Water-Energy-Food-Climate Nexus in an Integrated Peri-Urban Wastewater Treatment and Reuse System: From Theory to Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the WWTP and Peri-Urban Area
2.2. Nexus Approach
2.3. Energy Footprint
2.4. Carbon Footprint Assessment
2.5. Water Footprint
2.6. Water Reuse
2.7. Assessment of Water Reuse Scenarios
2.7.1. Non-Reuse Scenario
2.7.2. Reuse Scenarios
3. Results
Benefits and Applications from Reuse Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miralles-Wilhelm, F. Development and application of integrative modeling tools in support of food-energy-water nexus planning—A research agenda. J. Environ. Stud. Sci. 2016, 6, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.; Koenig, R.; Schmitt, G. Managing Urban Resilience: Stream Processing Platform for Responsive Cities. Inform.-Spektrum 2017, 40, 35–45. [Google Scholar] [CrossRef]
- Brouwer, F.; Avgerinopoulos, G.; Fazekas, D.; Laspidou, C.; Mercure, J.F.; Pollitt, H.; Ramos, E.P.; Howells, M. Energy modelling and the Nexus concept. Energy Strateg. Rev. 2018, 19, 1–6. [Google Scholar] [CrossRef]
- Dargin, J.; Daher, B.; Mohtar, R.H. Complexity versus simplicity in water energy food nexus (WEF) assessment tools. Sci. Total Environ. 2019, 650, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; George, B.; Malano, H.M.; Arora, M.; Nawarathna, B. Water-energy-greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resour. Conserv. Recycl. 2014, 89, 1–10. [Google Scholar] [CrossRef]
- Hülsmann, S.; Sušnik, J.; Rinke, K.; Langan, S.; van Wijk, D.; Janssen, A.B.; Mooij, W.M. Integrated modelling and management of water resources: The ecosystem perspective on the nexus approach. Curr. Opin. Environ. Sustain. 2019, 40, 14–20. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Ji, Y.; Liu, D.; Zhang, C.; Li, T. An optimal modelling approach for managing agricultural water-Tenergy-food nexus under uncertainty. Sci. Total Environ. 2019, 651, 1416–1434. [Google Scholar] [CrossRef]
- Van den Heuvel, L.; Blicharska, M.; Masia, S.; Sušnik, J.; Teutschbein, C. Ecosystem services in the Swedish water-energy-food-land-climate nexus: Anthropogenic pressures and physical interactions. Ecosyst. Serv. 2020, 44, 101141. [Google Scholar] [CrossRef]
- Bassano, C.; Deiana, P.; Vilardi, G.; Verdone, N. Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants. Appl. Energy 2020, 263, 114590. [Google Scholar] [CrossRef]
- Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in cities. Energy 2019, 171, 1017–1032. [Google Scholar] [CrossRef]
- Gondhalekar, D.; Ramsauer, T. Nexus City: Operationalizing the urban Water-Energy-Food Nexus for climate change adaptation in Munich, Germany. Urban Clim. 2017, 19, 28–40. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Pan, S.; Yang, J.; Miao, R.; Ren, W.; Yu, Q.; Fu, B.; Jin, F.F.; Lu, Y.; et al. Optimizing resource use efficiencies in the food–energy–water nexus for sustainable agriculture: From conceptual model to decision support system. Curr. Opin. Environ. Sustain. 2018, 33, 104–113. [Google Scholar] [CrossRef]
- Gu, Y.; Dong, Y.N.; Wang, H.; Keller, A.; Xu, J.; Chiramba, T.; Li, F. Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water-energy nexus perspective. Ecol. Indic. 2016, 60, 402–409. [Google Scholar] [CrossRef] [Green Version]
- González-Bravo, R.; Sauceda-Valenzuela, M.; Mahlknecht, J.; Rubio-Castro, E.; Ponce-Ortega, J.M. Optimization of Water Grid at Macroscopic Level Analyzing Water-Energy-Food Nexus. ACS Sustain. Chem. Eng. 2018, 6, 12140–12152. [Google Scholar] [CrossRef]
- Zeng, X.T.; Zhang, J.L.; Yu, L.; Zhu, J.X.; Li, Z.; Tang, L. A sustainable water-food-energy plan to confront climatic and socioeconomic changes using simulation-optimization approach. Appl. Energy 2019, 236, 743–759. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Ponce-Ortega, J.M. Sustainable assessment of Water-Energy-Food Nexus at regional level through a multi-stakeholder optimization approach. J. Clean. Prod. 2021, 290, 125194. [Google Scholar] [CrossRef]
- Radini, S.; Marinelli, E.; Akyol, Ç.; Eusebi, A.L.; Vasilaki, V.; Mancini, A.; Frontoni, E.; Bischetti, G.B.; Gandolfi, C.; Katsou, E.; et al. Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations. Appl. Energy 2021, 298, 117268. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Longo, S.; Mauricio-Iglesias, M.; Soares, A.; Campo, P.; Fatone, F.; Eusebi, A.L.; Akkersdijk, E.; Stefani, L.; Hospido, A. ENERWATER–A standard method for assessing and improving the energy efficiency of wastewater treatment plants. Appl. Energy 2019, 242, 897–910. [Google Scholar] [CrossRef] [Green Version]
- Vasilaki, V.; Massara, T.M.; Stanchev, P.; Fatone, F.; Katsou, E. A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes: A critical review. Water Res. 2019, 161, 392–412. [Google Scholar] [CrossRef]
- Venkatesh, G.; Chan, A.; Brattebø, H. Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors. Energy 2014, 75, 153–166. [Google Scholar] [CrossRef]
- Foglia, A.; Andreola, C.; Cipolletta, G.; Radini, S.; Akyol, Ç.; Eusebi, A.L.; Stanchev, P.; Katsou, E.; Fatone, F. Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation: A case study in Italy. J. Clean. Prod. 2021, 293, 126201. [Google Scholar] [CrossRef]
- EU Regulation. REGULATION (EU) 2020/741 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 May 2020 on Minimum Requirements for Water Reuse; EU: Luxembourg, 2020; Volume 2019. [Google Scholar]
- Moss, T.; Hüesker, F. Politicised nexus thinking in practice: Integrating urban wastewater utilities into regional energy markets. Urban Stud. 2019, 56, 2225–2241. [Google Scholar] [CrossRef]
- Laspidou, C.S.; Mellios, N.; Kofinas, D. Towards ranking the water-energy-food-land use-climate nexus interlinkages for building a nexus conceptual model with a Heuristic Algorithm. Water 2019, 11, 306. (In Switzerland) [Google Scholar] [CrossRef] [Green Version]
- Sušnik, J.; Chew, C.; Domingo, X.; Mereu, S.; Trabucco, A.; Evans, B.; Vamvakeridou-Lyroudia, L.; Savić, D.A.; Laspidou, C.; Brouwer, F. Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach. Water 2018, 10, 139. (In Switzerland) [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Goodrich, J.A. Toward quantitative analysis of water-energy-urban-climate nexus for urban adaptation planning. Curr. Opin. Chem. Eng. 2014, 5, 22–28. [Google Scholar] [CrossRef]
- Bartram, D.; Short, M.D.; Ebie, Y.; Farkas, J.; Gueguen, C.; Peters, G.M.; Zanzottera, N.M.; Karthik, M. Guidelines for National Greenhouse Gas Inventories-Wastewater Treatment and Discharge. 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf (accessed on 30 September 2021).
- Gustavsson, D.J.I.; Tumlin, S. Carbon footprints of Scandinavian wastewater treatment plants. Water Sci. Technol. 2013, 68, 887–893. [Google Scholar] [CrossRef]
- Guendehou, G.H.S.; Koch, M.; Hockstad, L.; Pipatti, R.; Yamada, M. Incineration and Open Burning of Waste. 2006 IPCC Guidel. Natl. Greenh. Gas Invent. Waste 2006, 5, 1–26. [Google Scholar]
- IPCC. Chapter 5: Incineration and Open Burning. IPCC, 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_5_Ch05_IOB.pdf (accessed on 30 September 2021).
- IPCC. Chapter 3: Solid Waste Disposal. IPCC, 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_3_Ch03_SWDS.pdf (accessed on 30 September 2021).
- SINANET. Fattori di Emissione del Trasporto su Strada, Rete del Sistema Informativo Nazionale Ambientale. ISPRA, 2018. Available online: http://www.sinanet.isprambiente.it/it/sia-ispra/fetransp/fattori-emissione-trasporto-stradale/view (accessed on 30 September 2021).
- ISPRA. Fattori di Emissione Atmosferica di CO2 e Altri Gas a Effetto Serra Nel Settore Elettrico. ISPRA, 2017; ISBN 9788844808129. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/fattori-di-emissione-atmosferica-di-co2-e-altri-gas-a-effetto-serra-nel-settore-elettrico (accessed on 30 September 2021).
- Romano, D.; Arcarese, C.; Bernetti, A.; Caputo, A.; Contaldi, M.; Cordella, M.; De Lauretis, R.; Di Cristofaro, E.; Gagna, A.; Gonella, B.; et al. Italian Greenhouse Gas Inventori 1990–2018. National Inventory Report. 2020. Available online: http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni/national-inventory-report/view (accessed on 30 September 2021).
- Zhan, X.; Hu, Z.; Wu, G. Greenhouse Gas Emission and Mitigation in Municipal Wastewater Treatment Plants; IWA Publishing: London, UK, 2017; Volume 16, ISBN 9781780406312. [Google Scholar]
- Meyer, R.K.; Pachauri, L.A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Available online: https://epic.awi.de/id/eprint/37530/ (accessed on 30 September 2021).
- Hochstrat, R.; Peter, M.; Wintgens, T.; Kraus, F.; Seis, W.; Miehe, U.; Frijns, J. Water Reuse Safety Plans-a manual for practitioners. Deliv. D3.4 Demoware 2017, 1, 43. [Google Scholar]
- Tak, S.; Kumar, A. Chlorination disinfection by-products and comparative cost analysis of chlorination and UV disinfection in sewage treatment plants: Indian scenario. Environ. Sci. Pollut. Res. 2017, 24, 26269–26278. [Google Scholar] [CrossRef]
- Cotton, C.A.; Owen, D.M.; Ćline, G.C.; Brodeur, T.P. UV disinfection costs for inactivating cryptosporidium. J. Am. Water Work. Assoc. 2001, 93, 82–94. [Google Scholar] [CrossRef]
- Fetanat, A.; Tayebi, M.; Mofid, H. Water-energy-food security nexus based selection of energy recovery from wastewater treatment technologies: An extended decision making framework under intuitionistic fuzzy environment. Sustain. Energy Technol. Assess. 2021, 43, 100937. [Google Scholar] [CrossRef]
- Lahlou, F.Z.; Mackey, H.R.; McKay, G.; Onwusogh, U.; Al-Ansari, T. Water planning framework for alfalfa fields using treated wastewater fertigation in Qatar: An energy-water-food nexus approach. Comput. Chem. Eng. 2020, 141, 106999. [Google Scholar] [CrossRef]
- Rodias, E.; Aivazidou, E.; Achillas, C.; Aidonis, D.; Bochtis, D. Water-energy-nutrients synergies in the agrifood sector: A circular economy framework. Energies 2021, 14, 159. [Google Scholar] [CrossRef]
ENERGY EFFICIENCY | WTEI |
---|---|
A | X < 0.110 |
B | 0.110 ≤ X < 0.220 |
C | 0.220 ≤ X < 0.330 |
D | 0.330 ≤ X < 0.440 |
E | 0.440 ≤ X < 0.550 |
F | 0.550 ≤ X < 0.775 |
G | X ≥ 0.775 |
Parameter | Unit | Corn | Carrot | Tomato |
---|---|---|---|---|
Crop productivity | ton/ha | 10 | 50 | 100 |
Nutrient demand—N | kg N/ha | 135–235 | 150 | 250 |
Nutrient demand—P | kg P/ha | 58–80 | 70 | 65 |
Emissions/Carbon sequestration | tonCO2e/ha | 3.52 | 2.27 | 2.11 |
Crop water demand | m3/ha | 5000 | 5200 | 5400 |
Expected revenue | €/kg | 0.26 | 0.48 | 0.78 |
Parameter | Unit | Non Reuse | Reuse Class C | Reuse Class B | Reuse Class A |
---|---|---|---|---|---|
E.coli | CFU/100 mL | 5000 | 1000 | 100 | 10 |
Biochemical Oxygen Demand (BOD5) | mg/L | 25 | 25 | 25 | 10 |
Total Suspended Solids (TSS) | mg/L | 35 | 35 | 35 | 10 |
Turbidity | NTU | - | - | - | 5 |
Irrigated crop | - | - | Corn | Corn | Corn-Tomato-Carrot |
Irrigation method | - | - | Drip irrigation | All irrigation methods | All irrigation methods |
Category | Unit | Non-Reuse | Reuse Class C | Reuse Class B | Reuse Class A |
---|---|---|---|---|---|
Energy footprint | MWh/y | 16,374 | 15,196 | 15,427 | 16,121 |
Carbon footprint | tonCO2eq/y | 24,505 | 23,849 | 23,952 | 24,260 |
Treated wastewater | millions of m3/y | 25.9 | |||
Nutrients in the wastewater effluent | mgN/L | 7.8 | |||
mgP/L | 0.6 |
GHG Emission Category | Unit | Value | |||
---|---|---|---|---|---|
Biogenic emission due to WWTP operation | tonCO2eq/y | 7278 | |||
Transport | tonCO2eq/y | 66 | |||
Use of chemicals | tonCO2e/y | 2787 | |||
Dissolved gases in the effluent | tonCO2eq/y | 6937 | |||
Waste management (production of defecation gypsum from sludge) | tonCO2eq/y | 753 | |||
Energy consumption for WWTP operation | tonCO2eq/y | 4718 | |||
Disinfection | tonCO2eq/y | Chemical | UV-Class C | UV-Class B | UV-Class A |
1451 | 795 | 898 | 1206 |
Stage | Treatment Unit | Unit | Value | |||
---|---|---|---|---|---|---|
Stage 1 | Pre-treatments | kWh/m3 | 0.101 | |||
Stage 2 | Primary treatment | kWh/kg TSS rem | 0.646 | |||
Stage 3 | Secondary treatment | kWh/kg TPE | 0.535 | |||
Stage 4 | Disinfection | kWh/(m3 logred) | Chemical | UV-Class C | UV-Class B | UV-Class A |
0.025 | 0.011 | 0.012 | 0.013 | |||
Stage 5 | Sludge treatment | kWh/kg TSE | 0.223 | |||
WWTP | WTEI | - | 0.719 | 0.686 | 0.686 | 0.691 |
Global efficiency | - | F | F | F | F |
Crop | Water Quality Class | Saved Energy (MWh/y) | Reduced GHG Emission (ton-CO2eq/y) | Recovered Water (Millions of m3/y) | Recovered Nitrogen (kg N/y) | Recovered Phosphorus (kg P/y) |
---|---|---|---|---|---|---|
Corn | C | 1178 | 656 | 17.8 | 139,140 | 10,703 |
Carrot | A | 253 | 245 | 19.1 | 149,026 | 11,464 |
Tomato | A | 253 | 245 | 19.8 | 154,450 | 11,881 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinelli, E.; Radini, S.; Akyol, Ç.; Sgroi, M.; Eusebi, A.L.; Bischetti, G.B.; Mancini, A.; Fatone, F. Water-Energy-Food-Climate Nexus in an Integrated Peri-Urban Wastewater Treatment and Reuse System: From Theory to Practice. Sustainability 2021, 13, 10952. https://doi.org/10.3390/su131910952
Marinelli E, Radini S, Akyol Ç, Sgroi M, Eusebi AL, Bischetti GB, Mancini A, Fatone F. Water-Energy-Food-Climate Nexus in an Integrated Peri-Urban Wastewater Treatment and Reuse System: From Theory to Practice. Sustainability. 2021; 13(19):10952. https://doi.org/10.3390/su131910952
Chicago/Turabian StyleMarinelli, Enrico, Serena Radini, Çağrı Akyol, Massimiliano Sgroi, Anna Laura Eusebi, Gian Battista Bischetti, Adriano Mancini, and Francesco Fatone. 2021. "Water-Energy-Food-Climate Nexus in an Integrated Peri-Urban Wastewater Treatment and Reuse System: From Theory to Practice" Sustainability 13, no. 19: 10952. https://doi.org/10.3390/su131910952
APA StyleMarinelli, E., Radini, S., Akyol, Ç., Sgroi, M., Eusebi, A. L., Bischetti, G. B., Mancini, A., & Fatone, F. (2021). Water-Energy-Food-Climate Nexus in an Integrated Peri-Urban Wastewater Treatment and Reuse System: From Theory to Practice. Sustainability, 13(19), 10952. https://doi.org/10.3390/su131910952