Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects
Abstract
:1. Introduction
1.1. Sustainable Water Management
1.2. Blue and Green Infrastructure
1.2.1. The Spatial and Functional Aspect
1.2.2. The Environmental Aspect
1.2.3. The Social Aspect
2. Materials and Methods
2.1. Selection of Cases
2.2. Methods
- The 0–1 scale refers to the presence of the factor, where 0 means its absence, and 1 − its presence;
- The 1–2 scale refers to the degree of participation in activities, where 1 is low and 2 is high;
- The 0–2 scale refers to the intensity of the influence of a factor, where 0 means none, 1 − partial, and 2 − significant influence of the factor;
- The 0–3 scale results from a detailed valorization conditioned by the presence of a large number of features characterizing the factor, where 0 means none, 1−low degree, 2−medium degree, and 3−significant degree of occurrence or influence of the factor.
3. Results
3.1. The Spatial and Functional Aspect
- 10–12 points−high-value solutions;
- 6–9 points−medium-value solutions;
- 1–5 points–low-value solutions.
3.2. The Environmental Aspect
- 16–20 points–high-value solutions;
- 10–15 points−medium-value solutions;
- 1–9 points–low-value solutions.
3.3. The Social Aspect
- 5–6 points–high-value solutions;
- 3–4 points−medium-value solutions;
- 0–2 points–low-value solution.
3.4. Valorization of BGI Solutions
- 29–34 points–high-value solutions;
- 19–28 points−medium-value solutions;
- 2–18 points–low-value solutions.
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sustainable Development, United Nations. The 17 GOALS. Available online: https://sdgs.un.org/goals (accessed on 19 August 2021).
- The United Nations World Water Development Report 2021: Valuing Water; UNESCO: Paris, France, 2021; ISBN 978-92-3-100434-6. Available online: http://www.unesco.org/reports/wwdr/2021/en/download-the-report (accessed on 19 August 2021).
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural capital and ecosystem services informing decisions: From promise to practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef] [Green Version]
- Holt, A.R.; Mears, M.; Maltby, L.; Warren, P. Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 2015, 16, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Norton, L.R.; Austin, Z.; Browne, A.L.; Donovan, D.; Emmett, B.A.; Grabowski, Z.; Howard, D.C.; Jones, J.P.G.; Kenter, J.O.; et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 2016, 52, 151–162. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Song, H.; Wang, J.; Friedler, E. Framework, Procedure, and Tools for Comprehensive Evaluation of Sustainable Stormwater Management: A Review. Water 2020, 12, 1231. [Google Scholar] [CrossRef]
- Douglas, I.; Garvin, S.; Lawson, N.; Richards, J.; Tippett, J.; White, I. Urban pluvial flooding: A qualitative case study of cause, effect and nonstructural mitigation: Urban pluvial flooding. J. Flood Risk Manag. 2010, 3, 112–125. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Borghgraef, K.; Vinckier, C. Causes of Water Supply Problems in Urbanised Regions in Developing Countries. Water Resour. Manag. 2010, 24, 1885–1902. [Google Scholar] [CrossRef]
- Chang, N.-B.; Lu, J.-W.; Chui, T.F.M.; Hartshorn, N. Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy 2018, 70, 368–383. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef]
- Thorne, C.R.; Lawson, E.C.; Ozawa, C.; Hamlin, S.L.; Smith, L.A. Overcoming Uncertainty and Barriers to Adoption of Blue-Green Infrastructure for Urban Flood Risk Management. J. Flood Risk Manag. 2015, 11, 960–972. [Google Scholar] [CrossRef]
- Donofrio, J.; Kuhn, Y.; McWalter, K.; Winsor, M. Water-Sensitive Urban Design: An Emerging Model in Sustainable Design and Comprehensive Water-Cycle Management. Environ. Pract. 2009, 11, 179–189. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Khurelbaatar, G.; van Afferden, M.; Ueberham, M.; Stefan, M.; Geyler, S.; Müller, R.A. Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems. Water 2021, 13, 378. [Google Scholar] [CrossRef]
- Farrugia, S.; Hudson, M.D.; McCulloch, L. An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2013, 9, 136–145. [Google Scholar] [CrossRef]
- Shuttleworth, A.B.; Nnadi, E.O.; Mbanaso, F.U.; Coupe, S.J.; Voeten, J.G.W.F.; Newman, A.P. Applications of SuDS Techniques in Harvesting Stormwater for Landscape Irrigation Purposes: Issues and Considerations. In Current Perspective on Irrigation and Drainage; Kulshreshtha, S.N., Elshorbagy, A., Eds.; InTech: Rijeka, Croatia, 2017; pp. 83–102. ISBN 978-953-51-2951-6. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Ashley, R.; Gersonius, B.; Digman, C.; Horton, B.; Smith, B.; Shaffer, P. Including uncertainty in valuing blue and green infrastructure for stormwater management. Ecosyst. Serv. 2018, 33, 237–246. [Google Scholar] [CrossRef]
- Lamond, J.; Everest, G. Sustainable Blue-Green Infrastructure: A social practice approach to understanding community preferences and stewardship. Landsc. Urban Plann. 2019, 191, 103639. [Google Scholar] [CrossRef]
- Kuller, M.; Bach, P.M.; Ramirez-Lovering, D.; Deletic, A. Framing water sensitive urban design as part of the urban form: A critical review of tools for best planning practice. Environ. Modell. Softw. 2017, 96, 265–282. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm Water Management of Low Impact Development in Urban Areas Based on SWMM. Water 2019, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Goulden, S.; Portman, M.E.; Carmon, N.; Alon-Mozes, T. From conventional drainage to sustainable stormwater management: Beyond the technical challenges. J. Environ. Manag. 2018, 219, 37–45. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Rogers, B.C.; Brown, R.R. Transforming Cities through Water-Sensitive Principles and Practices. One Earth 2020, 3, 436–447. [Google Scholar] [CrossRef]
- Cettner, A.; Ashley, R.; Hedström, A.; Viklander, M. Sustainable development and urban stormwater practice. Urban Water J. 2014, 11, 185–197. [Google Scholar] [CrossRef]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Area: Linkages Between Science, Policy and Practice; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-53750-4. [Google Scholar]
- Andersson, E.; Langemeyer, J.; Borgström, S.; McPhearson, T.; Haase, D.; Kronenberg, J.; Barton, D.N.; Davis, M.; Naumann, S.; Röschel, L.; et al. Enabling Green and Blue Infrastructure to Improve Contributions to Human Well-Being and Equity in Urban Systems. BioScience 2019, 69, 566–574. [Google Scholar] [CrossRef]
- Dushkova, D.; Haase, D. Not Simply Green: Nature-Based Solutions as a Concept and Practical Approach for Sustainability Studies and Planning Agendas in Cities. Land 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, J.; Dickhaut, W.; Kronawitter, L.; Weber, B. Water Sensitive Urban Design: Principles and Inspiration for Sustainable Stormwater Management in the City of the Future; Jovis: Berlin, Germany, 2011; p. 143. ISBN 978-3-86859-106-4. [Google Scholar]
- Drosou, N.; Soetanto, R.; Hermawan, F.; Chmutina, K.; Bosher, L.; Hatmoko, J.U.D. Key Factors Influencing Wider Adoption of Blue–Green Infrastructure in Developing Cities. Water 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Gledhill, D.G.; James, P. Rethinking urban blue spaces from a landscape perspective: Species, scale and the human element. Salzbg. Geogr. Arb. 2008, 42, 151–164. [Google Scholar]
- Selman, P. What do we mean by sustainable landscape? Sustain. Sci. Pract. Policy 2008, 4, 23–28. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. A Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain. 2017, 6, 15–36. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, E.; Thorne, C.; Ahilan, S.; Arthur, S.; Birkinshaw, S.; Butler, D.; Dawson, D.; Everett, G.; Fenner, R.; Glenis, V.; et al. The blue-green path to urban flood resilience. Blue-Green Syst. 2019, 2, 28–45. [Google Scholar] [CrossRef] [Green Version]
- Kapetas, L.; Fenner, R. Integrating blue-green and grey infrastructure through an adaptation pathways approach to surface water flooding. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190204. [Google Scholar] [CrossRef] [Green Version]
- Van Oijstaeijen, W.; Van Passel, S.; Cools, J. Urban green infrastructure: A review on valuation toolkits from an urban planning perspective. J. Environ. Manag. 2020, 267, 110603. [Google Scholar] [CrossRef]
- Reu Junqueira, J.; Serrao-Neumann, S.; White, I. Chapter 15-Managing urban climate change risks: Prospects for using green infrastructure to increase urban resilience to floods. In The Impacts of Climate Chang.; A Comprehensive Study of Physical, Biophysical, Social, and Political Issues; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 379–396. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Kabisch, N.; McPhearson, T. Advancing urban environmental governance: Understanding theories, practices and processes shaping urban sustainability and resilience. Environ. Sci. Policy 2016, 62, 1–6. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Urban Stormwater Governance: The Need for a Paradigm Shift. Environ. Manag. 2016, 57, 1112–1124. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pezzaniti, D.; Myers, B.; Cook, S.; Tjandraatmadja, G.; Chacko, P.; Chavoshi, S.; Kemp, D.; Leonard, R.; Koth, B.; et al. Water Sensitive Urban Design: An Investigation of Current Systems, Implementation Drivers, Community Perceptions and Potential to Supplement Urban Water Services. Water 2016, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Gianferrara, E.; Boshoff, J. The PERFECT (Planning for Environment and Resource Efficiency in European Cities and Towns) Project—Expert Paper 1: Health, Wealth and Happiness–The Multiple Benefits of Green Infrastructure; Town and Country Planning Association: London, UK, 2018. [Google Scholar]
- Alves, A.; Patińo Gómez, J.; Vojinovic, Z.; Sánchez, A.; Weesakul, S. Combining Co-Benefits and Stakeholders Perceptions into Green Infrastructure Selection for Flood Risk Reduction. Environments 2018, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.H.F.; Eadie, M.L. Water sensitive urban design: A paradigm shift in urban design. In Proceedings of the 10th World Water Congress: Water, the Worlds Most Important Resource, Melbourne, VIC, Australia, 1 January 2000; International Water Resources Association: Melbourne, VIC, Australia, 2000; pp. 1281–1288. [Google Scholar]
- Carmona, M. Principles for public space design, planning to do better. Urban Des. Int. 2019, 24, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Equipaje, R.M.I. The Role of Public Space in Sustainable Urban Development. Putting Tradition into Practice: Heritage, Place and Design. In Proceedings of the 5th INTBAU International Annual Event (INTBAU 2017), Lecture Notes in Civil Engineering, Milan, Italy, 5–6 July 2017; Amoruso, G., Ed.; Springer: Cham, Switzerland, 2018; Volume 3, pp. 1402–1410, ISBN 978-3-319-57936-8. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Lamond, J.E.; Thorne, C.R. Recognising Barriers to Implementation of Blue-Green Infrastructure: A Newcastle Case Study. Urban Water J. 2017, 14, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Deely, J.; Hynes, S.; Barquín, J.; Burgess, D.; Finney, G.; Silió, A.; Álvarez-Martínez, J.M.; Bailly, D.; Ballé-Béganton, J. Barrier identification framework for the implementation of blue and green infrastructures. Land Use Policy 2020, 99, 105108. [Google Scholar] [CrossRef]
- Liu, L.; Jensen, M.B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Hoang, L.; Fenner, R.A. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water J. 2016, 13, 739–758. [Google Scholar] [CrossRef] [Green Version]
- Fryd, O.; Backhaus, A.; Birch, H.; Fratini, C.F.; Ingvertsen, S.T.; Jeppesen, J.; Panduro, T.E.; Roldin, M.; Jensen, M.B. Water sensitive urban design retrofits in Copenhagen-40% to the sewer, 60% to the city. Water Sci. Technol. 2013, 67, 1945–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlong, C.; Phelan, K.; Dodson, J. The role of water utilities in urban greening: A case study of Melbourne. Util. Policy 2018, 53, 25–31. [Google Scholar] [CrossRef]
- Burian, S.; Edwards, F. Historical perspectives of urban drainage. In Proceedings of the 9th International Conference on Urban Drainage, Global Solutions for Urban Drainage, Portland, OR, USA, 8–13 September 2002; Huber, W.C., Ed.; Lloyd: Portland, OR, USA, 2002; pp. 1–16. [Google Scholar] [CrossRef]
- Pettifer, E.; Kay, P. The effects of flood defences on riparian vegetation species richness and abundance. Water Environ. J. 2012, 26, 343–351. [Google Scholar] [CrossRef]
- Winz, I.; Brierley, G.; Trowsdale, S. Dominant perspectives and the shape of urban stormwater futures. Urban Water J. 2011, 8, 337–349. [Google Scholar] [CrossRef]
- Sussams, L.W.; Sheate, W.R.; Eales, R.P. Green infrastructure as a climate change adaptation policy intervention: Muddying the waters or clearing a path to a more secure future? J. Environ. Manage. 2015, 147, 184–193. [Google Scholar] [CrossRef]
- Albert, C.; Schröter, B.; Haase, D.; Brillinger, M.; Henze, J.; Herrmann, S.; Gottwald, S.; Guerrero, P.; Nicolas, C.; Matzdorf, B. Addressing societal challenges through nature-based solutions: How can landscape planning and governance research contribute? Landsc. Urban Plan. 2019, 182, 12–21. [Google Scholar] [CrossRef]
- Pontee, N.; Narayan, S.; Beck, M.W.; Hosking, A.H. Nature-based solutions: Lessons from around the world. Proc. Inst. Civ. Eng. Marit. Eng. 2016, 169, 29–36. [Google Scholar] [CrossRef]
- Cousins, J.J. Infrastructure and Institutions: Stakeholder Perspectives of Stormwater Governance in Chicago Cities. Cities 2017, 66, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Grant, L.E. Briefing: Making space for green places. Proc. Instit. Civil Eng. Eng. Sustain. 2012, 165, 121–123. [Google Scholar] [CrossRef]
- Jim, C.Y. Protection of urban trees from trenching damage in compact city environments. Cities 2003, 20, 87–94. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Schiappacasse, P.; Müller, B. Planning green infrastructure as a source of urban and regional resilience-towards institutional challenges. Urbani Izziv 2015, 26, 13–24. [Google Scholar] [CrossRef]
- Barnhill, K.; Smardon, R. Gaining ground: Green infrastructure attitudes and perceptions from stakeholders in Syracuse, New York. Environ. Pract. 2012, 14, 6–16. [Google Scholar] [CrossRef]
- Keeley, M.; Koburger, A.; Dolowitz, D.P.; Medearis, D.; Nickel, D.; Shuster, W. Perspectives on the use of green infrastructure for stormwater management in cleveland and Milwaukee. Environ. Manag. 2013, 51, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.B.; Jose, R.; Moobela, C.; Hutchinson, D.J.; Wise, R.; Gaterell, M. Residents’ perceptions of sustainable drainage systems as highly functional blue green infrastructure. Landsc. Urban Plan. 2019, 190, 103610. [Google Scholar] [CrossRef]
- Ncube, S.; Arthur, S. Influence of Blue-Green and Grey Infrastructure Combinations on Natural and Human-Derived Capital in Urban Drainage Planning. Sustainability 2021, 13, 2571. [Google Scholar] [CrossRef]
- Fenner, R. Spatial evaluation of multiple benefits to encourage multi-functional design of sustainable drainage in blue-green cities. Water 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manage. 2019, 239, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Lawson, E.; Thorne, C.; Ahilan, S.; Allen, D.; Arthur, S.; Everett, G.; Fenner, R.; Glenis, V.; Guan, D.; Hoang, L.; et al. Delivering and evaluating the multiple flood risk benefits in blue-green cities: An interdisciplinary approach. Pages 113–124; In WIT Transactions on Ecology and the Environment; Proverbs, D., Brebbia, C.A., Eds.; WIT Press: Ashurst, UK, 2014; p. 118. [Google Scholar]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Liao, K.-H.; Deng, S.; Tan, P.Y. Blue-green infrastructure: New frontier for sustainable urban stormwater management. In Greening Cities, Advances in 21st Century Human Settlements; 1st ed.; Tan, P.Y., Jim, C.Y., Eds.; Springer: Singapore, 2017; pp. 203–226. ISBN 978-981-10-4111-2. [Google Scholar] [CrossRef]
- Pille, L.; Säumel, I. The water-sensitive city meets biodiversity: Habitat services of rain water management measures in highly urbanized landscapes. Ecol. Society 2021, 26, 23. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Lundy, L.; Wade, R. Integrating sciences to sustain urban ecosystem services. Prog. Phys. Geogr. Earth Environ. 2011, 35, 653–669. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Depietri, Y.; McPhearson, T. Integrating the grey, green, and blue in cities: Nature-based solutions for climate change adaptation and risk reduction. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 91–109. ISBN 978-3-319-53750-4. [Google Scholar] [CrossRef]
- Dolowitz, D.P.; Bell, S.; Keeley, M. Retrofitting urban drainage infrastructure: Green or grey? Urban Water J. 2018, 15, 83–91. [Google Scholar] [CrossRef]
- Morgan, M.; Fenner, R. Spatial evaluation of the multiple benefits of sustainable drainage systems. Proc. Inst. Civ. Eng. Water Manag. 2019, 172, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [Green Version]
- Lowe, M.; Whitzman, C.; Badland, H.; Davern, M.; Aye, L.; Hes, D.; Butterworth, I.; Giles-Corti, B. Planning Healthy, Liveable and Sustainable Cities: How Can Indicators Inform Policy? Urban Policy Res. 2015, 33, 131–144. [Google Scholar] [CrossRef]
- Ptak-Wojciechowska, A.; Januchta-Szostak, A.; Gawlak, A.; Matuszewska, M. The Importance of Water and Climate-Related Aspects in the Quality of Urban Life Assessment. Sustainability 2021, 13, 6573. [Google Scholar] [CrossRef]
- Benedict, M.; McMahon, E. (Eds.) Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2006; ISBN 9781559635585. [Google Scholar]
- Gascon, M.; Zijlema, W.; Vert, C.; White, M.P.; Nieuwenhuijsen, M.J. Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies. Int. J. Hyg. Environ. Health 2017, 220, 1207–1221. [Google Scholar] [CrossRef]
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Meza Prado, K.A.; Arkema, K.K.; Bratman, G.N.; Brauman, K.A.; Finlay, J.C.; et al. Social-ecological and technological factors moderate the value of urban nature. Natur Sustain. 2019, 2, 29–38. [Google Scholar] [CrossRef]
- Kabisch, N.; Stadler, J.; Korn, H.; Bonn, A. Nature-Based Solutions for Societal Goals Under Climate Change in Urban Areas–Synthesis and Ways Forward. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas, Theory and Practice of Urban Sustainability Transitions, 1st ed.; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 323–336. ISBN 978-3-319-53750-4. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; Mccuskey, D.J.; Mcdonald, R.I.; Miller, W.M.; Young, S.L. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef]
- White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century; The World Bank: Washington, DC, USA, 2012; ISBN 978-0-8213-8866-2. [Google Scholar] [CrossRef] [Green Version]
- Aerts, J.C.J.H.; Botzen, W.J.; Clarke, K.C.; Cutter, S.L.; Hall, J.W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Chang. 2018, 8, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Bissonnette, J.F.; Dupras, J.; Messier, C.; Lechowicz, M.; Dagenais, D.; Paquette, A.; Jaeger, J.A.G.; Gonzalez, A. Moving forward in implementing green infrastructures: Stakeholder perceptions of opportunities and obstacles in a major North American metropolitan area. Cities 2018, 81, 61–70. [Google Scholar] [CrossRef]
- Zwoździak, J.; Szałata, Ł.; Zwoździak, A.; Kwiecińska, K.; Byelyayev, M. Water Retention in Nature-Based Solutions—Assessment of Potential Economic Effects for Local Social Groups. Water 2020, 12, 3347. [Google Scholar] [CrossRef]
- Ahern, J.; Cilliers, S.S.; Niemelä, J. The concept of ecosystem services in adaptive urban planning and design: A framework for supporting innovation. Landsc. Urban Plann. 2014, 125, 254–259. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, M.D.; Ostrom, E. Social-ecological system framework: Initial changes and continuing challenges. Ecol. Soc. 2014, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Jacobs, S. Nature-based solutions for Europe’s sustainable development. Conserv. Lett. 2015, 10, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Raymond, C.M.; Berry, P.; Breil, M.; Nita, M.R.; Kabisch, N.; de Bel, M.; Enzi, V.; Frantzeskaki, N.; Geneletti, D.; Cardinaletti, M.; et al. An Impact Evaluation Framework to Support Planning and Evaluation of Nature-Based Solutions Projects; Report Prepared by the EKLIPSE Expert Working Group on Nature-based Solutions to Promote Climate Resilience in Urban Areas; Centre for Ecology & Hydrology: Wallington, UK, 2017; ISBN 978-1-906698-62-1. [Google Scholar]
- Everett, G.; Lamond, J.; Morzillo, A.T.; Matsler, A.M.; Chan, F.K.S. Delivering Green Streets: An Exploration of Changing Perceptions and Behaviours Over Time Around Bioswales in Portland, Oregon. J. Flood Risk Manag. 2015, 11, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Sarabi, S.; Han, Q.; Romme, A.G.L.; de Vries, B.; Valkenburg, R.; den Ouden, E. Uptake and implementation of nature-based solutions: An analysis of barriers using interpretive structural modeling. J. Environ. Manag. 2020, 270, 110749. [Google Scholar] [CrossRef]
- Charlesworth, S.M.; Warwick, F. Adapting to and mitigating floods using sustainable urban drainage systems. In Flood Hazards: Impacts and Responses for the Built Environment, 1st ed.; Lamond, J.E., Booth, C., Hammond, F., Proverbs, D., Eds.; CRC Press: Boca Raton, FL, USA, 2011; p. 28. ISBN 9781138118256. [Google Scholar]
- MacQueen, K.M.; McLellan-Lemal, E.; Metzger, D.S.; Kegeles, S. What is community? An evidence-based definition for participatory public health. Am. J. Publ. Health 2001, 91, 1929–1938. [Google Scholar] [CrossRef]
- Krasny, M.E.; Silva, P.; Barr, C.; Golshani, Z.; Lee, E.; Ligas, R.; Mosher, E.; Reynosa, A. Civic ecology practices: Insights from practice theory. Ecol. Soc. 2015, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Dean, A.J.; Lindsay, J.; Fielding, K.S.; Smith, L.D.G. Fostering water sensitive citizenship–Community profiles of engagement in water-related issues. Environ. Sci. Policy 2016, 55, 238–247. [Google Scholar] [CrossRef]
- Lindsay, J.; Rogers, B.C.; Church, E.; Gunn, A.; Hammer, K.; Dean, A.J.; Fielding, K. The Role of Community Champions in Long-Term Sustainable Urban Water Planning. Water 2019, 11, 476. [Google Scholar] [CrossRef] [Green Version]
- Meikle, H.; Jones, D. Pedagogy of oppressed community engagement: Socially inclusive visioning of urban change. In Proceedings of the State of Australian Cities 2013 Conference; Ruming, K., Randolph, B., Gurran, N., Eds.; SOAC: Sydney, NSW, Australia, 2013; pp. 1–13, ISBN 1740440331. [Google Scholar]
- Novotny, V.; Ahern, J.; Brown, P. Water Centric Sustainable Communities: Planning, Retrofitting and Building the Next Urban Environment; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470476086. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.-W.; Lee, J.; An, K. Exploring the Relationship between Prior Knowledge on Rain Gardens and Supports for Adopting Rain Gardens Using a Structural Equation Model. Sustainability 2018, 10, 1500. [Google Scholar] [CrossRef] [Green Version]
- Everett, G.; Lamond, J.; Morzillo, A.T.; Ka Shun Chan, F.; Matsler, A.M. Sustainable drainage systems: Helping people live with water. Proc. Inst. Civ. Eng. Water Manag. 2016, 169, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Cortinovis, C.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Kuzniecow Bacchin, T.; Ashley, R.; Sijmons, D.F.; Zevenbergen, C.; Van Timmeren, A. Green-blue multifunctional infrastructure: An urban landscape system design new approach. In Proceedings of the ICUD 2014: 13th IAHR/IWA International Conference on Urban Drainage, Sarawak, Malaysia, 7–12 September 2014; pp. 1–8. [Google Scholar]
- Sowińska-Świerkosz, B.; Michalik-Śnieżek, M.; Soszyński, D.; Kułak, A. In the Search of an Assessment Method for Urban Landscape Objects (ULOs): Tangible and Intangible Values, Public Participation Geographic Information Systems (PPGIS), and Ranking Approach. Land 2020, 9, 502. [Google Scholar] [CrossRef]
- Lejcuś, K.; Burszta-Adamiak, E.; Dąbrowska, J.; Wróblewska, K.; Orzeszyna, H.; Śpitalniak, M.; Misiewicz, J. Katalog Dobrych Praktyk–Zasady Zrównoważonego Gospodarowania Wodami Opadowymi Pochodzącymi z Nawierzchni Pasów Drogowych; Wydział Inżynierii Miejskiej: Wrocław, Poland, 2017. [Google Scholar]
- Adamowski, D.; Zalewski, J.; Paluch, P.; Glixelli, T. Katalog Zielono–Niebieskiej Infrastruktury. Część II. Wytyczne i Rozwiązania; Miejskie Wodociągi i Kanalizacja w Bydgoszczy–sp. z o.o.: Bydgoszcz, Poland, 2017. [Google Scholar]
- Harsányi, G.; Scharfe, S.; Lejcuś, I.; Adynkiewicz-Piragas, M.; Cibilić, A.; Spira, Y.D. T2.2.5 Retention Concepts and Optimization for Storage Management; Rainman, INTERREG Central Europe Programme, UE: Vienna, Austria, 2018. [Google Scholar]
- Iwaszuk, E.; Rudik, G.; Duin, L.; Mederake, L.; Davis, M.; Naumann, S.; Wagner, I. Błękitno-Zielona Infrastruktura dla łagodzenia Zmian Klimatu w Miastach. Katalog Techniczny; Ecologic Institute & Fundacja Sndzimira: Berlin, Germany; Kraków, Poland, 2019; ISBN 978-83-62168-10-1. [Google Scholar]
- Wong, T.; Brown, R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Ashley, R.; Lundy, L.; Ward, S.; Shaffer, P.; Walker, L.; Morgan, C.; Saul, A.; Wong, T.; Moore, S. Water-sensitive urban design: Opportunities for the UK. Proc. Instit. Civil Eng. Municipal Eng. 2013, 166, 65–76. [Google Scholar] [CrossRef]
- Cler, M.L. Stormwater Best Management Practice Design Guide; Vegetative Biofilters; EPA/600/R-04/121A; National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Washington, DC, USA, 2004; Volume 2. [Google Scholar]
- Edwards, E.C.; Harter, T.; Fogg, G.E.; Washburn, B.; Hamad, H. Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. J. Hydrol. 2016, 539, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Hassall, C.; Anderson, S. Stormwater ponds can contain comparable biodiversity to unmanaged wetlands in urban areas. Hydrobiologia 2015, 745, 137–149. [Google Scholar] [CrossRef]
- Rujner, H.; Leonhardt, G.; Perttu, A.M.; Marsalek, J.; Viklander, M. Advancing green infrastructure design: Field evaluation of grassed urban drainage swales. In Proceedings of the 9th International Conference on Planning and Technologies for Sustainable Management of Water in the City, NOVATECH 2016. Lyon, France, 28 June–1 July 2016; pp. 1–10. [Google Scholar]
- Shafique, M.; Kim, R.; Kyung-Ho, K. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea. Int. J. Environ. Res. Public Health 2018, 15, 537. [Google Scholar] [CrossRef] [Green Version]
- Campisano, A.; Creaco, E.; Modica, C. A simplified approach for the design of infiltration trenches. Water Sci. Technol. 2011, 64, 1362–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, M.-C.; Portet-Koltalo, F.; Legras, M.; Lederf, F.; Moncond’huy, V.; Polaert, I.; Marcotte, S. Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area. Sci. Total Environ. 2016, 566–567, 113–121. [Google Scholar] [CrossRef]
- Mangangka, I.R.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Performance characterisation of a stormwater treatment bioretention basin. J. Environ. Manag. 2015, 150, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Lucke, T.; Nichols, P.W.B. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Sci. Total Environ. 2015, 536, 784–792. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. A Field Evaluation of Rain Garden Flow and Pollutant Treatment. Water Air Soil Pollut 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Z.; Shibata, S. Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability 2020, 12, 9982. [Google Scholar] [CrossRef]
- Saadeh, S.; Ralla, A.; Al-Zubi, Y.; Wu, R.; Harvey, J. Application of fully permeable pavements as a sustainable approach for mitigation of stormwater runoff. Int. J. Transp. Sci. Technol. 2019, 8, 338–350. [Google Scholar] [CrossRef]
- Well, F.; Ludwig, F. Blue–green architecture: A case study analysis considering the synergetic effects of water and vegetation. Front. Arch. Res. 2020, 9, 191–202. [Google Scholar] [CrossRef]
- Brudermann, T.; Sangkakool, T. Green roofs in temperate climate cities in Europe–An analysis of key decision factors. Urban For. Urban Green. 2017, 21, 224–234. [Google Scholar] [CrossRef]
- Bogacz, A.; Woźniczka, P.; Burszta-Adamiak, E.; Kolasińska, K. Metody zwiększania retencji wodnej na terenach zurbanizowanych. Sci. Rev. Eng. Environ. Sci. 2013, 59, 27–35. [Google Scholar]
- Geiger, W.; Dreiseitl, H. Nowe Sposoby Odprowadzania Wód Deszczowych, 1st ed.; Oficyna Wydawnicza Projprzem-EKO: Bydgoszcz, Poland, 1999; ISBN 83-906015-4-4. [Google Scholar]
- Akther, M.; He, J.; Chu, A.; Huang, J.; Van Duin, B. A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones. Sustainability 2018, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Barriuso, F.; Urbano, B. Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents. Sustainability 2021, 13, 2245. [Google Scholar] [CrossRef]
- Myga-Piątek, U. Kryteria i metody oceny krajobrazu kulturowego w procesie planowania przestrzennego na tle obowiązujących procedur prawnych. In Waloryzacja środowiska Przyrodniczego w Planowaniu Przestrzennym; Kistowski, M., Korwel-Lejkowska, B., Eds.; Fundacja Rozwoju Uniwersytetu GdaĹ: Gdańsk-Warszawa, Poland, 2007; Volume 19, pp. 101–110. ISBN 978-83-7531-005-4. [Google Scholar]
- Jakiel, M. Ocena atrakcyjność wizualnej krajobrazu dolinek krakowskich–Możliwości zastosowania w planowaniu przestrzennym. Współc. Probl. Kierun. Badaw. Geogr. 2015, 3, 91–107. [Google Scholar]
- Matos Silva, M.; Costa, J.P. Flood Adaptation Measures Applicable in the Design of Urban Public Spaces: Proposal for a Conceptual Framework. Water 2016, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Pennypacker, E.; Echols, S.P. Art for Rain’s Sake. Designers make rainwater a central part of two projects. Landsc. Arch. 2006, 96, 24–31. [Google Scholar]
- Ruddell, D.; Harlan, S.; Grossman-Clarke, S.; Chowell, G. Scales of perception: Public awareness of regional and neighborhood climates. Clim. Chang. 2012, 111, 581–607. [Google Scholar] [CrossRef]
- Young, A.F.; Marengo, J.A.; Martins Coelho, J.O.; Scofield, G.B.; de Oliveira Silva, C.C.; Prieto, C.C. The role of nature-based solutions in disaster risk reduction: The decision maker’s perspectives on urban resilience in Săo Paulo state. Int. J. Disaster Risk Reduct. 2019, 39, 101219. [Google Scholar] [CrossRef]
- Farrell, M.; Cooper, A.; Yates, K. Challenges and Benefits in the Design of Coastal Walking and Cycling Amenities: Toward a More Integrated Coastal Management Approach. Coastal Manag. 2015, 43, 628–650. [Google Scholar] [CrossRef]
- Sanei, M.; Khodadad, S.; Khodadad, M. Flexible Urban Public Spaces and their Designing Principles. J. Civil Eng. Urban. 2018, 8, 39–43. [Google Scholar]
- Elewa, A.K.A. Flexible Public Spaces through Spatial Urban Interventions, Towards Resilient Cities. Eur. J. Sustain. Develop. 2019, 8, 152–168. [Google Scholar] [CrossRef]
- Suleiman, L. Blue green infrastructure, from niche to mainstream: Challenges and opportunities for planning in Stockholm. Technol. Forec. Soc. Chang. 2021, 166, 120528. [Google Scholar] [CrossRef]
- Vernon, B.; Tiwari, R. Place-Making through Water Sensitive Urban Design. Sustainability 2009, 1, 789–814. [Google Scholar] [CrossRef] [Green Version]
Location | Type of BGI Solution |
---|---|
on the surface | runoff troughs grassed swales infiltration trenches vegetated swales (street-side) bioretention basins grassed retention and infiltration basins rain gardens wetland ponds surface water reservoirs retention and infiltration water reservoirs water squares permeable/pervious pavements |
underground | infiltration wells infiltration boxes structural tree root cells underground water reservoirs |
above the surface | blue roofs green roofs green walls |
BGI Solution | General Characteristics | Main Functions | Sources |
---|---|---|---|
runoff troughs |
|
| [113,114,122,123] |
grassed swales |
|
| [113,114,115,119,122,123] |
infiltration trenches |
|
| [113,114,115,116,119,124] |
vegetated swales |
|
| [113,114,125] |
(street-side) bioretention basins |
|
| [113,114,126,127,133,134] |
grassed retention and infiltration basins |
|
| [113,114,115,116,119] |
rain gardens |
|
| [108,113,114,115,116,128,129,133] |
wetland ponds |
|
| [113,114,119,121] |
surface water reservoirs |
|
| [113,114,115,116,117,118,119,121] |
retention and infiltration water reservoirs |
|
| [113,114,115,116,117,118,119,121,133] |
water squares |
|
| [113,114] |
permeable/pervious pavements |
|
| [113,114,115,116,119,130] |
infiltration wells |
|
| [113,114,115,120] |
infiltration boxes |
|
| [113,114,115] |
structural tree root cells |
|
| [113,114,115] |
underground water reservoirs |
|
| [113,114] |
blue roofs |
|
| [113,114,131] |
green roofs |
|
| [113,114,119,131,132,133,135,136] |
green walls |
|
| [113,114,119,136] |
Aspect | Factor | Criteria | Rating Scale | |||
---|---|---|---|---|---|---|
Functional and Spatial | Limitations on implementation/execution | Design documentation and building permit needed | high | low | - | - |
0 pts | 1 pts | - | - | |||
Costs of implementation | Size, diversity of elements and complexity of a BGI solution | high | low | - | - | |
0 pts | 1 pts | - | - | |||
Maintenance costs | Size, diversity of elements and complexity of a BGI solution | high | low | - | - | |
0 pts | 1 pts | - | - | |||
Surface requirements | Size of space needed for the implementation of the BGI solution, including minimum dimensions: 10m2 for surface objects, 30 cm width for linear objects | > min. space size | ≤ min. space size | - | - | |
0 pts | 1 pts | - | - | |||
Maintaining in good technical condition | Difficulty resulting from technical aspects | high difficulty | medium difficulty | low difficulty | - | |
0 pts | 1 pts | 2 pts | - | |||
Preservation despite the passage of time | Susceptibility to destruction resulting from location and the use of the BGI solution, and external conditions | high difficulty | low difficulty | - | - | |
0 pts | 1 pts | - | - | |||
Facility rank | Size and scale of the BGI solution in spatial terms | - | local | supralocal | - | |
- | 1 pts | 2 pts | - | |||
Additional functions | Other special functions related to the presence and use of the BGI solution in public spaces (e.g., social, aesthetic, recreational, sports, educational, scientific, etc.) | none | 1–2 additional functions | 3 or more additional functions | - | |
0 pts | 1 pts | 2 pts | - | |||
Ability to combine with other BGI solutions | Possibility of connection resulting from spatial form and/or location of BGI solution | none | possible connection | - | - | |
0 pts | 1 pts | - | - | |||
Environmental | Air temperature | Impact of the presence of plants and water | none | possible | - | - |
0 pts | 1 pts | - | - | |||
Elimination of air pollution | Impact of the presence of plants | none | possible | - | - | |
0 pts | 1 pts | - | - | |||
Removal of pollutants from rainwater | Impact of plant functioning, chemical interactions and/or use of technical devices | none | possible | - | - | |
0 pts | 1 pts | - | - | |||
Fulfillment of ecosystem services | Number of ecosystem services (including categories: food, raw materials, water, climate, extreme events, wastewater treatment, pollination, biological control, habitats for species, recreation, tourism, aesthetic values, spiritual experiences, etc.) | 1–3 (not related to environmental functions) | 4–6 | 7–9 | 10 and more | |
0 pts | 1 pts | 2 pts | 3 pts | |||
Diversity of plant species | Number of plant species | no vegetation | 1 plant species | 2 plant species | 3 and more plant species | |
0 pts | 1 pts | 2 pts | 3 pts | |||
Diversity of plant structures | Number of plant structures (e.g., single tree, group of trees/shrubs, perennial beds, vertical plants, etc.) | no vegetation | 1 plant structure | 2 plant structures | 3 and more plant structures | |
0 pts | 1 pts | 2 pts | 3 pts | |||
Shaping biologically vital areas | Impact of the presence of greenery and permeable surface | none | low | significant | - | |
0 pts | 1 pts | 2 pts | - | |||
Reduction of surface water runoff | Degree of slowing down water runoff | - | low | significant | - | |
- | 1 pts | 2 pts | - | |||
Rainwater retention | Ability to collect and retain water | none | low | significant | - | |
0 pts | 1 pts | 2 pts | - | |||
Stormwater infiltration into the ground | Implementation of permeable surfaces | none | low | significant | - | |
0 pts | 1 pts | 2 pts | - | |||
Use of low-emission materials, recycling | Implementation of low-emission materials (e.g., concrete, cement) or recycled materials (e.g., metal, glass, aggregate) | none | possible | - | - | |
0 pts | 1 pts | - | - | |||
Social | Recognition of visual values by the community | Number of points obtained from the visual assessment of BGI solutions using the SBE method (The study was carried out in 2020 on a test sample of N = 267 (M = 79; F = 188) on 16 BGI solutions visible in urban public spaces - except underground water reservoirs, infiltration boxes and structural tree root cells) | 0 pts | 1–3 pts | 4–7 pts | 8–10 pts |
0 pts | 1 pts | 2 pts | 3 pts | |||
Possibility to foster social inclusion | Availability for social use | none | low | high | - | |
0 pts | 1 pts | 2 pts | - | |||
Possibility to participate in the implementation and care | Limitations resulting from location, structure and technical requirements, and/or lack of plants | none | high | - | - | |
0 pts | 1 pts | - | - |
BGI Solution | Limitations on Implementation/Execution (0–1 pts) | Maintaining in Good Technical Condition (0–2 pts) | Preservation Despite the Passage of Time (0–1 pts) | Facility Rank (1–2 pts) | Additional Functions (0–2 pts) | Ability to Combine with other BGI Solutions (0–1 pts) | Costs of Implementation (0–1 pts) | Maintenance Costs (0–1 pts) | Surface Requirements (0–1 pts) | Sum (1–12 pts) |
---|---|---|---|---|---|---|---|---|---|---|
(street-side) bioretention basins | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 11 |
vegetated swales | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 11 |
grassed swales | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 10 |
permeable/pervious pavements | 1 | 2 | 1 | 1 | 2 | 0 | 1 | 1 | 1 | 10 |
rain gardens | 0 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 10 |
grassed retention and infiltration basins | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 1 | 1 | 10 |
infiltration trenches | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 10 |
green walls | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 10 |
wetland ponds | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 9 |
runoff troughs | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
retention and infiltration water reservoirs | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 8 |
surface water reservoirs | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 1 | 0 | 8 |
infiltration wells | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
structural tree root cells | 0 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8 |
water squares | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 7 |
infiltration boxes | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 7 |
green roofs | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 6 |
blue roofs | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 5 |
underground water reservoirs | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 5 |
BGI Solution | Air Temperature (0–1 pts) | Elimination of Air Pollution (0–1 pts) | Removal of Pollutants from Rainwater (0–1 pts) | Shaping Biologically Vital Areas (0–2 pts) | Fulfillment of Ecosystem Services (0–3 pts) | Diversity of Plant Species (0–3 pts) | Diversity of Plant Structures (0–3 pts) | Reduction of Surface Water Runoff (1–2 pts) | Rainwater Retention (0–2 pts) | Stormwater Infiltration into the Ground (0–2 pts) | Use of Low-Emission Materials, Recycling (0–1 pts) | Sum (1–20 pts) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
rain gardens | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 2 | 2 | 1 | 18 |
vegetated swales | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | 0 | 1 | 18 |
retention and infiltration water reservoirs | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 0 | 17 |
green roofs | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 1 | 2 | 0 | 1 | 17 |
(street-side) bioretention basins | 1 | 1 | 2 | 2 | 2 | 3 | 1 | 2 | 1 | 1 | 0 | 16 |
wetland ponds | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | 2 | 0 | 0 | 16 |
infiltration trenches | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 15 |
grassed swales | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 0 | 14 |
grassed retention and infiltration basins | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 0 | 14 |
permeable/pervious pavements | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 12 |
green walls | 1 | 1 | 0 | 1 | 2 | 3 | 2 | 1 | 0 | 0 | 1 | 12 |
blue roofs | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 1 | 9 |
infiltration wells | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 2 | 1 | 9 |
structural tree root cells | 0 | 0 | 0 | 0 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 9 |
water squares | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 1 | 7 |
surface water reservoirs | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 1 | 7 |
infiltration boxes | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 2 | 1 | 7 |
underground water reservoirs | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 1 | 6 |
runoff troughs | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 1 | 5 |
BGI Solution | Recognition of Visual Values by the Community (0–3 pts) | Possibility to Foster Social Inclusion (0–2 pts) | Possibility to Participate in the Implementation and Care (0–1 pts) | Sum (0–6 pts) |
---|---|---|---|---|
rain gardens | 3 | 1 | 1 | 5 |
vegetated swales | 3 | 1 | 1 | 5 |
retention and infiltration water reservoirs | 3 | 1 | 1 | 5 |
green walls | 3 | 1 | 1 | 5 |
permeable/pervious pavements | 3 | 1 | 1 | 5 |
water squares | 3 | 2 | 0 | 5 |
green roofs | 3 | 2 | 0 | 5 |
runoff troughs | 3 | 0 | 1 | 4 |
grassed retention and infiltration basins | 2 | 1 | 1 | 4 |
infiltration trenches | 3 | 0 | 1 | 4 |
(street-side) bioretention basins | 2 | 0 | 1 | 3 |
grassed swales | 2 | 0 | 1 | 3 |
blue roofs | 2 | 1 | 0 | 3 |
surface water reservoirs | 2 | 0 | 1 | 3 |
wetland ponds | 2 | 1 | 0 | 3 |
infiltration wells | 2 | 0 | 0 | 2 |
underground water reservoirs | 0 | 0 | 0 | 0 |
structural tree root cells | 0 | 0 | 0 | 0 |
infiltration boxes | 0 | 0 | 0 | 0 |
BGI Solution | The Spatial and Functional Aspect (1–12 pts) | The Environmental Aspect (1–20 pts) | The Social Aspect (0–6 pts) | Sum (2–38 pts) |
---|---|---|---|---|
vegetated swales | 11 | 18 | 5 | 34 |
rain gardens | 10 | 18 | 5 | 33 |
(street-side) bioretention basins | 11 | 16 | 3 | 30 |
retention and infiltration water reservoirs | 8 | 17 | 5 | 30 |
infiltration trenches | 10 | 15 | 4 | 29 |
grassed retention and infiltration basins | 10 | 14 | 4 | 28 |
wetland ponds | 9 | 16 | 3 | 28 |
green roofs | 6 | 17 | 5 | 28 |
green walls | 10 | 12 | 5 | 27 |
grassed swales | 10 | 14 | 3 | 27 |
permeable/pervious pavements | 10 | 12 | 5 | 27 |
infiltration wells | 8 | 9 | 2 | 19 |
water squares | 7 | 7 | 5 | 19 |
runoff troughs | 9 | 5 | 4 | 18 |
surface water reservoirs | 8 | 7 | 3 | 18 |
blue roofs | 5 | 9 | 3 | 17 |
structural tree root cells | 8 | 9 | 0 | 17 |
infiltration boxes | 7 | 7 | 0 | 14 |
underground water reservoirs | 5 | 6 | 0 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimic, K.; Ostrysz, K. Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. Sustainability 2021, 13, 11041. https://doi.org/10.3390/su131911041
Kimic K, Ostrysz K. Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. Sustainability. 2021; 13(19):11041. https://doi.org/10.3390/su131911041
Chicago/Turabian StyleKimic, Kinga, and Karina Ostrysz. 2021. "Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects" Sustainability 13, no. 19: 11041. https://doi.org/10.3390/su131911041
APA StyleKimic, K., & Ostrysz, K. (2021). Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. Sustainability, 13(19), 11041. https://doi.org/10.3390/su131911041