Study on the Effect and Mechanism of Alkali–Silica Reaction Expansion in Glass Concrete
Abstract
:1. Introduction
2. Experiment
2.1. Raw Materials
2.2. Preparation of Glass Powder with Different Particle Sizes
2.3. Experimental Method
3. Results and Analysis
3.1. Analysis of Potential ASR Hazards of Aggregate
3.2. SEM Image Analysis of Glass Concrete
3.3. Analysis of the Expansion Mechanism of Glass Concrete ASR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Availability of Data and Materials
References
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokuge, W.; Aravinthan, T.; Schubel, P. Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities. Resour. Conserv. Recycl. 2021, 173, 105745. [Google Scholar] [CrossRef]
- Dong, W.; Guo, Y.; Sun, Z.; Tao, Z.; Li, W. Development of self-sensing cement-based sensor using recycled fine waste glass aggregates coated with carbon nanotube. J. Clean. Prod. 2021, 314, 127968. [Google Scholar] [CrossRef]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [Google Scholar] [CrossRef]
- Nodehi, M.; Taghvaee, V.M. Sustainable concrete for circular economy: A review on use of waste glass. Glass Struct. Eng. 2021, 1–20. [Google Scholar] [CrossRef]
- Sangha, C.M.; Alani, A.M.; Walden, P.J. Relative strength of green glass cullet concrete. Mag. Concr. Res. 2004, 56, 293–297. [Google Scholar] [CrossRef]
- Memon, S.A. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Shi, C.; Zheng, K. A review on the use of waste glasses in the production of cement and concrete. Resour. Conserv. Recycl. 2007, 52, 234–247. [Google Scholar] [CrossRef]
- Soroushian, P. Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Constr. Build. Mater. 2012, 29, 368–377. [Google Scholar]
- Nodehi, M.; Taghvaee, V.M. Alkali-activated materials and geopolymer: A review of common precursors and activators addressing circular economy. Circ. Econ. Sustain. 2021, 1–32. [Google Scholar] [CrossRef]
- Naganna, S.R.; Ibrahim, H.A.; Yap, S.P.; Tan, C.G.; Mo, K.H.; El-Shafie, A. Insights into the Multifaceted Applications of Architectural Concrete: A State-of-the-Art Review. Arab. J. Sci. Eng. 2021, 46, 4213–4223. [Google Scholar] [CrossRef]
- De Brito, J.; Kurda, R. The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. J. Clean. Prod. 2021, 281, 123558. [Google Scholar] [CrossRef]
- Lu, J.-X.; Shen, P.; Zheng, H.; Zhan, B.; Ali, H.A.; He, P.; Poon, C.S. Synergetic recycling of waste glass and recycled aggregates in cement mortars: Physical, durability and microstructure performance. Cem. Concr. Compos. 2020, 113, 103632. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, M.; Smarzewski, P. Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach. Materials 2021, 14, 1745. [Google Scholar] [CrossRef]
- Omoding, N.; Cunningham, L.S.; Lane-Serff, G.F. Effect of using recycled waste glass coarse aggregates on the hydrodynamic abrasion resistance of concrete. Constr. Build. Mater. 2021, 268, 121177. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Saha, A.K.; Sarker, P.K. Reuse of waste glass as a supplementary binder and aggregate for sustainable cement-based construction materials: A review. J. Build. Eng. 2020, 28, 101052. [Google Scholar] [CrossRef]
- Mohajerani, A.; Vajna, J.; Cheung, T.H.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 2017, 156, 443–467. [Google Scholar] [CrossRef]
- Jayakumar, G.; Mathews, M.E.; Kiran, T.; Yadav, B.S.K.; Kanagaraj, B.; Anand, N. Development and strength assessment of sustainable high strength fiber reinforced concrete. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Wang, H.Y.; Huang, W.L. Durability of self-consolidating concrete using waste LCD glass. Constr. Build. Mater. 2010, 24, 1008–1013. [Google Scholar] [CrossRef]
- Meyer, C.; Baxter, S.; Jin, W. Potential of waste glass for concrete masonary blocks. In Materials for the New Millennium, Proceedings of the 4th Materials Engineering Conference, Washington, DC, USA, 10–14 November 1996; American Society of Civil Engineers: New York, NY, USA, 1996; pp. 666–673. [Google Scholar]
- Jani, Y.; Hogland, W. Waste glass in the production of cement and concrete–A review. J. Environ. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Jochem, L.F.; Casagrande, C.A.; Onghero, L.; Venâncio, C.; Gleize, P.J. Effect of partial replacement of the cement by glass waste on cementitious pastes. Constr. Build. Mater. 2021, 273, 121704. [Google Scholar] [CrossRef]
- Omran, A.F.; D.-Morin, E.; Harbec, D.; Tagnit-Hamou, A. Long-term performance of glass-powder concrete in large-scale field applications. Constr. Build. Mater. 2017, 135, 43–58. [Google Scholar] [CrossRef]
- Xie, G.G.; Kong, Y.N.; Liu, S.H. Research progress on ASR of glass concrete. Adv. Mater. Ind. 2012, 7, 65–71. [Google Scholar]
- Jin, W.H.; Meyer, C.; Baxter, S. “Glascrete”—Concrete with glass aggregate. ACI Mater. J. 2000, 97, 208–213. [Google Scholar]
- Bazant, Z.P.; Zi, G.; Meyer, C. Fracture mechanics of ASR in concretes with waste glass particles of different sizes. Eng. Mech. ASCE 2000, 126, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Taha, B.; Nounu, G. Utilizing waste recycled glass as sand/cement replacement in concrete. J. Mater. Civ. Eng. 2009, 21, 709–721. [Google Scholar] [CrossRef]
- Lee, G.; Ling, T.-C.; Wong, Y.-L.; Poon, C.-S. Effects of crushed glass cullet sizes, casting methods and pozzolanic materials on ASR of concrete blocks. Constr. Build. Mater. 2011, 25, 2611–2618. [Google Scholar] [CrossRef]
- Li, F.H.; Zhang, G.B.; Zhou, H.Y.; Li, G. Inhibition Effect of Super Metakaolin and Fly Ash on Alkali-Silica Reaction in Concrete. J. Build. Mater. 2017, 20, 876–880. [Google Scholar]
- Zhao, Y.; Sun, P.; Chen, P.; Guan, X.; Wang, Y.; Liu, R.; Wei, J. Component Modification of Basic Oxygen Furnace Slag with C4AF as Target Mineral and Application. Sustainability 2021, 13, 6536. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, P.; Wang, Y.; Li, L.; Chen, X.; Sun, P. Experimental Research of Concrete with Steel Slag Powder and Zeolite Powder. J. Renew. Mater. 2020, 8, 1647–1655. [Google Scholar] [CrossRef]
- Leemann, A.; Lörtscher, L.; Bernard, L.; LE Saout, G.; Lothenbach, B.; Espinosa-Marzal, R.M. Mitigation of ASR by the use of LiNO3—Characterization of the reaction products. Cem. Concr. Res. 2014, 59, 73–86. [Google Scholar] [CrossRef]
- Tremblay, C.; Bérubé, M.A.; Fournier, B.; Thomas, M.D.; Folliard, K.J. Experimental investigation of the mechanisms by which LiNO3 is effective against ASR. Cem. Concr. Res. 2010, 40, 583–597. [Google Scholar] [CrossRef]
- Liu, J.; Yu, L.; Deng, M. Effect of LiNO3 on Expansion of Alkali–Silica Reaction in Rock Prisms and Concrete Microbars Prepared by Sandstone. Materials 2019, 12, 1150. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Ma, B.; Lothenbach, B. Effect of Al on the formation and structure of alkali-silica reaction products. Cem. Concr. Res. 2021, 140, 106311. [Google Scholar] [CrossRef]
- Yang, L.R.; Feng, X.X.; Liu, G. Investigation on the suppressing effect of Al3+ on expansion due to alkali—Silica reaction. Concrete 2010, 5, 35–38. [Google Scholar]
- Rajabipour, F.; Maraghechi, H.; Fischer, G. Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials. J. Mater. Civ. Eng. 2010, 22, 1201–1208. [Google Scholar] [CrossRef]
- Suwito, A.; Jin, W.H.; Xi, Y.; Meyer, C. A mathematical model for the pessimum size effect of ASR in concrete. Concr. Sci. Eng. 2002, 4, 23–34. [Google Scholar]
- Dyer, T.D.; Dhir, R.K. Chemical Reactions of Glass Cullet Used as Cement Component. J. Mater. Civ. Eng. 2001, 13, 412–417. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Y.; Riefler, C.; Wang, H. Characteristics and pozzolanic reactivity of glass powders. Cem. Concr. Res. 2005, 35, 987–993. [Google Scholar] [CrossRef]
- Zheng, K.R.; Chen, L.; Zhou, J. Pozzolanic Reaction of Soda-lime Glass and Its Influences on Composition of Calcium Silicate Hydrate. J. Chin. Ceram. Soc. 2016, 44, 202–210. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Tang, W.; Hu, N.; Wei, J. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate. Materials 2015, 8, 6849–6862. [Google Scholar] [CrossRef] [Green Version]
- Ming, Y.; Sun, P.; Chen, P. Experimental research on preparation of high strength concrete with rice husk ash instead of silica fume. E3S Web Conf. EDP Sci. 2021, 233, 01053. [Google Scholar] [CrossRef]
- Shayan, A.; Xu, A. Value-added utilisation of waste glass in concrete. Cem. Concr. Res. 2004, 34, 81–89. [Google Scholar] [CrossRef]
Compositions | SiO2 | Al2O3 | CaO | Na2O | K2O | Fe2O3 | MgO | SO3 | TiO2 | Other |
---|---|---|---|---|---|---|---|---|---|---|
Cement | 20.2 | 4.7 | 61.9 | 0.19 | 0.82 | 3.0 | 2.6 | 3.9 | / | 1.9 |
Glass power | 72.2 | 2.55 | 7.11 | 0.42 | 0.64 | 2.47 | 0.46 | / | 0.15 | 1.03 |
Particle Size (μm) | Blaine Surface Area (m2/kg) | Density (kg/m3) |
---|---|---|
0–13 | 729.0 | 2510 |
13–38 | 521.8 | 2490 |
38–75 | 441.2 | 2480 |
Number | Glass Powder Particle Size /μm | Glasspowdercontent /wt.% | Glass Sand Content /wt.% | Cement /g | Glass Powder/g | Glass Sand /g | Sand /g | Water /mL |
---|---|---|---|---|---|---|---|---|
JZ0 | / | 0 | 0 | 400 | 0 | 0 | 900 | 188 |
GP1 | 0~13 | 20 | 0 | 320 | 80 | 0 | 900 | 188 |
GP2 | 13~38 | 20 | 0 | 320 | 80 | 0 | 900 | 188 |
GP3 | 38~75 | 20 | 0 | 320 | 80 | 0 | 900 | 188 |
JZ20 | / | 0 | 20 | 400 | 0 | 180 | 720 | 188 |
GP4 | 0~13 | 20 | 20 | 320 | 80 | 180 | 720 | 188 |
GP5 | 13~38 | 20 | 20 | 320 | 80 | 180 | 720 | 188 |
GP6 | 38~75 | 20 | 20 | 320 | 80 | 180 | 720 | 188 |
JZ100 | / | 0 | 100 | 400 | 0 | 900 | 0 | 188 |
GP7 | 0~13 | 20 | 100 | 320 | 80 | 900 | 0 | 188 |
GP8 | 13~38 | 20 | 100 | 320 | 80 | 900 | 0 | 188 |
GP9 | 38~75 | 20 | 100 | 320 | 80 | 900 | 0 | 188 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Sun, P.; Gao, P.; Liu, G.; Wang, Y.; Chen, X. Study on the Effect and Mechanism of Alkali–Silica Reaction Expansion in Glass Concrete. Sustainability 2021, 13, 10618. https://doi.org/10.3390/su131910618
Huang D, Sun P, Gao P, Liu G, Wang Y, Chen X. Study on the Effect and Mechanism of Alkali–Silica Reaction Expansion in Glass Concrete. Sustainability. 2021; 13(19):10618. https://doi.org/10.3390/su131910618
Chicago/Turabian StyleHuang, Da, Pengliang Sun, Pengfei Gao, Guangyan Liu, Yuanhao Wang, and Xuandong Chen. 2021. "Study on the Effect and Mechanism of Alkali–Silica Reaction Expansion in Glass Concrete" Sustainability 13, no. 19: 10618. https://doi.org/10.3390/su131910618
APA StyleHuang, D., Sun, P., Gao, P., Liu, G., Wang, Y., & Chen, X. (2021). Study on the Effect and Mechanism of Alkali–Silica Reaction Expansion in Glass Concrete. Sustainability, 13(19), 10618. https://doi.org/10.3390/su131910618