Carcinogenic Content of PM10-Bound PAHs in University Classrooms and Outdoors at an Urban Location in Rome, Italy, during Winter Working and Not-Working Days
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. PM10-Bound PAHs Collection and Analysis
- Aitken mode (mass median aerodynamic diameters (MMAD): ∼0.05 μm,
- Accumulation Mode, AM I (MMAD 0.13–0.17 μm,);
- Accumulation Mode, AM II (MMAD 0.4–0.45 μm);
- Accumulation Mode, AM III, (MMAD 0.9–1.2 μm,);
- Coarse mode (MMAD: 4–6 μm).
2.3. Infiltration Factor, Residual Indoor Concentration
2.4. PAHs Total Carcinogenic Potency and Relative Potency Factor Calculation
3. Results and Discussion
3.1. Analysis of cPAHs Concentration and Mass Contribution to PM10
Study of Mean cPAH Concentrations over the Week
3.2. Infiltration Factor, Residual Indoor Concentration and Indoor to Outdoor Ratio
3.3. Study of Chemical Profiles
3.4. Toxicity Equivalency to BaP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bralewska, K.; Rakowska, J. Concentrations of particulate matter and PM-bound polycyclic aromatic hydrocarbons released during combustion of various types of materials and possible toxicological potential of the emissions: The results of preliminary studies. Int. J. Environ. Res Public Health 2020, 17, 3202. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Dat, N.D.; Lyu, J.M.; Chang, M.B. Variation of atmospheric PAHs in northern Taiwan during winter and summer seasons. Aerosol Air Qual. Res. 2018, 18, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, R.; Lammel, G. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling. Environ. Sci. Technol. 2004, 38, 3793–3803. [Google Scholar] [CrossRef]
- Ringuet, J.; Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; Villenave, E. Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants. Atmos. Environ. 2012, 61, 15–22. [Google Scholar] [CrossRef]
- Tsapakis, M.; Stephanou, E.G. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: Study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ. Pollut. 2005, 133, 147–156. [Google Scholar] [CrossRef]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Gariazzo, C.; Lamberti, M.; Hänninen, O.; Silibello, C.; Pelliccioni, A.; Porta, D.; Cecinato, A.; Gherardi, M.; Forastiere, F. Assessment of population exposure to Polycyclic Aromatic Hydrocarbons (PAHs) using integrated models and evaluation of uncertainties. Atmos. Environ. 2015, 101, 235–245. [Google Scholar] [CrossRef]
- Mumtaz, M.M.; George, J.D.; Gold, K.W.; Cibulas, W.; Derosa, C.T. Atsdr evaluation of health effects of chemicals. Iv. Polycyclic aromatic hydrocarbons (PAHs): Understanding a complex problem. Toxicol. Ind. Health 1996, 12, 742–971. [Google Scholar] [CrossRef]
- Bergman, Å.; Heindel, J.J.; Jobling, S.; Kidd, K.A.; Thomas Zoeller, R. State of the Science of Endocrine Disrupting Chemicals 2012; United Nations Environment Programme and the World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environ. Int. 2019, 124, 180–204. [Google Scholar] [CrossRef]
- Choi, H.; Rauh, V.; Garfinkel, R.; Tu, Y.; Perera, F.P. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction. Environ. Health Perspect. 2008, 116, 658–665. [Google Scholar] [CrossRef]
- World Health Organization; Regional Office for Europe. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization; Regional Office for Europe: 2010. Available online: https://apps.who.int/iris/handle/10665/260127 (accessed on 12 June 2021).
- Directive 2004/107/EC of the European Parliament and of the Council of 15/12/2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. Eur. Union 2005, 23, 3–16.
- Delgado-Saborit, J.M.; Stark, C.; Harrison, R.M. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ. Int. 2011, 37, 383–392. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Regional Office for Europe. Air Quality Guidelines for Europe, 2nd ed.; World Health Organization; Regional Office for Europe, 2000; Available online: https://apps.who.int/iris/handle/10665/107335 (accessed on 8 May 2021).
- Member State Committee Support Document For Identification of Benzo[ghi]Perylene as a Substance of Very High Concern because of its Pbt1 And Vpvb2 Properties (Article 57d & e). Adopted on 1 June 2018. Annex XV Report. Available online: https://echa.europa.eu/documents/ (accessed on 20 May 2021).
- C&L Inventory Technical Issue from ECHA (European CHemical Agency). Classification, Labelling and Packaging. Available online: https://echa.europa.eu/it/information-on-chemicals/cl-inventory-database (accessed on 25 February 2021).
- Boström, C.E.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–488. [Google Scholar]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Hester, R.; Harrison, R.; Larsen, J.; Larsen, P. Chemical carcinogens. In Air Pollution and Health; Herster, R.E., Harrison, R.M., Eds.; Royal Society of Chemistry: Cambridge, UK, 1998; pp. 33–56. [Google Scholar]
- US-EPA. U.S. Environmental Protection Agency, Office of Research and Development. In Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAH); EPA/600/R-93/089 (NTIS PB94116571); Office of Health and Environmental Assessment: Washington, DC, USA, 1993. [Google Scholar]
- DRAFT Recommended Procedures Air Toxics Contaminant Health Risk Assessments. State of Oregon Department of Environmental Quality 1 Appendix D Use of the Toxic Equivalency Factor Methodology for Dioxins and Furans, PCBs, and PAHs. October 2019. Available online: https://www.oregon.gov/deq/aq/cao/Documents/CAODraftProceduresRisk.pdf (accessed on 5 May 2021).
- Pelliccioni, A.; Monti, P.; Cattani, G.; Boccuni, F.; Cacciani, M.; Canepari, S.; Capone, P.; Catrambone, M.; Cusano, M.; D’Ovidio, M.C.; et al. Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project. Sustainability 2020, 12, 9758. [Google Scholar] [CrossRef]
- Di Filippo, P.; Riccardi, C.; Pomata, D.; Buiarelli, F. Concentrations of PAHs, and nitro- and methyl- derivatives associated with a size-segregated urban aerosol. Atmos. Environ. 2010, 44, 2742–2749. [Google Scholar] [CrossRef]
- Yu, H.; Yu, J.Z. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning. Atmos. Environ. 2012, 54, 194–200. [Google Scholar] [CrossRef]
- Liaud, C.; Chouvenc, S.; Le Calvé, S. Simultaneous Monitoring of Particle-Bound PAHs Inside a Low-Energy School Building and Outdoors Over Two Weeks in France. Atmos 2021, 12, 108. [Google Scholar] [CrossRef]
- Tofful, L.; Catrambone, M.; Giusto, M.; Pareti, S.; Rantica, E.; Sargolini, T.; Canepari, S.; Frezzini, M.A.; Massimi, L.; Ristorini, M.; et al. Seasonal Variations in the Chemical Composition of Indoor and Outdoor PM10 in University Classrooms. Sustainability 2021, 13, 2263. [Google Scholar] [CrossRef]
- Gatto, M.P.; Gariazzo, C.; Gordiani, A.; L’Episcopo, N.; Gherardi, M. Children and elders exposure assessment to particle-bound polycyclic aromatic hydrocarbons (PAHs) in the city of Rome, Italy. Environ. Sci. Pollut. Res. 2014, 21, 13152–13159. [Google Scholar] [CrossRef]
- The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 2nd ed. Eurachem Guide The Fitn. 2014. Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 5 May 2021).
- Bedjanian, Y.; Nguyen, M.L.; Le Bras, G. Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals. Atmos. Environ. 2010, 44, 1754–1760. [Google Scholar] [CrossRef]
- Schauer, C.; Niessner, R.; Pöschl, U. Polycyclic aromatic hydrocarbons in urban air particulate matter: Decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ. Sci. Technol. 2003, 37, 2861–2868. [Google Scholar] [CrossRef] [PubMed]
- Liu, G. Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South China. Atmos. Environ. 2006, 40, 3134–3143. [Google Scholar] [CrossRef]
- Keyte, I.J.; Harrison, R.M.; Lammel, G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons-a review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef] [PubMed]
- Chameides, W.L.; Fehsenfeld, F.; Rodgers, M.O.; Cardelino, C.; Martinez, J.; Parrish, D.; Lonneman, W.; Lawson, D.R.; Rasmussen, R.A.; Zimmerman, P.; et al. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 1992, 97, 6037–6055. [Google Scholar] [CrossRef]
- Paolini, V.; Guerriero, E.; Bacaloni, A.; Rotatori, M.; Benedetti, P.; Mosca, S. Simultaneous Sampling of Vapor and Particle-Phase Carcinogenic Polycyclic Aromatic Hydrocarbons on Functionalized Glass Fiber Filters. Aerosol Air Qual. Res. 2016, 16, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Delistraty, D. Toxic equivalency factor approach for risk assessment of polycyclic aromatic hydrocarbons. Toxicol. Environ. Chem. 1997, 64, 81–108. [Google Scholar] [CrossRef]
- Petracchini, F.; Romagnoli, P.; Paciucci, L.; Vichi, F.; Imperiali, A.; Paolini, V.; Liotta, F.; Cecinato, A. Influence of transport from urban sources and domestic biomass combustion on the air quality of a mountain area. Environ. Sci. Pollut. Res. Int. 2017, 24, 4741–4754. [Google Scholar] [CrossRef]
- Jakovljević, I.; Štrukil, Z.S.; Godec, R.; Bešlić, I.; Davila, S.; Lovrić, M.; Pehnec, P. Pollution sources and carcinogenic risk of PAHs in PM1 particle fraction in an urban area. Int. J. Environ. Res. Public Health 2020, 17, 9587. [Google Scholar] [CrossRef]
- Chen, F.; Hu, W.; Zhong, Q. Emissions of particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Fu Gui-shan Tunnel of Nanjing, China. Atmos. Res. 2013, 124, 53–60. [Google Scholar] [CrossRef]
- Fang, G.C.; Chang, C.N.; Wu, Y.S.; Fu, P.P.; Yang, I.L.; Chen, M.H. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci. Total Environ. 2004, 327, 135–146. [Google Scholar] [CrossRef]
- Romagnoli, P.; Balducci, C.; Perilli, M.; Gherardi, M.; Gordiani, A.; Gariazzo, C.; Gatto, M.P.; Cecinato, A. Indoor PAHs at schools, homes and offices in Rome, Italy. Atmos. Environ. 2014, 92, 51–59. [Google Scholar] [CrossRef]
- Pehnec, G.; Jakovljević, I.; Godec, R.; Sever Štrukil, Z.; Žero, S.; Huremović, J.; Džepina, K. Carcinogenic organic content of particulate matter at urban locations with different pollution sources. Sci. Total Environ. 2020, 734, 139414. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, P.; Balducci, C.; Cecinato, A.; L’Episcopo, N.; Gariazzo, C.; Gatto, M.P.; Gordiani, A.; Gherardi, M. Fine particulate-bound polycyclic aromatic hydrocarbons in vehicles in Rome, Italy. Environ. Sci. Pollut. Res. 2017, 24, 3493–3505. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.; Ho, S.; Lee, S.L.; Cheng, Y.; Chow, J.; Watson, J.; Louie, P.; Tian, L. Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmos. Environ. 2009, 43, 6343–6351. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W. Traffic-generated changes in the chemical characteristics of size-segregated urban aerosols. Bull Environ. Contam. Toxicol. 2014, 93, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.Y.; Chien, P.S.; Kuo, W.C.; Wei, C.T.; Rau, J.Y. Comparison of polycyclic aromatic hydrocarbon emissions on gasoline and diesel-dominated routes. Environ. Monit. Assess. 2013, 185, 5749–5761. [Google Scholar] [CrossRef]
- Tobiszewsk, I.M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Jamhari, A.A.; Sahani, M.; Latif, M.T.; Chan, K.M.; Tan, H.S.; Khan, M.F.; Norhayati, M.T. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos. Environ. 2014, 86, 16–27. [Google Scholar] [CrossRef]
- Cvetković, A.; Jovašević-Stojanović, M.; Marković, D.; Ristovski, Z. Concentration and source identification of polycyclic aromatic hydrocarbons in the metropolitan area of Belgrade, Serbia. Atmos. Environ. 2015, 112, 335–343. [Google Scholar] [CrossRef]
- Jakovljević, I.; Pehnec, G.; Vadjić, V.; Šišović, A.; Davila, S.; Bešlić, I. Carcinogenic activity of polycyclic aromatic hydrocarbons bounded on particle fraction. Environ. Sci. Pollut. Res. 2015, 22, 15931–15940. [Google Scholar] [CrossRef]
- Pehnec, G.; Jakovljević, I. Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size. Int. J. Environ. Res. Public Health 2018, 15, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanedar, A.; Alp, K.; Kaynak, B.; Avşar, E. Toxicity evaluation and source apportionment of polycyclic aromatic hydrocarbons (PAHs) at three stations in Istanbil, Turkey. Sci. Total Environ. 2014, 488–489, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, P.; Vichi, F.; Balducci, C.; Imperiali, A.; Perilli, M.; Paciucci, L.; Petracchini, F.; Cecinato, A. Air quality study in the coastal city of Crotone (southern Italy) hosting a small-size harbour. Environ. Sci. Pollut. Res. 2017, 24, 25260–25275. [Google Scholar] [CrossRef] [PubMed]
- Monti, P.; Leuzzi, G. A Closure to Derive a Three-Dimensional Well-Mixed Trajectory-Model for Non-Gaussian, Inhomogeneous Turbulence. Bound-Layer Meteorol. 1996, 80, 311–331. [Google Scholar] [CrossRef]
- Cantelli, A.; Monti, P.; Leuzzi, G. Numerical study of the urban geometrical representation impact in a surface energy budget model. Environ. Fluid Mech. 2015, 15, 251–273. [Google Scholar] [CrossRef]
Compound | Molecular Weight | Harmonised Classification—Annex VI of Regulation (EC) No 1272/2008 (CLP Regulation) or Notified Classification and Labelling According to CLP Criteria (*) | Properties of Concerns (**) |
---|---|---|---|
benzo(a)anthracene (BaA) | 228.3 |
| C, PBT |
benzo(ghi)perylene (BghiP) | 276.3 | not classifiable as to human carcinogenicity
| PBT |
benzo(b)fluoranthene (BbF) | 252.3 |
| C, POP |
benzo(j)fluoranthene (BjF) | 252.3 |
| C |
benzo(k)fluoranthene (BkF) | 252.3 |
| C, PBT, POP |
benzo(a)pyrene (BaP) | 252.3 |
| PBT, vPvB |
chrysene (CH) | 228.3 |
| C, M, PBT |
dibenz[a,h]anthracene (DahA) | 278.3 |
| C |
indeno[1,2,3-cd]pyrene (IP) | 276.3 |
| POP |
Period | Days of Week | Sampling Duration (h) | Time Intervals |
---|---|---|---|
P1 | Saturday + Sunday | 48 | Saturday 09:00 to Monday 09:00 |
P2 | Monday + Tuesday | 18 | Monday from 09:00 to 18:00+ |
day | Tuesday from 09:00 to 18:00 | ||
P3 | Monday + Tuesday | 30 | Monday from 18:00 to 09:00+ |
night | Tuesday from 18:00 to 09:00 | ||
P4 | Wednesday + Thursday + Friday day | 27 | Wednesday from 09:00 to 18:00+ |
Thursday from 09:00 to 18:00+ | |||
Friday from 09:00 to 18:00 | |||
P5 | Wednesday + Thursday + Friday night | 45 | Wednesdayfrom 18:00 to 09:00 + |
Thursday from 18:00 to 09:00 + | |||
Friday from 18:00to 09:00 |
BaA | CH | BbF | BjF | BkF | BaP | IP | DahA | BghiP | Estimated BbjkF | |
---|---|---|---|---|---|---|---|---|---|---|
TEF (1) | 0.1 | 0.01 | 0.1 | - | 0.1 | 1 | 0.1 | 5 | 0.01 | 0.08 |
A4 | ||||||||
c (ng/m3) | BaA | CH | BbjkF | BaP | IP | DahA | BghiP | cPAHs |
P1 | 0.14 | 0.16 | 1.62 | 0.58 | 0.60 | 0.06 | 0.88 | 4.04 |
P2 | 0.04 | 0.10 | 0.47 | 0.18 | 0.52 | ND(*) | 0.65 | 1.96 |
P3 | 0.20 | 0.21 | 1.27 | 1.00 | 1.45 | 0.06 | 1.68 | 5.86 |
P4 | 0.11 | 0.13 | 0.63 | 0.41 | 0.82 | 0.02 | 1.08 | 3.21 |
P5 | 0.29 | 0.27 | 1.85 | 1.49 | 1.72 | 0.11 | 2.76 | 8.49 |
Total Average n=31 | 0.16 | 0.17 | 1.18 | 0.73 | 1.01 | 0.05 | 1.40 | 4.69 |
CR | ||||||||
c (ng/m3) | BaA | CH | BbjkF | BaP | IP | DahA | BghiP | cPAHs |
P1 | 0.20 | 0.23 | 1.91 | 0.77 | 0.90 | 0.09 | 1.30 | 5.39 |
P2 | 0.13 | 0.13 | 0.61 | 0.38 | 0.69 | 0.02 | 0.83 | 2.79 |
P3 | 0.37 | 0.34 | 1.95 | 2.01 | 2.48 | 0.21 | 3.09 | 10.4 |
P4 | 0.31 | 0.27 | 1.16 | 1.18 | 1.61 | 0.10 | 2.07 | 6.71 |
P5 | 0.33 | 0.31 | 2.05 | 1.87 | 2.18 | 0.20 | 3.08 | 10.0 |
Total Average n=31 | 0.26 | 0.26 | 1.55 | 1.23 | 1.55 | 0.12 | 2.05 | 7.02 |
OUT | ||||||||
c (ng/m3) | BaA | CH | BbjkF | BaP | IP | DahA | BghiP | PAH |
P1 | 0.22 | 0.25 | 2.22 | 0.69 | 0.76 | 0.08 | 1.10 | 5.26 |
P2 | 0.26 | 0.32 | 1.21 | 0.56 | 0.82 | 0.25 | 1.13 | 4.29 |
P3 | 0.49 | 0.56 | 3.06 | 2.08 | 2.56 | 0.15 | 3.38 | 12.1 |
P4 | 0.36 | 0.37 | 1.52 | 1.23 | 0.79 | 0.10 | 1.17 | 5.44 |
P5 | 0.82 | 0.90 | 4.62 | 2.69 | 3.33 | 0.25 | 4.50 | 16.9 |
Total Average n=31 | 0.42 | 0.47 | 2.52 | 1.42 | 1.62 | 0.16 | 2.22 | 8.68 |
A4 | CR | OUT | |
---|---|---|---|
Δ% first-Weekdays | −3.2 | 23 | 56 |
Δ% second-Weekdays | 45 | 55 | 112 |
Average | 21 | 39 | 84 |
Weekend | Weekdays | ||
---|---|---|---|
IF | 0.58 | 0.41 | |
A4 | C0 (ng/m3) | 0.97 | 0.89 |
r | 0.90 | 0.94 | |
IF | 0.71 | 0.47 | |
CR | C0 (ng/m3) | 1.67 | 2.95 |
r | 0.75 | 0.59 |
I/O Ratio | ||
---|---|---|
cPAHs | PM10 | |
A4 | 0.54 | 1.22 |
CR | 0.81 | 0.75 |
Cmax (ng/m3) | Compound | CBaA/Cmax | CCH/Cmax | CBbjkF/ Cmax | CBaP/ Cmax | CIP/ Cmax | CDahA/ Cmax | CBghiP/ Cmax | ||
---|---|---|---|---|---|---|---|---|---|---|
A4 | Weekend | 1.62 | BbjkF | 0.08 | 0.10 | 1.00 | 0.34 | 0.38 | 0.03 | 0.57 |
Weekdays | 5.22 | BghiP | 0.09 | 0.12 | 0.65 | 0.39 | 0.76 | 0.02 | 0.99 | |
CR | Weekend | 2.01 | BbjkF | 0.10 | 0.12 | 0.96 | 0.38 | 0.47 | 0.05 | 0.69 |
Weekdays | 9.69 | BghiP | 0.13 | 0.12 | 0.69 | 0.49 | 0.70 | 0.05 | 0.93 | |
OUT | Weekend | 2.22 | BbjkF | 0.09 | 0.11 | 1.00 | 0.29 | 0.34 | 0.04 | 0.50 |
Weekdays | 9.08 | BbjkF | 0.17 | 0.18 | 0.86 | 0.44 | 0.61 | 0.08 | 0.84 |
TCP (ng/m3) | RPF | |||
---|---|---|---|---|
Weekend | Weekdays | Weekend | Weekdays | |
A4 | 1.06 | 1.22 | 1.83 | 1.59 |
CR | 1.46 | 2.41 | 1.90 | 1.96 |
OUT | 1.37 | 3.02 | 1.99 | 1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherardi, M.; Gordiani, A.; L’Episcopo, N.; Pelliccioni, A. Carcinogenic Content of PM10-Bound PAHs in University Classrooms and Outdoors at an Urban Location in Rome, Italy, during Winter Working and Not-Working Days. Sustainability 2021, 13, 10790. https://doi.org/10.3390/su131910790
Gherardi M, Gordiani A, L’Episcopo N, Pelliccioni A. Carcinogenic Content of PM10-Bound PAHs in University Classrooms and Outdoors at an Urban Location in Rome, Italy, during Winter Working and Not-Working Days. Sustainability. 2021; 13(19):10790. https://doi.org/10.3390/su131910790
Chicago/Turabian StyleGherardi, Monica, Andrea Gordiani, Nunziata L’Episcopo, and Armando Pelliccioni. 2021. "Carcinogenic Content of PM10-Bound PAHs in University Classrooms and Outdoors at an Urban Location in Rome, Italy, during Winter Working and Not-Working Days" Sustainability 13, no. 19: 10790. https://doi.org/10.3390/su131910790
APA StyleGherardi, M., Gordiani, A., L’Episcopo, N., & Pelliccioni, A. (2021). Carcinogenic Content of PM10-Bound PAHs in University Classrooms and Outdoors at an Urban Location in Rome, Italy, during Winter Working and Not-Working Days. Sustainability, 13(19), 10790. https://doi.org/10.3390/su131910790