Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Soil Conditions
- -
- Content of available forms of phosphorus and potassium by the Egner-Riehm method,
- -
- Assimilable magnesium by Schachtschabel method using Spectra AA 220 and FS atomic absorption spectrometry,
- -
- Mineral nitrogen by the Kjeldahl method,
- -
- Organic carbon with the Vario-Max autoanalyser, (percentage humus = %C × 1.724),
- -
- Granulation using the Casagrande areometric method,
- -
- pH using a radiometer pH meter.
2.3. Thermal and Humidity Conditions
2.4. Biometric Measurements
- AS—assimilation surface area of a single plant,
- x—sum of the surface areas of the fifth and sixth leaf.
- SLA—specific leaf area (cm2·g−1),
- LA—leaf area (cm2),
- LW—leaf blade weight (g).
- LAI—leaf area index,
- LA—leaf area of a single plant (cm2),
- LR—plant density per 1 m2 (plants·m−2).
2.5. SPAD Index
2.6. Partial Factor Productivity of Fertilizer Nitrogen (PFPFN)
- P—Fresh mass yield (kg·ha−1),
- Nr—Nitrogen dose (kg N·ha−1),
2.7. Fresh Mass Yield
2.8. Statistical Analysis
3. Results
3.1. Number of Leaves, Mass of Leaves, Mass of Stems, and Mass of Ears on a Single Plant
3.2. Assimilation Area of a Single Plant, LAI (Leaf Area Index), SLA (Specific Leaf Area)
3.3. Leaf Greenness Index (SPAD)
3.4. Fresh Mass of a Single Plant, Fresh Mass Yield, PFPFN (Partial Factor Productivity of Fertilizer Nitrogen)
4. Discussion
5. Conclusions
- The temperature and humidity conditions in the maize growing seasons determined the structure of maize canopy, plant assimilation surface, value of the SPAD leaf greenness index, PFPFN, and the green mass yield of maize harvested for silage.
- The plants of the “stay-green” maize variety developed fewer leaves per plant, but their weight was greater compared to the classic variety. In addition, the total leaf blade area of a single plant and the value of the LAI index were significantly higher in the “stay-green” hybrid compared to the traditional variety.
- Morphological analysis of specific leaf area (SLA) of the “stay-green” hybrid demonstrated a highly effective nitrogen utilization, leading to faster generation of leaves with a larger assimilation surface, which formed the basis for effective absorption of solar radiation. Hence, the accumulation of plant biomass in the “stay-green” type was significantly more effective compared to traditional varieties. For this reason, one can infer that the transport of assimilates is highly efficient in this type of maize variety.
- The selection of “stay-green” varieties for silage cultivation guarantees high biomass yields for ensilage. The high yielding potential of stay green maize can only be utilized under adequate conditions. In poor conditions (cold and wet), the leaves may mature too late.
- The risk of a lower biomass of maize intended for ensilage can be reduced by using only balanced mineral fertilization of all nutrients. The omission of phosphorus (P) and potassium (K) in the mineral fertilization dose, regardless of the variety tested, was a factor reducing the yield of maize biomass intended for ensilage and a lower PFPFN compared to the treatment optimally balanced in terms of the nitrogen dose.
- The results obtained in the study can be implemented in integrated maize cultivation, as well as in organic cultivation (selection of maize variety).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osaki, M.; Fujisaki, Y.; Morikawa, K.; Matsumoto, M.; Shinano, T.; Tadano, T. Productivity of high-yielding crops. IV. Parameters determining differences of productivity among field crops. Soil Sci. Plant Nutr. 1993, 39, 605–615. [Google Scholar] [CrossRef]
- Sun, J.; Gao, J.; Wang, Z.; Hu, Z.; Hu, S.; Zhang, F.; Bao, H.; Fan, Y. Maize canopy photosynthetic efficiency, plant growth and yield responses to tillage depth. Agronomy 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Xiao, K.; Guo, X.; Zhao, C. Review on maize canopy structure, light distributing and canopy photosynthesis. Maize Sci. 2005, 13, 55–59. [Google Scholar]
- Bai, J.F. Effect on Different Farming Measure on Canopy and Root of High Yield Spring Maize. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, July 2012. [Google Scholar]
- Pengelly, J.L.; Kwasny, S.; Bala, S.; Evans, J.R.; Voznesenskaya, E.V.; Koteyeva, N.K.; Edwards, G.E.; Furbanak, R.T.; Caemmerer, S. Functional analysis of corn husk photosynthesis. Am. Soc. Plant Biologists 2011, 156, 503–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowiński, P. Chilling-sensitivity of maize. Part. I. Growth, development, photosynthesis. Biul. IHAR 2000, 214, 3–16. (In Polish) [Google Scholar]
- Kączkowski, J. Plant Biochemistry. Vol. 1. Typical Transformations; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1992. (In Polish) [Google Scholar]
- Tausta, S.L.; Coyle, H.M.; Rothermel, B.; Stiefel, V.; Nelson, T. Maize C4 and non-C4 NADP-dependence malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. Plant Mol. Biol. 2002, 50, 635–652. [Google Scholar] [CrossRef]
- Matsuoka, M.; Nomura, M.; Agarie, S.; Miyao-Tokutomi, M.; Ku, M.S.B. Evolution of C4 photosynthetic genes and overexpression of maize C4 genes in rice. J. Plant Res. 1998, 111, 333–337. [Google Scholar] [CrossRef]
- Goncalves da Silva, R.; Rita de Cassia, A.; Zingaretti, S. Increased [CO2] causes changes in physiological and genetic responses in C4 crops: A brief review. Plants 2020, 9, 1567. [Google Scholar] [CrossRef]
- Reddy, A.R.; Rasineni, G.K.; Raghavendrs, A.S. The impact of global elevated CO2 concentration on phytosynthesis and olant productivity. Curr. Sci. 2010, 99, 46–57. [Google Scholar]
- Souza, A.P.; Gaspar, M.; Silva, E.A.; Ulian, E.C.; Waclawovsky, A.J.; Nishiyama, M.Y.; Santos, R.V.; Teixeira, M.M.; Souza, G.M.; Buckeridge, M.S. Elevated CO2 increases photosynthesis, biomass and productivity and modifies gene expression in sugarcane. Plant Cell Environ. 2008, 31, 1116–1127. [Google Scholar] [CrossRef]
- Sofo, A.; Elshafie, H.; Camele, I. Structural and functional organization of the root system: A comparative study on five plant species. Plants 2020, 9, 1338. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Bocianowski, J. Quantitative relationships between dry matter production and N, P, K and Mg contents, and plant nutrition indices, depending on maize hybrids (Zea mays L.). Fresen. Environ. Bull. 2012, 21, 1740–1751. [Google Scholar]
- Szulc, P.; Piechota, T.; Jagła, M.; Kowalski, M. A comparative analysis of growth in maize (Zea mays L.) hybrids of different genetic profiles depending on type of nitrogen fertilizer and magnesium dose. Commun. Biometry Crop Sci. 2015, 10, 73–81. [Google Scholar]
- Li, S.; Peng, Y.F.; Yu, P.; Fang, Z.; Li, C.J. Accumulation and distribution of dry matter and potassium in maize varieties released in different years. Plant Nutr. Fertil. Sci. 2011, 17, 325–332. [Google Scholar]
- Szulc, P.; Bocianowski, J.; Nowosad, K.; Rybus-Zając, M.; Waligóra, H.; Michalski, T. The dynamics of a dry matter accumulation in the initial period of growth of four varieties of the „stay-green” type of maize (Zea mays L.). Pak. J. Bot. 2017, 49, 1017–1022. [Google Scholar]
- Szulc, P.; Bocianowski, J.; Nowosad, K.; Zielewicz, W.; Kobus-Cisowska, J. SPAD leaf greenness index: Green mass yield indicator of maize (Zea mays L.), genetic and agriculture practice relationship. Plants 2021, 10, 830. [Google Scholar] [CrossRef]
- Plenet, D.; Cruz, P. Maize and Sorghum in Diagnosis of Nitrogen Status in Crops; Lemaire, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 93–106. [Google Scholar]
- Prins, A.; Mukubi, J.M.; Pellny, T.K.; Verrier, P.J.; Beyene, G.; Lopes, M.S.; Emani, K.; Treumann, A.; Lelarge-Trouverie, C.; Noctor, G. Acclimation to high CO2 in maize is related to water status and dependent on leaf rank. Plant Cell Environ. 2011, 34, 314–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaj, R.; Szulc, P.; Siatkowski, I.; Waligóra, H. Assessment of the effect of the mineral fertilization system on the nutritional status of maize plants and grain yield prediction. Agriculture 2020, 10, 404. [Google Scholar] [CrossRef]
- Borowiecki, J.; Filipiak, K. Selection of indicator leaves for the determination of maize leaf surface area. Pamiętnik Puławski 1992, 100, 77–85. [Google Scholar]
- Amanullah; Hassan, M.J.; Nawab, H.; Ali, A. Response of specific leaf area (SLA), leaf area index (LAI) and leaf area ratio (LAR) of maize (Zea mays L.) to plant density, rate and timing of nitrogen application. Word Appl. Sci. J. 2007, 2, 235–243. [Google Scholar]
- Ghimire, B.; Timsina, D.; Nepal, J. Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.). J. Maize Res. Dev. 2015, 1, 134–145. [Google Scholar] [CrossRef]
- Scharf, P.C.; Brouder, M.S.; Hoeft, G.R. Chlorophyll meter readings can predict nitrogen need and yield response of corn in the North-Central USA. Agron. J. 2006, 98, 655–665. [Google Scholar] [CrossRef]
- Szulc, P.; Ambroży-Deręgowska, K.; Waligóra, H.; Mejza, I.; Grześ, S.; Zielewicz, W.; Wróbel, B. Dry matter yield of maize (Zea mays L.) as an indicator of mineral fertilizer efficiency. Plants 2021, 10, 535. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Szulc, P.; Mejza, I.; Ambroży-Deręgowska, K.; Nowosad, K.; Bocianowski, J. The comparison of three models applied to the analysis of three-factor trial on hybrid maize (Zea mays L.) cultivars. Biom. Lett. 2016, 53, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Boote, K.B.; Jones, J.W.; Pickering, N.B. Potential uses and limitations of crop models. Agron. J. 1996, 88, 704–716. [Google Scholar] [CrossRef]
- Berdjour, A.; Dugje, I.Y.; Rahman, N.A.; Odoom, D.A.; Kamara, A.Y.; Ajala, S. Direct estimation of maize Leaf Area Index as influenced by organic and inorganic fertilizer rates in Guinea Savanna. J. Agric. Sci. 2020, 12, 66–75. [Google Scholar]
- Pandey, R.K.; Maranville, J.W.; Chetima, M.M. Deficit irrigation and nitrogen effects on maize in a Sahelian environment. II. Shoot growth, nitrogen uptake and water extraction. Agric. Water Manag. 2020, 46, 15–27. [Google Scholar] [CrossRef]
- Borras, L.; Maddonni, G.A.; Otegui, M.E. Leaf senescence in maize hybrids: Plant population, rowspacing and kernel set effects. Field Crop. Res. 2003, 82, 13–14. [Google Scholar] [CrossRef]
- Chibane, N.; Caicedo, M.; Martinez, S.; Marcet, P.; Revilla, P.; Ordas, B. Relationship between delayed leaf senescence (Stay-green) and agronomic and physiological characters in maize (Zea mays L.). Agronomy 2021, 11, 276. [Google Scholar] [CrossRef]
- Addai, I.K.; Alimiyawo, M. Graphical determination of leaf area index and its relationship with growth and yield parameters of Sorghum (Sorghum bicolor L. Moench) as affected by fertilizer application. J. Agron. 2015, 14, 272. [Google Scholar] [CrossRef] [Green Version]
- Subedi, K.D.; Ma, L.B. Leaf area, ear position and contribution of individual leaf to grain yield in conventional and leafy maize hybrids. In Proceedings of the 9th Interregional Corn Improvement Meeting, St Louis, MO, USA, 9–10 February 2004. [Google Scholar]
- Andrews, C.J.; Dwyer, L.M.; Stewart, J.A.; Dugas, J.A.; Bonn, P. Distribution of carbohydrate during grain-fill in leafy and normal maize hybrids. Can. J. Plant Sci. 2000, 80, 87–95. [Google Scholar] [CrossRef]
- Costa, C.L.; Dwyer, L.M.; Stewart, D.W.; Smith, D.L. Nitrogen effect on kernel yield and yield components of leafy and non-leafy maize genotypes. Crop Sci. 2002, 42, 1556–1563. [Google Scholar] [CrossRef]
- Szulc, P. Effect of nitrogen fertilization and methods of magnesium application on chlorophyll content, accumulation of mineral components, and morphology of two maize hybrid types in the initial growth period. Part III. Morphological features of plants. Acta Sci. Pol. 2009, 8, 63–75. [Google Scholar]
- Tsialtas, J.T.; Maslaris, N. Evaluation of a leaf area prediction model proposed for sunflower. Photosynthetica 2008, 46, 294–297. [Google Scholar] [CrossRef]
- Novelli, F.; Spiegel, H.; Sanden, T.; Vuolo, F. Assimilation of sentinel-2 leaf area index data into a physically-based crop growth model for yield estimation. Agronomy 2019, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.Y.; Zhang, X.; Zhang, Q.J.; Wang, Z.H.; Li, Y.Z.; Gu, S.F.; Jiao, N.Y.; Yin, F.; Fu, G.Z. Effects of straw mulching and water-retaining agent on ear leaf senescence after anthesis and yield of summer maize. Maize Sci. 2012, 20, 104–107. [Google Scholar]
- Tong, S.Y.; Song, F.B.; Xu, H.W. Differences of morphological senescence of Leaves in various maize varieties during mature period of seed. Acta Agric. Boreali Sin. 2009, 24, 11–15. [Google Scholar]
- Paponov, I.A.; Sambo, P.; Schulte, G.E.; Presterl, T.; Geiger, H.H.; Engels, C. Kernel set in maize genotypes differing in nitrogen use efficiency in response to resource availability around flowering. Plant Soil 2005, 272, 101–110. [Google Scholar] [CrossRef]
- Szulc, P.; Rybus-Zając, M. Content of chloroplast pigments in the phase of maize blooming depending on nitrogen and magnesium fertilization. Acta Sci. Pol. Agric. 2009, 8, 43–54. [Google Scholar]
- Oscar, R.V.; Tollennar, M. Effect of genotype, nitrogen, plant density and row sparing on the area-per-leaf profile in maize. Agron. J. 2006, 98, 94–99. [Google Scholar]
- Mueller, S.M.; Vyn, T. Maize plant resilience to N stress and post-silking N capacity changes over time: A review. Front. Plant Sci 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanckaert, J.; Pannecoucque, J.; Van Waes, J.; Steppe, K.; Van Labeke, M.C.; Reheul, D. Stay-green characterization in Belgian forage maize. J. Agric. Sci. 2017, 155, 766–776. [Google Scholar] [CrossRef]
- Munaiz, E.D.; Martinez, S.; Kumar, A.; Caicedo, M.; Ordas, B. The senescence (stay-green)—An important trait to exploit crop residuals for bioenergy. Energies 2020, 13, 790. [Google Scholar] [CrossRef] [Green Version]
- Kosgey, J.R.; Moot, D.J.; Fletcher, A.L.; McKenzie, B.A. Dry matter accumulation and post-silking N economy of “stay-green” maize (Zea mays L.) hybrids. Eur. J. Agron. 2013, 51, 43–52. [Google Scholar] [CrossRef]
- Kopcewicz, J.; Lewaka, S. Plant Physiology; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2002. [Google Scholar]
- Kozłowska, M. The physiology of Plants. From Theory to Practice; PWRiL: Poznań, Poland, 2007. [Google Scholar]
- Salvagiotti, F.; Prystupa, P.; Ferraris, G.; Courenot, L.; Maganano, L.; Dignani, D.; Guttierrez-Bemoem, F. N:P:S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition. Field Crop. Res. 2017, 203, 128–138. [Google Scholar] [CrossRef]
- Shenoy, V.V.; Kalagudi, G.M. Enhancing plant phosphorus use efficiency for suitable cropping. Biotechnol. Adv. 2005, 23, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Xie, J.; Zhao, S.; Xu, X.; Hou, Y.; Wang, X.; Zhou, W.; He, P.; Johnston, A.; Christie, P.; et al. Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crop. Res. 2014, 163, 1–9. [Google Scholar] [CrossRef]
Indicators | Years | |||
---|---|---|---|---|
2009 | 2010 | 2011 | ||
Phosphorus mg P kg−1 | 66.7 | 40.5 | 37.8 | |
Potassium mg K kg−1 | 87.9 | 130.3 | 165.2 | |
Magnesium mg Mg kg−1 | 60.0 | 35.0 | 55.0 | |
pH in 1 mol dm−3 KCl | 5.2 | 5.4 | 5.1 | |
Nmin (kg ha−1) in soil, layer 0–60 cm | 68.5 | 79.2 | 71.4 | |
C, org. % | 1.01 | 0.99 | 0.99 | |
Texture % | sand 2–0.05 mm | 83 | 83 | 83 |
silt 0.05–0.02 mm | 6 | 6 | 6 | |
silt 0.02–0.002 mm | 7 | 7 | 4 | |
clay <0.002 mm | 4 | 4 | 4 | |
textural group | loamy sand | loamy sand | loamy sand |
Years | Temperature in [°C] | |||||||
---|---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | X | Mean-Sum | |
2009 | 12.9 | 14.0 | 16.0 | 20.3 | 20.1 | 15.8 | 7.6 | 15.2 |
2010 | 9.3 | 12.2 | 18.4 | 22.6 | 19.2 | 13.0 | 7.0 | 14.5 |
2011 | 12.4 | 15.5 | 19.9 | 18.5 | 19.5 | 15.9 | 9.8 | 15.9 |
Years | Precipitation in [mm] | |||||||
2009 | 19.2 | 109.9 | 113.8 | 75.4 | 26.2 | 48.6 | 59.2 | 452.3 |
2010 | 26.8 | 110.5 | 43.4 | 97.5 | 143.5 | 69.9 | 9.1 | 500.7 |
2011 | 9.8 | 22.5 | 66.5 | 218.7 | 50.5 | 28.5 | 27.7 | 424.2 |
The Levels of Factors | Number of Leaves on Single Plant (pcs.) | Number of Leaves on 1 m2 (pcs.) | Mass of Leaves on Single Plant (g) | Mass of Stems on Single Plant (g) | Mass of Ears on Single Plant (g) |
---|---|---|---|---|---|
2009 | 11.3 a | 79.3 | 116 a | 393 a | 234 b |
(0.05) | (0.48) | (1.83) | (6.32) | (5.03) | |
2010 | 10.3 b | 77.7 | 101 ab | 293 b | 187 c |
(0.05) | (0.44) | (1.53) | (5.69) | (5.12) | |
2011 | 10.2 b | 78.7 | 97 b | 321 b | 268 a |
(0.10) | (0.73) | (2.31) | (7.17) | (6.14) | |
control | 10.2 b | 75.4 c | 92 b | 293 b | 200 b |
(0.19) | (1.06) | (3.34) | (11.52) | (9.12) | |
NPK | 10.9 a | 81.4 a | 112 a | 367 a | 237 ab |
(0.13) | (0.78) | (2.94) | (11.46) | (10.30) | |
N | 10.6 ab | 78.8 abc | 104 a | 337 a | 231 ab |
(0.13) | (0.93) | (3.25) | (14.22) | (11.73) | |
NMg | 10.7 ab | 79.4 ab | 105 a | 344 a | 227 ab |
(0.14) | (0.68) | (3.62) | (14.84) | (10.12) | |
NS | 10.6 ab | 77.2 bc | 103 a | 327 ab | 218 ab |
(0.19) | (1.20) | (4.20) | (13.85) | (12.45) | |
NP | 10.5 ab | 78.3 abc | 106 a | 328 ab | 251 a |
(0.14) | (1.04) | (3.80) | (13.95) | (12.39) | |
NK | 10.6 ab | 78.5 abc | 107 a | 351 a | 234 ab |
(0.12) | (0.80) | (3.15) | (12.59) | (12.25) | |
NMgS | 10.6 ab | 79.1 abc | 106 a | 334 a | 232 ab |
(0.16) | (1.03) | (4.41) | (16.01) | (13.31) | |
NPKMgS | 10.7 a | 78.8 abc | 106 a | 342 a | 238 ab |
(0.13) | (0.92) | (3.90) | (14.64) | (11.11) | |
ES Palazzo | 10.8 a | 77.6 b | 101 b | 325 b | 217 b |
(0.06) | (0.44) | (1.45) | (6.88) | (4.95) | |
ES Paroli | 10.5 b | 79.5 a | 108 a | 346 a | 243 a |
(0.08) | (0.47) | (1.98) | (6.22) | (5.69) |
Y | B | Number of Leaves on Single Plant (pcs.) | Number of Leaves on 1 m−2 (pcs.) | Mass of Leaves on Single Plant (g) | Mass of Stems on Single Plant (g) | Mass of Ears on Single Plant (g) |
---|---|---|---|---|---|---|
2009 | ES Palazzo | 11.3 a | 77.5 bc | 109 b | 394 a | 218 c |
(0.07) | (0.62) | (2.19) | (9.32) | (6.44) | ||
ES Paroli | 11.2 a | 81.1 a | 123 a | 392 a | 250 b | |
(0.08) | (0.62) | (2.44) | (8.65) | (6.82) | ||
2010 | ES Palazzo | 10.4 b | 76.4 c | 98 c | 284 c | 183 d |
(0.05) | (0.57) | (1.86) | (7.03) | (6.59) | ||
ES Paroli | 10.3 b | 79.0 ab | 104 bc | 301 c | 192 d | |
(0.07) | (0.61) | (2.34) | (8.82) | (7.84) | ||
2011 | ES Palazzo | 10.5 b | 78.9 abc | 97 c | 298 c | 250 b |
(0.12) | (0.98) | (2.91) | (9.62) | (8.65) | ||
ES Paroli | 9.9 c | 78.5 bc | 96 c | 345 b | 287 a | |
(0.14) | (1.09) | (3.62) | (9.18) | (7.70) |
The Levels of Factors | Assimilation Area of a Single Plant (cm2) | LAI—Leaf Area Index | SLA—Specific Leaf Area (cm2·g−1) | SPAD—BBCH 15/16 | SPAD—BBCH 67 |
---|---|---|---|---|---|
2009 | 3396 b | 2.40 b | 29.5 c | 468.7 a | 740.6 b |
(42.23) | (0.04) | (0.40) | (4.73) | (12.61) | |
2010 | 3693 b | 2.78 b | 37.0 b | 368.8 b | 737.6 b |
(38.51) | (0.04) | (0.49) | (4.00) | (6.02) | |
2011 | 4280 a | 3.30 a | 45.7 a | 453.5 a | 830.7 a |
(56.11) | (0.05) | (1.06) | (5.22) | (2.58) | |
control | 3607 b | 2.68 b | 40.1 | 427.3 ab | 768.3 ab |
(140.18) | (0.12) | (2.23) | (10.39) | (8.95) | |
NPK | 3911 a | 2.93 a | 35.6 | 448.0 a | 769.9 ab |
(95.87) | (0.10) | (1.34) | (13.55) | (13.00) | |
N | 3786 ab | 2.84 ab | 37.0 | 423.8 ab | 789.0 a |
(105.10) | (0.09) | (1.25) | (12.74) | (10.60) | |
NMg | 3774 ab | 2.82 ab | 37.1 | 420.0 ab | 732.1 b |
(109.98) | (0.10) | (1.80) | (11.38) | (35.93) | |
NS | 3830 ab | 2.83 ab | 39.5 | 425.4 ab | 790.0 a |
(106.67) | (0.10) | (2.61) | (12.18) | (11.76) | |
NP | 3775 ab | 2.82 ab | 37.1 | 447.0 a | 790.7 a |
(101.71) | (0.10) | (1.97) | (11.07) | (9.96) | |
NK | 3873 a | 2.89 a | 36.8 | 422.7 ab | 780.3 ab |
(116.66) | (0.11) | (1.56) | (11.43) | (10.76) | |
NMgS | 3760 ab | 2.82 ab | 36.9 | 414.8 b | 772.6 ab |
(103.55) | (0.10) | (1.76) | (13.89) | (11.61) | |
NPKMgS | 3790 ab | 2.79 ab | 36.7 | 444.0 ab | 733.6 b |
(107.79) | (0.10) | (1.65) | (11.50) | (16.79) | |
ES Palazzo | 3610 b | 2.62 b | 36.3 b | 419.2 b | 757.1 b |
(52.33) | (0.05) | (0.71) | (5.41) | (9.34) | |
ES Paroli | 3970 a | 3.03 a | 38.5 a | 441.4 a | 782.1 a |
(44.89) | (0.04) | (0.99) | (5.80) | (5.82) |
Y | B | Assimilation Area of a Single Plant (cm2) | LAI—Leaf Area Index | SLA—Specific Leaf Area (cm2·g−1) | SPAD—BBCH 15/16 | SPAD—BBCH 67 |
---|---|---|---|---|---|---|
2009 | ES Palazzo | 3212 f | 2.20 e | 29.7 d | 444.9 b | 734.6 |
(54.12) | (0.04) | (0.58) | (6.00) | (23.10) | ||
ES Paroli | 3579 d | 2.60 d | 29.3 d | 492.5 a | 746.6 | |
(48.83) | (0.04) | (0.56) | (4.75) | (10.43) | ||
2010 | ES Palazzo | 3447 e | 2.52 d | 35.6 c | 359.3 d | 714.4 |
(28.84) | (0.02) | (0.61) | (5.05) | (8.19) | ||
ES Paroli | 3938 c | 3.03 c | 38.4 c | 378.3 c | 760.8 | |
(41.70) | (0.03) | (0.71) | (5.85) | (7.02) | ||
2011 | ES Palazzo | 4169 b | 3.13 b | 43.6 b | 453.4 b | 822.3 |
(84.59) | (0.07) | (1.04) | (7.20) | (3.40) | ||
ES Paroli | 4390 a | 3.47 a | 47.8 a | 453.6 b | 839.0 | |
(70.13) | (0.06) | (1.79) | (7.68) | (3.37) |
The Levels of Factors | Fresh Mass of a Single Plant (g) | Yield Fresh Mass (t·ha−1) | PFPFN Partial Factor Productivity of Fertilizer Nitrogen (kg f·m·kg−1 N) |
---|---|---|---|
2009 | 743 a | 52.4 a | 436.9 a |
(10.58) | (0.84) | (6.97) | |
2010 | 581 b | 43.7 b | 364.3 b |
(9.63) | (0.77) | (6.42) | |
2011 | 686 a | 53.0 a | 441.8 a |
(13.60) | (1.15) | (9.57) | |
control | 586 b | 43.4 b | 361.4 b |
(19.97) | (1.66) | (13.81) | |
NPK | 716 a | 53.4 a | 444.7 a |
(17.38) | (1.42) | (11.83) | |
N | 672 a | 50.1 a | 417.7 a |
(24.53) | (1.87) | (15.54) | |
NMg | 675 a | 50.2 a | 418.4 a |
(23.47) | (1.67) | (13.92) | |
NS | 648 ab | 47.5 ab | 395.9 ab |
(25.56) | (1.95) | (16.27) | |
NP | 684 a | 50.9 a | 424.0 a |
(24.38) | (1.88) | (15.63) | |
NK | 693 a | 51.3 a | 427.7 a |
(22.18) | (1.79) | (14.90) | |
NMgS | 672 a | 50.1 a | 417.1 a |
(28.75) | (2.11) | (17.59) | |
NPKMgS | 687 a | 50.6 a | 421.9 a |
(22.15) | (1.57) | (13.08) | |
ES Palazzo | 644 b | 46.4 b | 386.3 b |
(10.67) | (0.75) | (6.23) | |
ES Paroli | 697 a | 53.1 a | 442.4 a |
(11.40) | (0.85) | (7.08) |
Y | B | Fresh Mass of a Single Plant (g) | Yield Fresh Mass (t·ha−1) | PFPFN Partial Factor Productivity of Fertilizer Nitrogen (kg f·m·kg−1 N) |
---|---|---|---|---|
2009 | ES Palazzo | 721 b | 49.3 b | 410.8 b |
(14.27) | (1.06) | (8.83) | ||
ES Paroli | 765 a | 55.6 a | 463.0 a | |
(14.61) | (1.07) | (8.94) | ||
2010 | ES Palazzo | 565 d | 41.3 c | 344.1 c |
(11.40) | (0.84) | (6.97) | ||
ES Paroli | 597 d | 46.1 b | 384.5 b | |
(15.21) | (1.17) | (9.76) | ||
2011 | ES Palazzo | 645 c | 48.5 b | 403.9 b |
(18.75) | (1.48) | (12.36) | ||
ES Paroli | 728 ab | 57.6 a | 479.7 a | |
(17.36) | (1.40) | (11.70) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulc, P.; Ambroży-Deręgowska, K.; Mejza, I.; Grześ, S.; Zielewicz, W.; Stachowiak, B.; Kardasz, P. Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems. Sustainability 2021, 13, 10917. https://doi.org/10.3390/su131910917
Szulc P, Ambroży-Deręgowska K, Mejza I, Grześ S, Zielewicz W, Stachowiak B, Kardasz P. Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems. Sustainability. 2021; 13(19):10917. https://doi.org/10.3390/su131910917
Chicago/Turabian StyleSzulc, Piotr, Katarzyna Ambroży-Deręgowska, Iwona Mejza, Stanisław Grześ, Waldemar Zielewicz, Barbara Stachowiak, and Przemysław Kardasz. 2021. "Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems" Sustainability 13, no. 19: 10917. https://doi.org/10.3390/su131910917
APA StyleSzulc, P., Ambroży-Deręgowska, K., Mejza, I., Grześ, S., Zielewicz, W., Stachowiak, B., & Kardasz, P. (2021). Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems. Sustainability, 13(19), 10917. https://doi.org/10.3390/su131910917