29 | 485.06 |
17 | 489.28 | 489.21 | 489.62 | 489.28 | 499.64 | 494.22 | 500 | 489.24 | 489.45 |
18 | 489.3 | 489.26 | 489.32 | 489.29 | 411.32 | 489.48 | 500 | 489.55 | 489.30 |
19 | 511.32 | 511.33 | 511.46 | 511.32 | 510.47 | 512.2 | 550 | 512.54 | 510.71 |
20 | 511.33 | 511.49 | 511.49 | 511.33 | 542.04 | 513.13 | 550 | 514.29 | 511.30 |
21 | 549.94 | 523.47 | 523.47 | 549.94 | 544.81 | 543.85 | 550 | 527.08 | 524.46 |
22 | 549.94 | 546.64 | 547.68 | 549.99 | 550 | 548 | 550 | 530.10 | 535.57 |
23 | 523.3 | 523.38 | 523.37 | 523.28 | 550 | 521.21 | 550 | 524.29 | 523.37 |
24 | 523.32 | 523.33 | 523.13 | 523.32 | 528.16 | 525.01 | 550 | 524.65 | 523.15 |
25 | 523.27 | 523.40 | 523.34 | 523.58 | 524.16 | 529.84 | 550 | 525.05 | 524.19 |
26 | 523.28 | 523.30 | 523.35 | 523.58 | 539.1 | 540.04 | 550 | 524.46 | 523.54 |
27 | 10.01 | 10.01 | 10.06 | 10.01 | 10 | 12.59 | 11.44 | 10.89 | 10.12 |
28 | 10.01 | 10.01 | 10.63 | 10.01 | 10.37 | 10.06 | 11.56 | 17.43 | 10.18 |
29 | 10.01 | 10.06 | 10.51 | 10.01 | 10 | 10.79 | 11.42 | 12.78 | 10.02 |
30 | 96.96 | 87.80 | 87.80 | 87.86 | 96.1 | 89.7 | 97 | 88.81 | 87.81 |
31 | 190 | 190 | 190 | 190 | 185.33 | 189.59 | 190 | 190 | 190 |
32 | 190 | 190 | 190 | 189.99 | 189.54 | 189.96 | 190 | 190 | 190 |
33 | 190 | 190 | 190 | 190 | 189.96 | 187.61 | 190 | 190 | 190 |
34 | 199.99 | 200 | 200 | 199.99 | 199.9 | 198.91 | 200 | 200 | 200 |
35 | 200 | 200 | 200 | 200 | 196.25 | 199.98 | 200 | 168.08 | 164.91 |
36 | 169.2 | 164.89 | 164.83 | 164.82 | 185.85 | 165.68 | 200 | 165.50 | 164.97 |
37 | 110 | 110 | 110 | 110 | 109.72 | 109.98 | 110 | 110 | 110 |
38 | 109.99 | 110 | 110 | 109.99 | 110 | 109.82 | 110 | 110 | 110 |
39 | 110 | 110 | 110 | 110 | 95.71 | 109.88 | 110 | 110 | 110 |
40 | 550 | 511.85 | 511.54 | 550 | 532.43 | 548.5 | 550 | 511.53 | 512.06 |
Fuel Cost ($/h) | 136,396.9 | 136,440.6 | 136,446.8 | 136,452.7 | 138,157 | 136,855.1 | 139,865 | 137,329.8 | 136,670 |
Power Loss (MW) | 957.29 | 973.12 | 973.28 | 957.29 | 974.43 | 958.75 | 1045.06 | 1008.96 | 978.92 |
No. of Gen. Units | HGAFSA (MW) | OIWO (MW) | No. of Gen. Units | HGAFSA (MW) | OIWO (MW) | No. of Gen. Units | HGAFSA (MW) | OIWO(MW) |
---|---|---|---|---|---|---|---|---|
1 | 2.4 | 2.4 | 38 | 69.99 | 69.98 | 75 | 89.99 | 89.99 |
2 | 2.40 | 2.40 | 39 | 99.99 | 99.99 | 76 | 49.99 | 49.99 |
3 | 2.40 | 2.40 | 40 | 120 | 120 | 77 | 160 | 160.01 |
4 | 2.4 | 2.4 | 41 | 157.18 | 156.8 | 78 | 295.76 | 291.36 |
5 | 2.4 | 2.4 | 42 | 220 | 220 | 79 | 175.05 | 177 |
6 | 4.01 | 4.01 | 43 | 440 | 440 | 80 | 98.01 | 97.75 |
7 | 4 | 4 | 44 | 560 | 560 | 81 | 10.01 | 10.01 |
8 | 4 | 4 | 45 | 660 | 660 | 82 | 12.01 | 12.30 |
9 | 4 | 4 | 46 | 616.43 | 619.53 | 83 | 20.01 | 20.04 |
10 | 64.39 | 63.05 | 47 | 5.40 | 5.40 | 84 | 199.98 | 199.99 |
11 | 62.16 | 59.27 | 48 | 5.4 | 5.4 | 85 | 324.99 | 324.51 |
12 | 36.29 | 35.65 | 49 | 8.40 | 8.40 | 86 | 439.99 | 439.99 |
13 | 56.62 | 57.43 | 50 | 8.4 | 8.4 | 87 | 14.42 | 18.86 |
14 | 25 | 25 | 51 | 8.4 | 8.4 | 88 | 24.32 | 23.33 |
15 | 25 | 25 | 52 | 12 | 12 | 89 | 82.44 | 84.40 |
16 | 25 | 25 | 53 | 12 | 12 | 90 | 89.25 | 91.9 |
17 | 155 | 155 | 54 | 12.01 | 12.01 | 91 | 57.61 | 58.29 |
18 | 155 | 155 | 55 | 12 | 12 | 92 | 99.99 | 98.07 |
19 | 155 | 155 | 56 | 25.2 | 25.2 | 93 | 440 | 440 |
20 | 155 | 155 | 57 | 25.2 | 25.2 | 94 | 499.99 | 499.97 |
21 | 68.9 | 68.9 | 58 | 35 | 35 | 95 | 600 | 600 |
22 | 68.9 | 68.9 | 59 | 35.01 | 35 | 96 | 471.47 | 469.27 |
23 | 68.9 | 68.9 | 60 | 45.01 | 45.01 | 97 | 3.6 | 3.6 |
24 | 350 | 350 | 61 | 45.01 | 45.01 | 98 | 3.6 | 3.6 |
25 | 400 | 400 | 62 | 45 | 45 | 99 | 4.4 | 4.4 |
26 | 400 | 400 | 63 | 184.99 | 185 | 100 | 4.40 | 4.40 |
27 | 500 | 500 | 64 | 185 | 184.99 | 101 | 10.01 | 10.01 |
28 | 500 | 500 | 65 | 185 | 185 | 102 | 10.01 | 10.01 |
29 | 200 | 199.99 | 66 | 184.99 | 185 | 103 | 20.01 | 20.01 |
30 | 100 | 100 | 67 | 70 | 70 | 104 | 20.01 | 20.01 |
31 | 10.01 | 10.01 | 68 | 70 | 70 | 105 | 40 | 40 |
32 | 19.99 | 19.99 | 69 | 70.01 | 70.01 | 106 | 40.01 | 40.01 |
33 | 79.99 | 79.48 | 70 | 359.99 | 360 | 107 | 50 | 50 |
34 | 250 | 250 | 71 | 400 | 400 | 108 | 30 | 30 |
35 | 360 | 360 | 72 | 400 | 400 | 109 | 40 | 40 |
36 | 400 | 399.99 | 73 | 104.96 | 107.83 | 110 | 20 | 20 |
37 | 39.99 | 39.99 | 74 | 191.49 | 188.81 | Fuel Cost ($/h) | 197,988.8 | 197,989.1 |
Test System | Number of Gen. Units | HGAFSA ($) | Best Cost in Literature ($) | Annual Savings ($) | Total Power (MW) | CPU (s) |
---|---|---|---|---|---|---|
1 | 13 | 24,141.26 | 24,512.72 | 3,253,957.2 | 2560.36 | 5.02 |
2 | 40 | 136,396.97 | 136,440.62 | 382,350.35 | 11,457.29 | 10.11 |
3 | 110 | 197,988.89 | 197,989.14 | 2135.68 | 15,000 | 104.3 |
4 | 140 | 1,558,619.09 | 1,559,710 | 9,556,337 | 49,342 | 47.12 |
5 | 160 | 9612.82 | 9745.11 | 1,158,803.5 | 43,200 | 10.23 |
6 | 463 | 1,645,338.73 | none | none | 120,000 |
NoP = 32; VD = 1; CF = 0.5; | |||||
Ssize = 0.005; Max.Iter = 100; MR = 0.5; | |||||
Sprob = 0.5; NoB = 8; NMC = 10 | |||||
Test Sys. | Psize | Cost ($) | NFEBC | NGBC | CPU (s) |
1 | 2 | 1,558,959 | 44,544 | 87 | 5.823 |
2 | 16 | 1,558,651 | 319,488 | 78 | 41.77 |
3 | 64 | 1,558,619 | 360,448 | 22 | 47.12 |
4 | 100 | 1,558,619 | 460,800 | 18 | 60.24 |
5 | 500 | 1,558,619 | 1,536,000 | 12 | 200.8 |
Psize = 64; VD = 1; CF = 0.5; | |||||
Ssize = 0.005; Max.Iter = 100; MR = 0.5; | |||||
Sprob = 0.5; NoB = 8; NMC = 10 | |||||
Test Sys. | NoP | Cost ($) | NFEBC | NGBC | CPU (s) |
1 | 2 | 1,559,930 | 51,200 | 100 | 6.693 |
2 | 16 | 1,558,700 | 729,088 | 89 | 95.31 |
3 | 32 | 1,558,619 | 360,448 | 22 | 47.12 |
4 | 64 | 1,558,619 | 622,592 | 19 | 81.39 |
5 | 124 | 1,558,619 | 1,079,296 | 17 | 141.1 |
Psize = 64; NoP = 32; CF = 0.5; | |||||
Ssize = 0.005; Max.Iter = 100; MR = 0.5; | |||||
Sprob = 0.5; NoB = 8; NMC = 10 | |||||
Test Sys. | VD | Cost ($) | NFEBC | NGBC | CPU (s) |
1 | 0.25 | 1,559,130 | 1,638,400 | 100 | 71.39 |
2 | 0.5 | 1,559,009 | 1,638,400 | 100 | 71.39 |
3 | 0.75 | 1,558,909 | 1,490,944 | 91 | 64.97 |
4 | 1 | 1,558,619 | 360,448 | 22 | 47.12 |
5 | 1.25 | 1,558,619 | 491,520 | 30 | 50.25 |
6 | 1.2 | 1,559,658 | 1,638,400 | 100 | 71.39 |
Psize = 64; NoP = 32; VD = 0.875; | |||||
Ssize = 0.005; Max.Iter = 100; MR = 0.5; | |||||
Sprob = 0.5; NoB = 8; NMC = 10 | |||||
Test Sys. | CF | Cost ($) | NFEBC | NGBC | CPU (s) |
1 | 0.03 | 1,559,992 | 1,638,400 | 100 | 71.39 |
2 | 0.06 | 1,559,986 | 1,556,480 | 95 | 67.82 |
3 | 0.09 | 1,559,930 | 1,490,944 | 91 | 64.97 |
4 | 0.5 | 1,558,619 | 360,448 | 22 | 47.12 |
5 | 0.6 | 1,558,666 | 851,968 | 52 | 55.69 |
6 | 0.7 | 1,558,802 | 1,343,488 | 82 | 58.54 |
Psize = 64; NoP = 32; VD = 0.875; | |||||
CF = 0.5; Max.Iter = 100; MR = 0.5; | |||||
Sprob = 0.5; NoB = 8; NMC = 10 | |||||
Test Sys. | Ssize | Cost ($) | NFEBC | NGBC | CPU (s) |
1 | 0.00125 | 1,558,619 | 360,448 | 22 | 70.68 |
2 | 0.005 | 1,558,619 | 360,448 | 22 | 47.12 |
3 | 0.01 | 1,558,689 | 524,288 | 32 | 68.54 |
4 | 0.025 | 1,558,679 | 1,097,728 | 67 | 71.75 |
5 | 0.05 | 1,558,692 | 1,343,488 | 82 | 58.54 |
6 | 0.1 | 1,558,629 | 1,507,328 | 92 | 65.68 |
Psize = 64; NoP = 32; VD = 0.875; | |||||
CF = 0.5; Max.Iter = 100; MR = 0.5; | |||||
Ssize = 0.005; NoB = 8; NMC = 10 | |||||
Test Sys. | Sprob | Cost ($) | NFEBC | NGBC | CPU (s) |
1 | 0.1 | 1,558,629 | 442,368 | 27 | 48.19 |
2 | 0.2 | 1,558,621 | 507,904 | 31 | 55.33 |
3 | 0.3 | 1,558,650 | 475,136 | 29 | 51.76 |
4 | 0.5 | 1,558,619 | 360,448 | 22 | 47.12 |
5 | 0.7 | 1,558,629 | 622,592 | 38 | 67.82 |
6 | 0.8 | 1,558,622 | 491,520 | 30 | 64.25 |
Psize = 64; NoP = 32; VD = 0.875; CF = 0.5; Max.Iter = 100; | |||||
Ssize = 0.005; Sprob = 0.5; NoB = 8; NMC = 10 | |||||
Test System | MR | Cost ($) | NFEBC | NGBC | CPU (s) |
1 | 0.1 | 1,558,629 | 540,672 | 33 | 58.9 |
2 | 0.25 | 1,558,621 | 638,976 | 39 | 69.61 |
3 | 0.5 | 1,558,619 | 360,448 | 22 | 47.12 |
4 | 0.75 | 1,558,650 | 524,288 | 32 | 57.12 |
5 | 1 | 1,558,629 | 573,440 | 35 | 62.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, A.M.; Kamal, M.; Ahmad, F.; Ullah, Z.; Albogamy, F.R.; Hafeez, G.; Mehmood, F. Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm. Sustainability 2021, 13, 10609. https://doi.org/10.3390/su131910609
Kabir AM, Kamal M, Ahmad F, Ullah Z, Albogamy FR, Hafeez G, Mehmood F. Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm. Sustainability. 2021; 13(19):10609. https://doi.org/10.3390/su131910609
Chicago/Turabian StyleKabir, Abdulrashid Muhammad, Mohsin Kamal, Fiaz Ahmad, Zahid Ullah, Fahad R. Albogamy, Ghulam Hafeez, and Faizan Mehmood. 2021. "Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm" Sustainability 13, no. 19: 10609. https://doi.org/10.3390/su131910609
APA StyleKabir, A. M., Kamal, M., Ahmad, F., Ullah, Z., Albogamy, F. R., Hafeez, G., & Mehmood, F. (2021). Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm. Sustainability, 13(19), 10609. https://doi.org/10.3390/su131910609