Leveraging Digital Twin for Sustainability Assessment of an Educational Building
Abstract
:1. Introduction
2. Background
2.1. Sustainability Rating Systems
2.2. BIM, IoT, and Digital Twin
3. Methods and Tools
- (a)
- DT set up;
- (b)
- Real-time data collection;
- (c)
- Users’ behavior adaptation;
- (d)
- Sustainability monitoring.
3.1. Digital Twin Set up and Real-Time Data Collection
3.2. Sustainability Monitoring and Users’ Behaviour Adaptation
- How can the DT and the sensors’ network be expanded to cover more rating criteria and thus better help sustainability experts in their work?
- How can data be better communicated to users so that they can change their behaviors to achieve greater sustainability?
- data required by rating protocols and already collected in the DT;
- data required by rating protocols, not collected in the DT and included in the Industry Foundation Classes(IFC) schema;
- data required by rating protocols, not collected in the DT and not included in the IFC schema;
- data not needed for rating protocols, but that could be useful to improve users’ behavior from a sustainability (rating) point of view.
4. Case Study and Results
4.1. The Case Study Building
4.2. The eLUX Digital Twin
4.3. Indoor Environmental Quality Monitoring
4.4. Sustainability Monitoring During Building Maintenance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_it (accessed on 29 November 2020).
- Fraga-Lamas, P.; Fernández-Caramés, T.M. Leveraging Blockchain for Sustainability and Open Innovation: A Cyber-Resilient Approach toward EU Green Deal and UN Sustainable Development Goals. In Computer Security Threats; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Matijas, B. From the Captains of Industry to the Trustees of Sustainability: The Positioning of the Large Family-Owned Companies’ Core Values Regarding the Green Deal for Europe’s Decarbonization Goals. Master’s Thesis, Environmental Studies and Sustainability Science, Lund University, Lund, Sweden, 2020. [Google Scholar] [CrossRef]
- European Parliament. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency, L 156/75. Off. J. Eur. Union 2018, 156, 75–91. [Google Scholar]
- Bain, P.G.; Kroonenberg, P.M.; Johansson, L.-O.; Milfont, T.L.; Crimston, C.R.; Kurz, T.; Bushina, E.; Calligaro, C.; Demarque, C.; Guan, Y.; et al. Public views of the sustainable development goals across countries. Nat. Sustain. 2019, 2, 819–825. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Nguyen, B.K.; Altan, H. Comparative review of five sustainable rating systems. Procedia Eng. 2011, 21, 376–386. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Kvan, T.; Liu, M.; Li, B. How green building rating systems affect designing green. Build. Environ. 2018, 133, 19–31. [Google Scholar] [CrossRef]
- Zhao, D.X.; He, B.J.; Johnson, C.; Mou, B. Social problems of green buildings: From the humanistic needs to social acceptance. Renew. Sustain. Energy Rev. 2015, 51, 1594–1609. [Google Scholar] [CrossRef]
- Chegut, A.; Eichholtz, P.; Kok, N. Supply, demand and the value of green buildings. Urban Stud. 2014, 51, 22–43. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Liu, H. Turning green into gold: A review on the economics of green buildings. J. Clean. Prod. 2018, 172, 2234–2245. [Google Scholar] [CrossRef]
- Gou, Z.; Lau, S.S.Y.; Prasad, D. Market readiness and policy implications for green buildings: Case study from Hong Kong. J. Green Build. 2013, 8, 162–173. [Google Scholar] [CrossRef]
- Dwaikat, L.N.; Ali, K.N. Green buildings life cycle cost analysis and life cycle budget development: Practical applications. J. Build. Eng. 2018, 18, 303–311. [Google Scholar] [CrossRef]
- Li, S.; Lu, Y.; Kua, H.W.; Chang, R. The economics of green buildings: A life cycle cost analysis of non-residential buildings in tropic climates. J. Clean. Prod. 2020, 252, 119771. [Google Scholar] [CrossRef]
- Chandratilake, S.R.; Dias, W.P.S. Sustainability rating systems for buildings: Comparisons and correlations. Energy 2013, 59, 22–28. [Google Scholar] [CrossRef]
- Doan, D.T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. Build. Environ. 2017, 123, 243–260. [Google Scholar] [CrossRef]
- Bernardi, E.; Carlucci, S.; Cornaro, C.; Bohne, R.A. An analysis of the most adopted rating systems for assessing the environmental impact of buildings. Sustainability 2017, 9, 1226. [Google Scholar] [CrossRef] [Green Version]
- Awadh, O. Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis. J. Build. Eng. 2017, 11, 25–29. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Manfren, M. Sustainability Indicators for Buildings: Network Analysis and Visualization. In Expanding Boundaries Systems Thinking in the Built Environment, Proceedings of the Sustainable Built Environment (SBE) Regional Conference, Zurich, Switzerland, 13–17 June 2016; vdf Hochschulverlag: Zurich, Switzerland, 2016; Volume I, ISBN 978-3-7281-3774-6. Available online: https://vdf.ch/expanding-boundaries.html (accessed on 30 November 2020).
- Mattoni, B.; Guattari, C.; Evangelisti, L.; Bisegna, F.; Gori, P.; Asdrubali, F. Critical review and methodological approach to evaluate the differences among international green building rating tools. Renew. Sustain. Energy Rev. 2018, 82, 950–960. [Google Scholar] [CrossRef]
- Shan, M.; Hwang, B.G. Green building rating systems: Global reviews of practices and research efforts. Sustain. Cities Soc. 2018, 39, 172–180. [Google Scholar] [CrossRef]
- Newsham, G.R.; Mancini, S.; Birt, B.J. Do LEED-certified buildings save energy? Yes, but…. Energy Build. 2009, 41, 897–905. [Google Scholar] [CrossRef]
- Amiri, A.; Ottelin, J.; Sorvari, J. Are LEED-certified buildings energy-efficient in practice? Sustainability 2019, 11, 1672. [Google Scholar] [CrossRef] [Green Version]
- El-Diraby, T.; Krijnen, T.; Papagelis, M. BIM-based collaborative design and socio-technical analytics of green buildings. Autom. Constr. 2017, 82, 59–74. [Google Scholar] [CrossRef]
- Cheng, J.C.; Das, M. A BIM-based web service framework for green building energy simulation and code checking. J. Inf. Technol. Constr. ITcon 2014, 19, 150–168. [Google Scholar]
- Wong, J.K.W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Autom. Constr. 2015, 57, 156–165. [Google Scholar] [CrossRef]
- Raouf, A.M.; Al-Ghamdi, S.G. Building information modelling and green buildings: Challenges and opportunities. Archit. Eng. Des. Manag. 2019, 15, 1–28. [Google Scholar] [CrossRef]
- Lee, S.; Tae, S.; Roh, S.; Kim, T. Green template for life cycle assessment of buildings based on building information modeling: Focus on embodied environmental impact. Sustainability 2015, 7, 16498–16512. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical review and future directions. Autom. Constr. 2017, 83, 134–148. [Google Scholar] [CrossRef]
- Solla, M.; Ismail, L.H.; Yunus, R. Investigation on the potential of integrating BIM into green building assessment tools. ARPN J. Eng. Appl. Sci. 2016, 11, 2412–2418. [Google Scholar]
- Al-Sehrawy, R.; Kumar, B. Digital Twins in Architecture, Engineering, Construction and Operations. A Brief Review and Analysis. In Lecture Notes in Civil Engineering, Proceedings of the 18th International Conference on Computing in Civil and Building Engineering. ICCCBE 2020, Sao Paolo, Brazil, 18–20 August 2020; Toledo Santos, E., Scheer, S., Eds.; Springer: Cham, Switzerland, 2021; Volume 98. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Brundtland, G.H. Report of the World Commission on Environment and Development Our Common Future, WCED 1987. Available online: http://www.un-documents.net/wced-ocf.htm (accessed on 30 November 2020).
- Hansmann, R.; Mieg, H.A.; Frischknecht, P. Principal sustainability components: Empirical analysis of synergies between the three pillars of sustainability. Int. J. Sustain. Dev. World Ecol. 2012, 19, 451–459. [Google Scholar] [CrossRef]
- Sneddon, C.; Howarth, R.B.; Norgaard, R.B. Sustainable development in a post-Brundtland world. Ecol. Econ. 2006, 57, 253–268. [Google Scholar] [CrossRef]
- Reed, R.; Wilkinson, S.; Bilos, A.; Schulte, K. A comparison of International Sustainable Building Tools—An Update. In Proceedings of the 17th Annual Pacific Rim Real Estate Society Conference, Gold Coast, Australia, 16–19 January 2011. [Google Scholar]
- Liu, G.; Nolte, I.; Potapova, A.; Michel, S.; Ruckert, K. Comparison of worldwide certification systems for sustainable buildings. In Proceedings of the SET2010—9th International Conference on Sustainable Energy Technologies, Shanghai, China, 24–27 August 2010. [Google Scholar]
- Motzl, H.; Fellner, M. Environmental and health related criteria for buildings. In Proceedings of the IBO Österreichisches Institut für Baubiologie und ökologie GmbH Austrian Institute for Healthy and Ecological Building, Final Report, Vienna, Austria, 31 March 2011. [Google Scholar]
- Alyami, S.H.; Rezgui, Y. Sustainable building assessment tool development approach. Sustain. Cities Soc. 2012, 5, 52–62. [Google Scholar] [CrossRef]
- Ng, S.T.; Chen, Y.; Wong, J.M.W. Variability of building environmental assessment tools on evaluating carbon emissions. Environ. Impact Assess. Rev. 2013, 38, 131–141. [Google Scholar] [CrossRef]
- Rezaallah, A.; Bolognesi, C.; Khoraskani, R.A. LEED and BREEAM.; Comparison between policies, assessment criteria and calculation methods. In Proceedings of the 1st International Conference on Building Sustainability Assessment (BSA 2012), Porto, Portugal, 23–25 May 2012; pp. 23–25. [Google Scholar]
- Işıl, R.S. The Multi-Level Perspective On Sustainable Building Design: An Account On Building Environmental Assessment Tools. In Proceedings of the CESB—Central Europe towards Sustainable Building 2013, Decision-Support Tools and Assessment Methods, Prague, Czech Republic, 26–28 June 2013. [Google Scholar]
- Asdrubali, F.; Baldinelli, G.; Bianchi, F.; Sambuco, S. A comparison between environmental sustainability rating systems LEED and ITACA for residential buildings. Build. Environ. 2015, 86, 98–108. [Google Scholar]
- Lupisek, A. Multicriteria assessment of building in context of sustainable building. Ph.D. Thesis, Czech Technical University in Prague, Faculty of Civil Engineering, Department of Building Structures, Prague, Czech Republic, 2013. [Google Scholar]
- Berardi, U. Sustainability assessment in the construction sector: Rating systems and rated buildings. Sustain. Dev. 2012, 20, 411–424. [Google Scholar] [CrossRef]
- LEED Leadership in Energy and Environmental Design. Available online: https://www.usgbc.org/leed (accessed on 30 November 2020).
- BREEAM Building Research Establishment Environmental Assessment Method. Available online: https://www.breeam.com (accessed on 30 November 2020).
- SBC Sustainable Building Challenge. Available online: http://www.iisbe.org/taxonomy/term/64 (accessed on 30 November 2020).
- ITACA Istituto Per La Trasparenza, L’aggiornamento E La Certificazione Degli Appalt. Available online: http://www.itaca.org/valutazione_sostenibilita.asp (accessed on 30 November 2020).
- DGNB German Sustainable Building Council. Available online: https://www.dgnb-system.de/en/system/index.php (accessed on 30 November 2020).
- Well Certification. Available online: https://www.wellcertified.com (accessed on 30 November 2020).
- Living Building Challenge certification. Available online: https://living-future.org/lbc-3_1/certification (accessed on 30 November 2020).
- Bittenbinder, F.; Liu, C.; Rinaldi, S.; Bellagente, P.; Ciribini, A.L.C.; Tagliabue, L.C. Bi-Directional Interactions between Users and Cognitive Buildings by means of Smartphone App. In Proceedings of the IEEE Second International Smart Cities Conference (ISC2 2016), Improving the Citizens Quality of Life, Trento, Italy, 12–15 September 2016. [Google Scholar] [CrossRef]
- Bittenbinder, F.; Liu, C.; Moretti, N.; Re Cecconi, F.; Tagliabue, L.C.; Ciribini, A.L.C.; Kovacic, I. A Vision for a Cognitive Campus Network of Universities: The Learnscapes of Poveglia Island. In Proceedings of the 3rd SDEWES Conference, Novi Sad, Serbia, 30 June–3 July 2018. [Google Scholar] [CrossRef] [Green Version]
- Bhargav, D.; Buda, A.; Nurminen, A.; Främling, K. A framework for integrating BIM and IoT through open standards. Autom. Constr. 2018, 95, 35–45. [Google Scholar] [CrossRef]
- Li, J.; Kassem, M.; Ciribini, A.L.C.; Bolpagni, M. A Proposed Approach Integrating DLT, BIM, IoT and Smart Contracts: Demonstration Using a Simulated Installation Task. In Proceedings of the International Conference on Smart Infrastructure and Construction 2019 (ICSIC), Cambridge, UK, 8–10 July 2019; pp. 275–282. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-M.; Dzeng, R.-J.; Wu, Y.-J. An Automated IoT Visualization BIM Platform for Decision Support in Facilities Management. Appl. Sci. 2018, 8, 1086. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.C.P.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Zemouri, S.; Magoni, D.; Zemouri, A.; Gkoufas, Y.; Katrinis, K.; Murphy, J. An Edge Computing Approach to Explore Indoor Environmental Sensor Data for Occupancy Measurement in Office Spaces. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Adeogun, R.; Rodriguez, I.; Razzaghpour, M.; Berardinelli, G.; Christensen, P.H.; Mogensen, P.E. Indoor Occupancy Detection and Estimation using Machine Learning and Measurements from an IoT LoRa-based Monitoring System. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Alioto, M.; Shahghasemi, M. The Internet of Things on Its Edge: Trends Toward Its Tipping Point. IEEE Consum. Electron. Mag. 2018, 7, 77–87. [Google Scholar] [CrossRef]
- Rodriguez Larrad, I.; Lauridsen, M.; Vasluianu, G.; Poulsen, A.N.; Mogensen, P.E. The Gigantium Smart City Living Lab: A Multi-Arena LoRa-based Testbed. In Proceedings of the 15th International Symposium on Wireless Communication System (ISWCS 2018), Lisbon, Portugal, 28–31 August 2018. [Google Scholar] [CrossRef] [Green Version]
- Kaewunruen, S.; Peng, S.; Phil-Ebosie, O. Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations. Sustainability 2020, 12, 7873. [Google Scholar] [CrossRef]
- Kreider, R.G.; Messner, J.I. The Uses of BIM: Classifying and Selecting BIM Uses. Version 0.9; The Pennsylvania State University: University Park, PA, USA, 2013; Available online: http://bim.psu.edu (accessed on 30 November 2020).
- ISO. ISO/FDIS 19650-3. Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 3: Operational Phase of the Assets; ISO: Geneva, Switzerland, 2020. [Google Scholar]
- Maltese, S.; Tagliabue, L.C.; Re Cecconi, F.; Pasini, D.; Manfren, M.; Ciribini, A.L.C. Sustainability Assessment through Green BIM for Environmental, Social and Economic Efficiency, International High-Performance Built Environment Conference—A Sustainable Built Environment Conference 2016 Series (SBE16), iHBE 2016. Procedia Eng. 2017, 180, 520–530. [Google Scholar] [CrossRef]
- Maltese, S.; Moretti, N.; Cecconi, F.R.; Ciribini, A.L.C.; Kamara, J.M. A lean approach to enable sustainability in the built environment through BIM. TECHNE J. Technol. Archit. Environ. 2017, 278–286. [Google Scholar] [CrossRef]
- Re Cecconi, F.; Tagliabue, L.C.; Maltese, S.; Ciribini, A.; Kovacic, I. Green BIM—A lean methodology to support sustainability assessment protocols. In Proceedings of the 17th International Multidisciplinary Scientific Geoconference SGEM 2017, Vienna, Austria, 27–29 November 2017; pp. 889–896, ISBN 978-619-7408-29-4. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Xu, N. Digital twin for sustainability evaluation of railway station buildings. Front. Built Environ. 2018, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Kaewunruen, S.; Rungskunroch, P.; Welsh, J. A digital-twin evaluation of net zero energy building for existing buildings. Sustainability 2019, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Quay, R.; Hutanuwatr, K. Visualization of sustainability indicators: A conceptual framework. In Visualizing Sustainable Planning; Springer: Berlin/Heidelberg, Germany, 2009; pp. 203–213. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Maltese, S.; Re Cecconi, F.; Ciribini, A.L.C.; De Angelis, E. BIM-based interoperable workflow for energy improvement of school buildings over the life cycle. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC 2018), Berlin, Germany, 20–25 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Re Cecconi, F.; Moretti, N.; Tagliabue, L.C.; Maltese, S. A BIM based decision support system for building maintenance. In Proceedings of the 35th CIB W78 2018 Conference IT in Design, Construction, and Management, Chicago, IL, USA, 1–3 October 2018; ISBN 978-3-030-00219-0. [Google Scholar] [CrossRef]
- Rinaldi, S.; Flammini, A.; Tagliabue, L.C.; Ciribini, A.L.C. On the use of IoT Sensors for Indoor Conditions Assessment and Tuning of Occupancy Rates Models. In Proceedings of the IEEE International Workshop on Metrology for Industry 4.0 and IoT, Brescia, Italy, 16–18 April 2018. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Re Cecconi, F.; Rinaldi, S.; Ciribini, A.L.C. IoT network-based ANN for ventilation pattern prediction and actuation to optimize IAQ in educational spaces. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609. [Google Scholar] [CrossRef]
- De Angelis, E.; Ciribini, A.L.C.; Tagliabue, L.C.; Paneroni, M. The Brescia Smart Campus Demonstrator. Renovation towards a zero Energy Classroom Building. Procedia Eng. 2015, 28, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Tagliabue, L.C.; Manfren, M.; Ciribini, A.L.C.; De Angelis, E. Probabilistic behavioural modelling in building performance simulation—the Brescia eLUX lab. Energy Build. 2016, 128, 119–131. [Google Scholar] [CrossRef]
- Re Cecconi, F.; Manfren, M.; Tagliabue, L.C.; Cirbini, A.L.C.; De Angelis, E. Probabilistic behavioural modeling in building performance simulation: A Monte Carlo approach. Energy Build. 2017, 148, 128–141. [Google Scholar] [CrossRef]
- Tagliabue, L.C.; Rinaldi, S.; Flammini, A.; Ciribini, A.L.C. Energy and comfort management of the educational spaces through IoT network for IAQ assessment in the eLUX lab. In Proceedings of the SBE19—Resilient Built Environment for Sustainable Mediterranean Countries, Milan, Italy, 3–6 September 2019. [Google Scholar] [CrossRef]
- eLUX Lab and SCUOLA Project, University of Brescia. Available online: https://elux.unibs.it/project-s-cu-o-l-a (accessed on 30 November 2020).
- University of Brescia, Italy. Available online: https://www.unibs.it (accessed on 30 November 2020).
- Flammini, A.; Pasetti, M.; Rinaldi, S.; Bellagente, P.; Ciribini, A.C.; Tagliabue, L.C.; Zavanella, S.; Zanoni, G.; Oggioni, G.; Pedrazzi, G. A living lab and testing infrastructure for the development of innovative smart energy solutions: The eLUX laboratory of the University of Brescia. In Proceedings of the 2018 AEIT International Annual Conference, Bari, Italy, 3–5 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Rinaldi, S.; Flammini, A.; Tagliabue, L.C.; Ciribini, A.L.C. An IoT framework for the assessment of indoor conditions and estimation of occupancy rates: Results from a real case study. Acta IMEKO 2019, 8, 70–79. [Google Scholar] [CrossRef]
- LEED Reference Guide for Building Design and Construction, Updated 2 July 2018, Published 25 July 2019. Available online: https://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version (accessed on 30 November 2020).
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- He, B.; Bai, K.J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2020, 1–21. [Google Scholar] [CrossRef]
- LEED Certification for Neighborhood Development. Available online: https://www.usgbc.org/leed/rating-systems/neighborhood-development (accessed on 30 November 2020).
- BuildingSMART International Limited, Industry Foundation Classes 4.1.0.0. Available online: https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML (accessed on 30 November 2020).
- Francisco, A.; Mohammadi, N.; Taylor, J.E. Smart City Digital Twin-Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking. J. Manag. Eng. 2020, 36, 04019045. [Google Scholar] [CrossRef]
- Azeta, A.; Agono, F.; Falade, A.; Nwaocha, V. A Digital Twin Framework for Analysing Students’ Behaviours Using Educational Process Mining. J. Big Data 2020. in evaluation. [Google Scholar] [CrossRef]
- Sepasgozar, S.M. Digital Twin and Web-Based Virtual Gaming Technologies for Online Education: A Case of Construction Management and Engineering. Appl. Sci. 2020, 10, 4678. [Google Scholar] [CrossRef]
- Zaballos, A.; Briones, A.; Massa, A.; Centelles, P.; Caballero, V. A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring. Sustainability 2020, 12, 9196. [Google Scholar] [CrossRef]
- Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmström, J. Digital twin: Vision, benefits, boundaries, and creation for buildings. IEEE Access 2019, 7, 147406–147419. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliabue, L.C.; Cecconi, F.R.; Maltese, S.; Rinaldi, S.; Ciribini, A.L.C.; Flammini, A. Leveraging Digital Twin for Sustainability Assessment of an Educational Building. Sustainability 2021, 13, 480. https://doi.org/10.3390/su13020480
Tagliabue LC, Cecconi FR, Maltese S, Rinaldi S, Ciribini ALC, Flammini A. Leveraging Digital Twin for Sustainability Assessment of an Educational Building. Sustainability. 2021; 13(2):480. https://doi.org/10.3390/su13020480
Chicago/Turabian StyleTagliabue, Lavinia Chiara, Fulvio Re Cecconi, Sebastiano Maltese, Stefano Rinaldi, Angelo Luigi Camillo Ciribini, and Alessandra Flammini. 2021. "Leveraging Digital Twin for Sustainability Assessment of an Educational Building" Sustainability 13, no. 2: 480. https://doi.org/10.3390/su13020480
APA StyleTagliabue, L. C., Cecconi, F. R., Maltese, S., Rinaldi, S., Ciribini, A. L. C., & Flammini, A. (2021). Leveraging Digital Twin for Sustainability Assessment of an Educational Building. Sustainability, 13(2), 480. https://doi.org/10.3390/su13020480