Characteristics of Mercury Pollution and Ecological Risk Assessment in Different Degraded Grasslands of the Songnen Plains, Northeastern China
Abstract
:1. Introduction
- The background values and dynamics of mercury content in soil, vegetation, and atmosphere driven by different degrees of soil degradation in degraded grassland ecosystems, which represent the distribution differences;
- The correlations of the mercury between the soil and herbage and the atmosphere and soil, and the possible sources and influencing factors of the mercury;
- An evaluation index system was established. A single factor pollution index method and a ground accumulation index method were used to evaluate the mercury pollution status of different grassland types. Then, the degrees of pollution of the different grassland types were compared in order to determine the controlling factors of the spatial distributions of mercury in the soil and atmosphere of different degraded grassland types;
- The potential ecological risks of mercury pollution in grassland regions with different degrees of degradation, within the Songnen Plain region, were comprehensively assessed.
2. Materials and Methods
2.1. Description of the Study Area
2.2. Different Degradation Degrees of the Grassland Types
2.3. Arrangement of the Sampling Points
2.4. Sample Collection and Analysis
2.5. Quality Control
2.6. Simulations of the Mercury Content Levels of the Leymus Chinensis in the Different Types Degraded Grassland Using Neural Networks
2.7. Data Analysis Method
3. Results
3.1. Analysis of the Degrees of Mercury Pollution in the Soil of Different Degraded Grasslands and Potential Risk Assessments
3.1.1. Soil Mercury Content Levels of the Different Types of Degraded Grassland
3.1.2. Ecological Risk Assessments of the Mercury Levels in Soil of the Different Degraded Grassland Areas
- (1)
- Geo-accumulation index method and single factor pollution index method
- (2)
- Potential risk evaluation index method
3.2. Atmospheric Mercury Pollution Analysis and Risk Assessment Results of Different Degraded Grasslands
3.2.1. Atmospheric Mercury Content Levels in the Different Degraded Grasslands
3.2.2. Ecological Risk Assessments of the Atmospheric Mercury in the Different Degraded Grasslands
3.3. Linear Correlation Analysis of the Atmospheric and Soil Mercury in the Different Degraded Grasslands
3.4. Analysis and Risk Assessment Results of the Mercury Pollution in the L. chinensis of the Different Degraded Grasslands
3.4.1. Mercury Content Levels in the L. chinensis of the Different Degraded Types of Grassland
3.4.2. Results of the Neural Network Training
4. Discussion
4.1. Mercury Pollution Levels in the Soil of Different Degraded Grassland and the Influencing Factors
4.2. Atmospheric Mercury Pollution in the Different Degraded Grasslands and the Influencing Factors
4.3. Mercury Pollution Degrees of the Herbage in the Different Degraded Grasslands and the Influencing Factors
4.4. Transport and Transformation of Mercury in the Atmosphere-Soil-Herbage of the Songnen Plains Grasslands and the Influencing Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, M.; Wei, D.B.; Tan, Z.W.; Lin, A.W.; Du, Y.G. Predicted no-effect concentrations for mercury species and ecological risk assessment for mercury pollution in aquatic environment. J. Environ. Sci. 2015, 28, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Feng, X.B.; Zhu, J.M. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ. Sci. Technol. 2012, 46, 10040–10046. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.C.; Lin, Z.J.; Wan, X.; Feng, L. Risk assessment for the mercury polluted site near a pesticide plant in Changsha, Hunan, China. Chemosphere 2017, 169, 333–341. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L.; Myers, G.J. The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.W.; Yang, L.S.; Li, Y.H.; Li, H.R.; Wang, W.Y.; Ye, B.X. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. 2012, 184, 2261–2273. [Google Scholar] [CrossRef]
- Krabbenhoft, D.P.; Sunderland, E.M. Global change and mercury. Science 2013, 341, 1457–1458. [Google Scholar] [CrossRef]
- Spela, B.; Biester, H.; Gosar, M. A risk assessment of human exposure to mercury-contaminated soil and household dust in the town of Idrija (Slovenia). J. Geochem. Explor. 2018, 187, 131–140. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.X.; Wang, L.; Hao, J.M. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: Implications of mercury emission sources. Atmos. Chem. Phys. 2013, 13, 10505–10516. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermolin, M.S.; Fedotov, P.S.; Malik, N.A.; Karandashev, V.K. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 2018, 200, 16–22. [Google Scholar] [CrossRef]
- Futsaeter, G.; Wilson, S.; Pirrone, N. The UNEP global mercury assessment: Sources, emissions and transport. E3S Web Conf. 2013, 1, 36001. [Google Scholar] [CrossRef] [Green Version]
- Graydon, J.A.; StLouis, V.L.; Lindberg, S.E.; Hintelmann, H.; Krabbenhoft, D.P. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber. Environ. Sci. Technol. 2006, 40, 4680–4688. [Google Scholar] [CrossRef] [PubMed]
- Tsiros, I.X. A screening model- based study of transport fluxes and fate of airborne mercury deposited onto catchment areas. Chemosphere 2001, 44, 99–107. [Google Scholar] [CrossRef]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Pierce, A.M.; Moore, C.W.; Wohlfahrt, G.; Hortnagl, L.; Kljun, N.; Obrist, D. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy. Environ. Sci. Technol. 2015, 49, 1559–1568. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.J.; Jensen, A.D.; Windelin, C.; Jensen, F. Review of technologies for mercury removal from flue gas from cement production processes. Prog. Energ. Combust. Sci. 2012, 38, 599–629. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 2013, 442, 86–95. [Google Scholar] [CrossRef]
- Bahlmann, E.; Ebinghaus, R.; Ruck, W. Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils. J. Environ. Manag. 2006, 81, 114–125. [Google Scholar] [CrossRef]
- Gustin, M.S.; Biester, H.; Kim, C.S. Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmos. Environ. 2002, 36, 3241–3254. [Google Scholar] [CrossRef]
- Bahimann, E.; Ebinghaus, R. Process studies on mercury fluxes over different soils with a Laboratory Flux Measurement System (LFMS). J. Phys. 2003, 107, 99–102. [Google Scholar] [CrossRef]
- Lin, C.J.; Gustin, M.S.; Singhasuk, P.; Eckley, C.; Miller, M. Empirical models for estimating mercury flux from soils. Environ. Sci. Technol. 2010, 44, 8522–8528. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zha, T.G.; Guo, X.P.; Meng, G.X.; Zhou, J.X. Spatial distribution of metal pollution of soils of Chinese provincial capital cities. Sci. Total Environ. 2018, 643, 1502–1513. [Google Scholar] [CrossRef]
- Risch, M.R.; Dewild, J.F.; Gay, D.A.; Zhang, L.M.; Boyer, E.W.; Krabbenhoft, D.P. Atmospheric mercury deposition to forests in the eastern USA. Environ. Pollut. 2017, 228, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Durão Júnior, W.A.; Palmieri, H.E.; Trindade, M.C.; Branco, O.E.D.; Carvalho, C.A.; Fleming, P.M.; da Silva, J.B.B.; Windmoller, C.C. Speciation, distribution, and transport of mercury in contaminated soils from Descoberto, Minas Gerais, Brazil. J. Environ. Monit. JEM 2009, 11, 1056–1063. [Google Scholar] [CrossRef]
- Qiu, G.L.; Feng, X.B.; Wang, S.F.; Shang, L.H. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China. Environ. Pollut. 2006, 142, 549–558. [Google Scholar] [CrossRef]
- Ariya, P.A.; Amyot, M.; Dastoor, A.; Deeds, D.; Feinberg, A.; Kos, G.; Poulain, A.; Ryjkov, A.; Ryjkov, A.; Semeniuk, K.; et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions. Chem. Rev. 2015, 115, 3760–3802. [Google Scholar] [CrossRef]
- Jing, Z.B.; Cheng, J.M.; Su, J.H.; Bai, Y.; Jin, J.W. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecol. Eng. 2014, 64, 171–178. [Google Scholar] [CrossRef]
- Smit, H.J.; Metzger, M.J.; Ewert, F. Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 2008, 98, 208–219. [Google Scholar] [CrossRef]
- Pfeifer, M.; Martis, M.; Asp, T.; Mayer, F.X.K.; Luberstedt, T.; Byrne, S.; Frei, U.; Studer, B. The perennial ryegrass genome zipper: Targeted use of genome resources for comparative grass genomics. Plant Physiol. 2013, 161, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laacouri, A.; Nater, E.A.; Kolka, R.K. Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA. Environ. Sci. Technol. 2013, 47, 10462–10470. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.C.; Zhang, X.S.; Chen, J.S.; Wang, S.; Wang, Z.W.; Ci, Z.J. The role of vegetation in atmospheric mercury budgets: Progresses and perspectives. Asian J. Ecotoxicol. 2014, 9, 843–849. (In Chinese) [Google Scholar]
- Shang, S.; Tian, P.; Jiang, Y.; Wu, J.X.; Jiang, S.; Deng, H. Uptake and Volatilization of Gaseous Elemental Mercury by Paddy Rice. Environ. Sci. 2018, 38, 5308–5314. [Google Scholar] [CrossRef]
- Stamenkovic, J.; Gustin, M.S. Nonstomatal versus stomatal uptake of atmospheric mercury. Environ. Sci. Technol. 2009, 43, 1367–1372. [Google Scholar] [CrossRef]
- Weiss-Penzias, P.; Dan, J.; Swartzendruber, P.; Hafner, W.; Chand, D.; Prestbo, E. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor observatory. Atmos. Environ. 2007, 41, 4366–4379. [Google Scholar] [CrossRef]
- Lindberg, S.E.; Don, W.; Meyers, T. Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Florida. Atmos. Environ. 2002, 36, 5207–5219. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, J.; Chai, S.L.; Cai, J.; Xun, L.F.; Zhang, Q.W. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere 2015, 134, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Xiao, T.T.; Zhang, G.; Zhang, L.S.; Cui, Y.F.; Jiang, Y.L. Mercury spatial distribution characteristics and its exposure of the endangered Jankowski’s bunting. Ecol. Res. 2020, 35, 650–661. [Google Scholar] [CrossRef]
- Rahmanian, B.; Pakizeh, M.; Mansoori, S.A.A.; Abedini, R. Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. J. Hazard. Mater. 2011, 187, 67–74. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. Quantifying heavy metal inputs to agricultural soils in England and Wales. Water Environ. J. 2006, 20, 87–95. [Google Scholar] [CrossRef]
- Solgi, E.; Esmaili-Sari, A.; Riyahi-Bakhtiari, A.; Hadipour, M. Soil contamination of metals in the three industrial Estates, Arak, Iran. Bull. Environ. Contam. Toxicol. 2012, 88, 634–638. [Google Scholar] [CrossRef]
- Hovmand, M.F.; Kemp, K.; Kystol, J.; Johnsen, I.; Riis-Nielsen, T.; Pacyna, J.M. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia. Environ. Pollut. 2008, 155, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.P. Research on the environmental background values of soils in Xizang. Sci. Geogr. Sin. 1994, 14, 49–55. (In Chinese) [Google Scholar]
- Zhu, Y.J.; Zhang, Y.Q.; Liu, M.; Chen, L.G.; He, Q.S.; Ye, Z.X.; Sun, J.R. Distribution and Pollution Assessment of the Mercury in Soils of Tibet. Ecol. Environ. Sci. 2014, 23, 1487–1491. (In Chinese) [Google Scholar] [CrossRef]
- Chen, H.; Si-Er, L.J.; Yang, J.H. Study of spatial distribution of heavy metal elements content and its environment status in the Ili River Valley Region. J. Soil Water Conserv. 2013, 27, 100–105. (In Chinese) [Google Scholar] [CrossRef]
- Tan, X.A.; Wang, P.; Zou, Y.P.; Fan, Y. Impact of Tourist Activities on Heavy Metal Pollution of Soil in the Shangri-La Scenic Area. J. Southwest Univ. 2017, 7, 543–555. (In Chinese) [Google Scholar] [CrossRef]
- You, G.Y.; Yu, L. Analysis of heavy metal pollution in soil of typical rural area in Qiannan Prefecture. Environ. Prot. Technol. 2017, 9, 44–49. (In Chinese) [Google Scholar]
- Liao, L. Geochemistry of harmful components in soils of urban and suburban areas of Baotou, Inner Mongolia. China Univ. Geosci. 2013, 45, 617–627. (In Chinese) [Google Scholar]
- Ren, P.; Huang, L.M.; Liu, Y.; Hao, N.F.; Liu, D.Y.; Wang, D.H. The mercury distribution and influence factors in soil around the prairie coal mine. Environ. Sci. Technol. 2014, 37, 29–32. (In Chinese) [Google Scholar]
- Deng, Q.J.; Xie, F.; Song, C.R.; Ji, Y.B.; Chen, A.N.; Tan, H.; He, J.L. Current situation and evaluation of heavy metals in agricultural soils of Qiannan prefecture. Environ. Prot. Technol. 2005, 11, 24–29. (In Chinese) [Google Scholar]
- Xu, Q.; Zhang, L.X.; Liu, S.H.; Liu, X.R.; Zhang, L.J. Heavy metal pollution of surface soil and its evaluation of potential ecological risk: A case study of different functional areas in Baotou City. Ournal Nat. Disasters 2008, 17, 6–12. (In Chinese) [Google Scholar]
- Li, J.; Yan, L.J.; Sun, W.J. Investigation and evaluation of soil heavy metal in Inner Mongolian vegetable planting. Environ. Dev. 2014, 8, 88–92. (In Chinese) [Google Scholar]
- Zhi, Y.B.; Wang, Z.L.; Ma, Z.; Wang, Z.S.; Deng, Z.F.; Li, H.L. The speciation and bioavailability of heavy metals pollutants in soil along highway in Erdos. Acta Ecol. Sin. 2007, 27, 2030–2039. (In Chinese) [Google Scholar]
- Pang, L.R.; Zhang, F.J.; Li, X.P.; Cui, Y.; Feng, X.H.; Liu, J.P. Heavy metal content in agro-pastoral transition area and its differentiation. Inner Mong. Agr. Sci. Technol. 2010, 4, 71–72. (In Chinese) [Google Scholar]
- Yang, X.G.; Hu, B.; Zhuang, Y.; Bao, L.; Wu, R.Q.Q.G. Heavy metal pollution of pasture soli around soil accumulated place of Hulunbuir opencast coal mine. Guizhou Agr. Sci. 2016, 44, 152–156. (In Chinese) [Google Scholar]
- Wang, X.K. Eco-geochemical assessment in the urban area of Hohot and Baotou. China Univ. Geosci. 2012, 27–43. (In Chinese) [Google Scholar]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wu, J.; Wang, J. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [Google Scholar] [CrossRef]
- Guo, H.Q.; Yang, Z.H.; Li, H.L.; Ma, W.J.; Ren, J.F. Environmental quality and anthropogenic pollution assessment of heavy metals in topsoil of Hebei plain. Geol. China 2011, 38, 218–225. (In Chinese) [Google Scholar]
- Song, N. Risk assessment and prediction of soil heavy metal pollution in Jiuquan area. Lanzhou Univ. 2018, 21–29. (In Chinese) [Google Scholar]
- He, L.H.; Gao, X.H. Assessment of potential ecological risk for soil heavy metals in Sanjiang Source Region: A case study of Yushu County, Qinghai Province. J. Agro-Environ. Sci. 2016, 35, 1071–1080. (In Chinese) [Google Scholar]
- Zhang, W.; Gao, X.H.; Yang, Y.; Li, J.S.; Zhang, Y.J.; Tian, C.M.; Jia, W.; Feng, L.; Feng, Y.L.; Yuan, H.X.; et al. Estimating heavy metal contents for topsoil based on spectral analysis-A case study of Yushu and Maduo counties in the Three-River source Region. Soils 2014, 46, 1052–1060. (In Chinese) [Google Scholar]
- Mason, R.P.; Choi, A.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Lamborg, C.H.; Soerensen, A.L.; Sunderland, E.M. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 2012, 119, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, R.; Mazzolai, B.; Edner, H.; Svanberg, S.; Wallinder, E. Atmospheric mercury sources in the Mt. Amiata area, Italy. Sci. Total Environ. 1998, 213, 13–23. [Google Scholar] [CrossRef]
- Wang, Y.; Stauffer, C.; Keller, C.; Gregre, M. Changes in Hg fractionation in soil induced by willow. Plant Soil 2005, 275, 67–75. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Aamir, M.; Liu, K.; Yang, F.X.; Liu, W.P. Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment. Environ. Pollut. 2018, 240, 116–124. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Biester, H.G.; Müller Scheler, H.F. Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants: Part I. Sci. Total Environ. 2002, 284, 177–189. [Google Scholar] [CrossRef]
- Tomiyasu, T.; Okada, M.; Imura, R.; Sakamoto, H. Vertical variations in the concentration of mercury in soils around Sakurajima Volcano, Southern Kyushu, Japan. Sci. Total Environ. 2003, 304, 221–230. [Google Scholar] [CrossRef]
- Zhu, W.; Lin, C.J.; Wang, X.; Sommar, J.; Feng, X.B. Global observations and modeling of atmosphere–surface exchange of elemental mercury: A critical review. Atmos. Chem. Phys 2016, 16, 4451–4480. [Google Scholar] [CrossRef] [Green Version]
- Rinklebe, J.; During, A.; Overesch, M.; Du Laing, G.; Wennrich, R.; Stark, H.J.; Mothes, S. Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environ. Pollut. 2010, 158, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Holmes, C.D.; Jacob, D.J.; Corbitt, E.S.; Mao, J.; Yang, X.; Talbot, R.; Slemr, F. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 2010, 10, 12037–12057. [Google Scholar] [CrossRef] [Green Version]
- Pacyna, G.E.; Pacyna, M.J.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilsom, S.; Steenhuisen, F.; Maxson, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Fu, X.W.; Feng, X.; Liang, P.; Deliger; Zhuang, H.; Ji, J.; Liu, P. Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmos. Chem. Phys. 2012, 45, 286–299. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.L.; Song, S.L.; Yang, W.Q.; Zhang, B.; Wang, J.Q. Occurrence characteristics of mercury in high-mercury coal and distribution rule of mercury in products of an air dense medium fluidized bed. Int. J. Min. Sci. Technol. 2018, 28, 1015–1020. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, L.; Xiao, T.T.; Yu, T.L.; Zhang, G. Pollution characteristics and risk assessments of mercury in the soil of the main urban regions in a typical Chinese industrial city: Changchun. Pol. J. Environ. Stud. 2021, 30, 3829–3841. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, X.; Larssen, T.; Qiu, G.; Vogt, R.D. In inland China, rice, rather than fish, is the major pathway for methyl mercury exposure. Environ. Health Perspect. 2010, 118, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Zhu, W.; Zhang, H.; Sommar, J.; Yu, B.; Yang, X.; Wang, X.; Lin, C.J.; Feng, X.B. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmos. Chem. Phys. 2016, 16, 12861–12873. [Google Scholar] [CrossRef] [Green Version]
- Amos, H.M.; Jacob, D.J.; Holmes, C.D.; Fisher, J.A.; Sunderland, E.M. Atmospheric chemistry and physics gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmos. Chem. Phys. 2012, 12, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Howard, D.; Nelson, P.F.; Edwards, G.C.; Morrison, A.L.; Fisher, J.A.; Ward, J.; Harnwell, J.; Schoot, M.; Atkinson, B.; Chambers, S.D.; et al. Atmospheric mercury in the Southern Hemisphere tropics: Seasonal and diurnal variations and influence of inter-hemispheric transport. Atmos. Chem. Phys. 2017, 17, 11623–11636. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wright, L.P.; Blanchard, P. A review of current knowledge concerning dry deposition of atmospheric mercury. Atmos. Environ. 2009, 43, 5853–5864. [Google Scholar] [CrossRef]
- Jiskra, M.; Sonke, J.E.; Obrist, D.; Bieser, J.; Ebinghaus, R.; Myhre, C.L.; Pfaffhuber, K.A.; Wangberg, L.; Kyllonen, K.; Worthy, D.; et al. A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nat. Geosci. 2018, 12, 3321–3336. [Google Scholar] [CrossRef] [Green Version]
- Obrist, D.; Johnson, D.W.; Lindberg, S.E.; Luo, Y.; Hararuk, O.; Bracho, R.; Battles, J.J.; Dail, D.B.; Edmonds, R.L.; Monson, R.K.; et al. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 2011, 45, 3974–3981. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bao, Z.; Lin, C.J.; Lu, Z.Y.; Zhang, H.; Zhang, Y.P.; Feng, X.B. Assessment of Global Mercury Deposition through Litter fall. Environ. Sci. Technol. 2016, 50, 8548–8557. [Google Scholar] [CrossRef]
- Obrist, D.; Pearson, C.; Webster, J.; Kane, T.; Lin, C.J.; Aiken, G.R.; Alpers, C.N. A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity. Sci. Total Environ. 2016, 568, 522–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millhollen, A.G.; Obrist, D.; Gustin, M.S. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil. Chemosphere 2006, 65, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, R.L.; Vogt, R.L.; Smith, A.B.; Brondum, J.; Brightwell, W.S.; Hudson, P.J.; Mcmanus, K.P.; Hannon, W.H.; Phipps, F.C. Effects of elemental mercury exposure at a thermometer plant. Am. J. Ind. Med. 2010, 19, 495–507. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Wang, Q.C.; Zheng, D.M.; Zheng, N.; Zhang, X.W.; Zhang, X.Y. Mercury biogeochemistry in the soil-plant-insect system in Huludao City. Acta Sci. Circumstantiae 2008, 28, 2118–2124. (In Chinese) [Google Scholar] [CrossRef]
- Chang, J.C.S.; Zhao, Y. Pilot plant testing of elemental mercury reemission from a wet scrubber. Energy Fuels 2008, 22, 338–342. [Google Scholar] [CrossRef]
Project | Values |
---|---|
The average duration of sunshine | 2880 h |
The annual solar radiation | 125 kcal/cm2 |
The annual average number of windy days | more than 100 days |
The annual average wind speed ranged | 4–5 m/s |
The annual average rainfall ranged | 400–500 mRn |
The minimum rainfall value | 250 mm |
The annual evaporation rate | 1500 and 2000 mm |
Monitoring Project | Classification of Grassland Degradation | |||
---|---|---|---|---|
Non-Degraded | Lightly Degraded | Moderately Degraded | Severely Degraded | |
Percentage reduction in total coverage (%) | 0~10 | 11~20 | 21~30 | >30 |
Type | Range | Level | Type | Range | Level | Type | Range | Level |
---|---|---|---|---|---|---|---|---|
Igeo | Igeo < 0 | Unpolluted | Er | PI | ||||
0 ≤ Igeo < 1 | Unpolluted to moderately polluted | Er < 40 | Low | PI < 0 | Unpolluted | |||
1 ≤ Igeo < 2 | Moderately polluted | 40 ≤ Er < 80 | Moderate | PI ≤ 1 | Unpolluted | |||
2 ≤ Igeo < 3 | Moderately to heavily polluted | 80 ≤ Er < 160 | High | 1 < PI ≤ 2 | Slightly polluted | |||
3 ≤ Igeo < 4 | Heavily polluted | 160 ≤ Er < 320 | Serious | 2 < PI ≤ 3 | Moderately polluted | |||
4 ≤ Igeo < 5 | Heavily to extremely polluted | Er ≥ 320 | Severe | PI ≥ 3 | Heavily polluted | |||
Igeo ≥ 5 | Extremely polluted |
Methods | Non-Degraded | Moderately Degraded | Severely Degraded |
---|---|---|---|
PI | 1.71 | 2.03 | 1.83 |
Igeo | 0.19 | 0.44 | 0.28 |
Area | Hg (mg/Kg) | PI | PI Class | Igeo | Igeo Class | Reference |
---|---|---|---|---|---|---|
Typical Grasslands of Tibet | 0.078 | 1.20 | Moderate | −0.32 | Unpolluted | [43] |
Nagqu Frigid Grasslands | 0.05 | 0.77 | Low | −0.96 | Unpolluted | [44] |
Nalat Grasslands | 0.01 | 0.15 | Low | −3.29 | Unpolluted | [45] |
Karajun Grasslands | 0.01 | 0.15 | Low | −3.29 | Unpolluted | [46] |
Tangbula Grasslands | 0.012 | 0.18 | Low | −3.02 | Unpolluted | [47] |
Balak Grasslands | 0.013 | 0.20 | Low | −2.91 | Unpolluted | [48] |
Napa Hyira Grasslands | 0.269 | 4.14 | High | 1.46 | Moderately polluted | [49] |
Longli Grasslands | 0.686 | 10.55 | High | 2.81 | Moderately to strongly polluted | [50] |
Xilamuren Grasslands | 0.077 | 1.18 | Moderate | −0.34 | Unpolluted | [51] |
Xilingol Grasslands | 0.196 | 3.02 | High | 1.01 | Moderately polluted | [52] |
Erdos Steppe | 0.01 | 0.15 | Low | −3.29 | Unpolluted | [53] |
Lantern River Grasslands | 0.0284 | 0.44 | Low | −1.78 | Unpolluted | [54] |
Hohror Grasslands | 0.02 | 0.31 | Low | −2.29 | Unpolluted | [55] |
Bayan Khusok Grasslands | 0.03 | 0.46 | Low | −1.70 | Unpolluted | [56] |
Beijing’s First Grassland | 0.04 | 0.62 | Low | −1.29 | Unpolluted | [57] |
Zhang Bei Grasslands | 0.051 | 0.78 | Low | −0.93 | Unpolluted | [58] |
Qilian Mountain Grasslands | 0.136 | 2.09 | Moderate | 0.48 | Unpolluted to moderately polluted | [59] |
Gold and Silver Grasslands | 0.418 | 6.43 | High | 2.10 | Moderately to strongly polluted | [60] |
Yushu Grasslands | 0.046 | 0.71 | Low | −1.08 | Unpolluted | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, L.; Zhang, G.; Li, X.; Li, X.; Zhang, Y.; Zhou, X.; Chen, M.; Xiao, T.; Feng, Z.; et al. Characteristics of Mercury Pollution and Ecological Risk Assessment in Different Degraded Grasslands of the Songnen Plains, Northeastern China. Sustainability 2021, 13, 10898. https://doi.org/10.3390/su131910898
Wang Z, Wang L, Zhang G, Li X, Li X, Zhang Y, Zhou X, Chen M, Xiao T, Feng Z, et al. Characteristics of Mercury Pollution and Ecological Risk Assessment in Different Degraded Grasslands of the Songnen Plains, Northeastern China. Sustainability. 2021; 13(19):10898. https://doi.org/10.3390/su131910898
Chicago/Turabian StyleWang, Zhaojun, Lei Wang, Gang Zhang, Xu Li, Xiangyun Li, Yangjie Zhang, Xuhang Zhou, Ming Chen, Tingting Xiao, Zhili Feng, and et al. 2021. "Characteristics of Mercury Pollution and Ecological Risk Assessment in Different Degraded Grasslands of the Songnen Plains, Northeastern China" Sustainability 13, no. 19: 10898. https://doi.org/10.3390/su131910898
APA StyleWang, Z., Wang, L., Zhang, G., Li, X., Li, X., Zhang, Y., Zhou, X., Chen, M., Xiao, T., Feng, Z., Weng, Y., Tang, Z., & Wang, D. (2021). Characteristics of Mercury Pollution and Ecological Risk Assessment in Different Degraded Grasslands of the Songnen Plains, Northeastern China. Sustainability, 13(19), 10898. https://doi.org/10.3390/su131910898