Correlation Analysis of the Spread of Household-Sized Photovoltaic Power Plants and Various District Indicators: A Case Study
Abstract
:1. Introduction
1.1. The Global Aspects of Photovoltaic Technology
1.2. The Regulatory Environment of Photovoltaic Technology in Hungary—Overview
1.3. The Evolution of the Methodology for Territorial Development Indicators in Hungary
- -
- Each of the indicators of the districts is suitable for detecting relationships regarding the number and power of PV HMKEs.
- -
- The ranking of the districts according to the complex indicators created from the district indicators correlates with the ranking of the districts based of the number and power of PV HMKEs/1000 people in Hungary.
- -
- It is possible to create a regression model with the help of which the quantity of PV HMKEs in the districts can be determined.
2. Material and Methods
2.1. Methods
2.2. Material
- ELMŰ-ÉMÁSZ, EON (146 districts):
- Total power of all HMKEs per 1000 population (kW),
- Total power of residential HMKEs per 1000 population (kW),
- Total power of business-owned HMKEs per 1000 population (kW),
- Total number of HMKEs per 1000 population (pcs),
- Total number of residential HMKEs per 1000 population (pcs),
- Total number of business-owned HMKEs per 1000 population (pcs).
- ELMŰ-ÉMÁSZ, EON, NKM (168 districts):
- Total number of HMKEs per 1000 population (pcs).
3. Results and Discussion of the Analysis of the Relationship between the Number and Total Power of HMKEs and the Development of the Districts
- -
- In the case of the districts, there are certain district indicators, each of which separately shows a correlation with the quantity and power of PV HMKEs. These relationships could be detected regardless of the service regions of the particular electricity suppliers. There was a moderately strong correlation between the total budget expenditures of local governments per 1000 population, the number of household electricity consumers per 1000 population, the quantity of electricity supplied to households per 1000 population, the number of electricity consumers per 1000 population, the number of operating commercial accommodation units per 1000 population, and the total number of PV HMKEs per 1000 population. Furthermore, the power of total PV HMKEs per 1000 population also indicated moderately strong correlations with almost all the district indicators (except for the amount of supplied electricity per 1000 population).
- -
- The ranking of the districts based on the complex indicator created from the district indicators signaled a moderately strong correlation with the ranking of the districts based on the number and power of the Hungarian photovoltaic PV HMKEs per 1000 population.
- -
- Two regression models were created from the districts’ database containing data from all three electricity supplier regions. The first model demonstrates the effects of the district indicators that are legally regarded as the dimensions of regional development in Hungary by Government Decree 105/2015 (IV. 23.) [30]). In this case, the quantity of PV HMKEs per 1000 population was explained by the proportion of the total number of homes at the end of the period built in the last five years and the proportion of public streets/roads maintained by the municipalities that are paved. In the second model, one can observe the effects of the indicators that do not belong to the regional development dimension in the strict sense of the word, but influence the spread of PV HMKEs. Thus, it can be stated that the model includes the number of PV HMKEs per 1000 population as an outcome variable and the number of electricity consumers per 1000 population and the total budget expenditure of local governments per 1000 population as explanatory variables.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ELMŰ-ÉMÁSZ | ELMŰ-ÉMÁSZ Energiaszolgáltató ZRT. /ELMŰ-ÉMÁSZ Energy Distributor Private Limited Company |
EON | E.ON Hungária Zrt./E.ON Hungária Private Limited Company |
fai,j | Normalized basic indicator |
HMKE | Household-sized power plant |
CDI | Complex development index |
KÁT | Kötelező átvételi tarifa/Hungarian system of supporting green energy from renewable energy sources |
KSH | Központi Statisztikai Hivatal/Hungarian Central Statistical Office |
MAVIR | Magyar Villamosenergia-ipari Átviteli Rendszerirányító Zártkörűen Működő Részvénytársaság/Hungarian Transmission System Operator Private Limited Company |
METÁR | Megújuló Energia Támogatási Rendszer/Renewable Energy Support Scheme |
min(fai,j) | The lowest value of the basic indicator |
max(fai,j) | The highest value of the basic indicator |
NKM | NKM Energia Zrt./NKM Energy Private Limited Company |
p-Si | Polycrystalline |
PV | Photovoltaic |
TEIR | Országos Teületfejlesztési és Területrendezési Információs Rendsze /National Regional Development and Spatial Planning Information System |
xi to xn | Represent independent variables |
Y | Dependent variable |
β1 | The regression coefficient of variable x1 |
βn | The regression coefficient of variable xn |
Appendix A. Relationship between the Number and Total Power of Residential, Business-Owned, and Public HMKEs and the Development Indicators
Description | Correlation Coefficient | Partial Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|
Number of Residential Hmkes Per 1000 Population (Pcs) ELMŰ-ÉMÁSZ, EON | Number of Household Electricity Consumers Per 1000 Population (Pcs) | Amount of Electricity Supplied To Households Per 1000 Population (1000 kWh) | Number of Electricity Consumers Per 1000 Population (Pcs) | Length of Low-Voltage Electricity Distribution Network Per 1000 Population (Km) | Number of Registered Enterprises Per 1000 Population (Pcs) | Number of Registered Economic Organizations Per 1000 Population (Pcs) | Number of Commercial Accommoda-Tion Units Per 1000 Population (Pcs) | |
Total budget revenue of local governments per 1000 population (HUF 1000) | 0.050/0.546 | 0.565/0.000 | 0.598/0.000 | 0.573/0.000 | 0.349/0.000 | 0.302/0.000 | 0.322/0.000 | 0.389/0.000 |
Total budget expenditure of local governments per 1000 population (HUF 1000) | 0.066/0.426 | 0.560/0.000 | 0.605/0.000 | 0.567/0.000 | 0.346/0.000 | 0.299/0.000 | 0.320/0.000 | 0.384/0.000 |
Number of household electricity consumers per 1000 population | 0.563/0.000 | 0.366/0.000 | 0.106/0.204 | 0.077/0.359 | 0.177/0.033 | 0.178/0.000 | 0.028/0.735 | |
Amount of electricity supplied to households per 1000 population (1000 kWh) | 0.571/0.000 | 0.350/0.000 | 0.357/0.000 | 0.140/0.094 | 0.197/0.018 | 0.219/0.008 | 0.195/0.019 | |
Number of electricity consumers per 1000 population | 0.569/0.000 | 0.016/0.848 | 0.360/0.000 | 0.086/0.302 | 0.172/0.039 | 0.169/0.042 | 0.052/0.532 | |
Total electricity supplied per 1000 population (1000 kWh) | 0.125/0.132 | 0.555/0.000 | 0.574/0.000 | 0.563/0.000 | 0.374/0.000 | 0.338/0.000 | 0.356/0.000 | 0.391/0.000 |
Length of low-voltage electricity distribution network per 1000 population (km) | 0.351/0.000 | 0.475/0.000 | 0.496/0.000 | 0.485/0.000 | 0.227/0.006 | 0.243/0.003 | 0.250/0.002 | |
Number of registered enterprises per 1000 population | 0.306/0.000 | 0.520/0.000 | 0.534/0.000 | 0.526/0.000 | 0.288/0.000 | 0.259/0.002 | 0.326/0.000 | |
Number of registered economic organizations per 1000 population | 0.326/0.000 | 0.510/0.000 | 0.531/0.000 | 0.515/0.000 | 0.278/0.001 | 0.232/0.005 | 0.314/0.000 | |
Number of operating commercial accommoda-tion units per 1000 population | 0.388/0.000 | 0.443/0.000 | 0.487/0.000 | 0.455/0.000 | 0.180/0.031 | 0.216/0.009 | 0.226/0.006 |
Description | Correlation Coefficient | Partial Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|
Total Power of Residential Hmkes Per 1000 Population (kW) ELMŰ-ÉMÁSZ, EON | Number of Household Electricity Consumers Per 1000 Population | Amount of Electricity Supplied to Households Per 1000 Population (1000 kWh) | Number of Electricity Consumers Per 1000 Population | Length of Low-Voltage Electricity Distribution Network Per 1000 Population (Km) | Number of Registered Enterprises Per 1000 Population (Pcs) | Number of Registered Economic Organizations Per 1000 Population (Pcs) | Number of Operating Commercial Accommoda-Tion Units Per 1000 Population (Pcs) | |
Total budget revenue of local governments per 1000 population (HUF 1000) | 0.072/0.391 | 0.546/0.000 | 0.580/0.000 | 0.552/0.000 | 0.346/0.000 | 0.323/0.000 | 0.341/0.000 | 0.384/0.000 |
Total budget expenditure of local governments per 1000 population (HUF 1000) | 0.113/0.173 | 0.543/0.000 | 0.595/0.000 | 0.547/0.000 | 0.341/0.000 | 0.315/0.000 | 0.333/0.000 | 0.374/0.000 |
Number of household electricity consumers per 1000 population (pcs) | 0.548/0.000 | 0.341/0.000 | 0.097/0.247 | 0.056/0.504 | 0.210/0.011 | 0.210/0.011 | 0.009/0.914 | |
Amount of electricity supplied to households per 1000 population (1000 kWh) | 0.548/0.000 | 0.341/0.000 | 0.347/0.000 | 0.152/0.068 | 0.229/0.006 | 0.249/0.003 | 0.204/0.014 | |
Number of electricity consumers per 1000 population (pcs) | 0.553/0.000 | 0.010/0.904 | 0.335/0.000 | 0.064/0.442 | 0.204/0.014 | 0.202/0.015 | 0.031/0.713 | |
Total amount of electricity supplied per 1000 population (1000 kWh) | 0.115/0.168 | 0.540/0.000 | 0.549/0.000 | 0.547/0.000 | 0.373/0.000 | 0.359/0.000 | 0.376/0.000 | 0.391/0.000 |
Length of low-voltage electricity distribution network per 1000 population (km) | 0.352/0.000 | 0.451/0.000 | 0.468/0.000 | 0.460/0.000 | 0.252/0.002 | 0.267/0.001 | 0.249/0.003 | |
Number of registered enterprises per 1000 population (pcs) | 0.328/0.000 | 0.500/0.000 | 0.506/0.000 | 0.505/0.000 | 0.284/0.001 | 0.246/0.003 | 0.322/0.000 | |
Number of registered economic organizations per 1000 population (pcs) | 0.347/0.000 | 0.489/0.000 | 0.503/0.000 | 0.493/0.000 | 0.274/0.001 | 0.216/0.009 | 0.308/0.000 | |
Number of operating commercial accommodation units per 1000 population (pcs) | 0.388/0.000 | 0.419/0.000 | 0.458/0.000 | 0.429/0.000 | 0.181/0.029 | 0.242/0.003 | 0.251/0.002 |
Description | Correlation Coefficient | Partial Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|
Number of Business-Owned Hmkes Per 1000 Population (Pcs) ELMŰ-ÉMÁSZ, EON | Total Budget Revenues of Local Governments Per 1000 Population (HUF 1000) | Total Budget Expenditure of Local Governments Per 1000 Population (HUF 1000) | Total Amount of Electricity Supplied Per 1000 Population (1000 kWh) | Length of Low-Voltage Electricity Distribution Network Per 1000 Population (Km) | Number of Registered Enterprises Per 1000 Population (Pcs) | Number of Registered Economic Organizations Per 1000 Population (Pcs) | Number of Operating Commercial Accommoda-Tion Units Per 1000 Population (Pcs) | |
Total budget revenues of local governments per 1000 population (HUF 1000) | 0.510/0.000 | 0.279/0.001 | −0.315/0.000 | 0.180/0.030 | 0.164/0.049 | 0.166/0.046 | 0.082/0.330 | |
Total budget expenditure of local governments per 1000 population (HUF 1000) | 0.562/0.000 | 0.055/0.507 | −0.341/0.000 | 0.207/0.013 | 0.130/0.120 | 0.134/0.107 | 0.084/0.317 | |
Number of household electricity consumers per 1000 population (pcs) | 0.121/0.145 | 0.500/0.000 | 0.557/0.000 | −0.259/0.000 | 0.247/0.003 | 0.182/0.028 | 0.201/0.015 | 0.173/0.038 |
Total amount of electricity supplied to households per 1000 population (1000 kWh) | −0.092/0.271 | 0.504/0.000 | 0.558/0.000 | −0.236/0.004 | 0.334/0.000 | 0.242/0.003 | 0.263/0.001 | 0.272/0.001 |
Number of electricity consumers per 1000 population (pcs) | 0.147/0.078 | 0.495/0.000 | 0.555/0.000 | −0.259/0.002 | 0.223/0.007 | 0.174/0.036 | 0.192/0.021 | 0.147/0.078 |
Total amount of electricity supplied per 1000 population (1000 kWh) | 0.236/0.000 | 0.542/0.000 | 0.600/0.000 | 0.237/0.004 | 0.172/0.038 | 0.195/0.019 | 0.212/0.010 | |
Length of low-voltage electricity distribution network per 1000 population (km) | 0.260/0.002 | 0.482/0.000 | 0.546/0.000 | −0.211/0.011 | 0.144/0.085 | 0.161/0.054 | 0.079/0.343 | |
Number of registered enterprises per 1000 population (pcs) | 0.209/0.012 | 0.497/0.000 | 0.545/0.000 | −0.205/0.013 | 0.213/0.010 | 0.240/0.004 | 0.154/0.064 | |
Number of registered economic organizations per 1000 population (pcs) | 0.228/0.006 | 0.491/0.000 | 0.540/0.000 | −0.205/0.014 | 0.204/0.014 | 0.221/0.007 | 0.142/0.089 | |
Number of operating commercial accommoda-tion units per 1000 population (pcs) | 0.206/0.012 | 0.482/0.000 | 0.539/0.0000 | −0.241/0.003 | 0.179/0.031 | 0.157/0.059 | 0.173/0.038 |
Description | Correlation Coefficient | Partial Correlation Coefficient | ||||
---|---|---|---|---|---|---|
Total Power of Business-Owned HMKEs Per 1000 Population (kW) ELMŰ-ÉMÁSZ, EON | Total Budget Revenue of Local Governments Per 1000 Population HUF 1000) | Total Budget Expenditures of Local Governments Per 1000 Population HUF 1000) | Length of Low-Voltage Electricity Distribution Network Per 1000 Population (Km) | Number of Registered Enterprises Per 1000 Population (Pcs) | Number of Registered Economic Organizations Per 1000 Population (Pcs) | |
Total budget revenue of local governments per 1000 population (HUF 1000) | 0.429/0.000 | 0.200/0.016 | 0.135/0.105 | 0.346/0.000 | 0.346/0.000 | |
Total budget expenditure of local governments per 1000 population (HUF 1000) | 0.462/0.000 | 0.064/0.444 | 0.155/0.063 | 0.324/0.000 | 0.327/0.000 | |
Number of household electricity consumers per 1000 population (pcs) | 0.143/0.086 | 0.413/0.000 | 0.455/0.000 | 0.156/0.061 | 0.344/0.000 | 0.358/0.000 |
Total amount of electricity supplied to households per 1000 population (1000 kWh) | −0.079/0.343 | 0.423/0.000 | 0.458/0.000 | 0.272/0.001 | 0.403/0.000 | 0.420/0.000 |
Number of electricity consumers per 1000 population (pcs) | 0.163/0.049 | 0.409/0.000 | 0.452/0.000 | 0.136/0.103 | 0.338/0.000 | 0.352/0.000 |
Total amount of electricity supplied per 1000 population (1000 kWh) | 0.197/0.017 | 0.452/0.000 | 0.489/0.000 | 0.189/0.023 | 0.343/0.000 | 0.360/0.000 |
Length of low-voltage electricity distribution network per 1000 population (km) | 0.210/0.011 | 0.402/0.000 | 0.444/0.000 | 0.327/0.0000 | 0.341/0.000 | |
Number of registered enterprises per 1000 population (pcs) | 0.367/0.000 | 0.412/0.000 | 0.432/0.000 | 0.115/0.167 | 0.196/0.018 | |
Number of registered economic organizations per 1000 population (pcs) | 0.382/0.000 | 0.399/0.000 | 0.421/0.000 | 0.104/0.214 | 0.162/0.051 | |
Number of operating commercial accommoda-tion units per 1000 population (pcs) | 0.189/0.022 | 0.399/0.000 | 0.436/0.000 | 0.130/0.120 | 0.332/0.000 | 0.345/0.000 |
References
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, UAE, 2018. [Google Scholar]
- International Energy Agency (IEA). World Energy Outlook 2017; IEA: Paris, France, 2017. [Google Scholar]
- Kim, K.J.; Lee, H.; Koo, Y. Research on local acceptance cost of renewable energy in South Korea: A case study of photovoltaic and wind power projects. Energy Policy 2020, 144, 111684. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bačeković, I.; Sveinbjörnsson, D.; Pedersen, A.S.; Krajačić, G. On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system. Energy 2017, 137, 941–960. [Google Scholar] [CrossRef] [Green Version]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Kordmahaleh, A.A.; Naghashzadegan, M.; Javaherdeh, K.; Khoshgoftar, M. Design of a 25 MWe Solar thermal power plant in Iran with using parabolic trough collectors and a two-tank molten salt storage system. Int. J. Photoenergy 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Noman, A.M.; Addoweesh, K.E.; Alolah, A.I. Simulation and practical implementation of ANFIS-based MPPT method for PV applications using isolated Ćuk Converter. Int. J. Photoenergy 2017, 2017, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Daliento, S.; Chouder, A.; Guerriero, P.; Pavan, A.M.; Mellit, A.; Moeini, R.; Tricoli, P. Monitoring, diagnosis, and power forecasting for photovoltaic fields: A review. Int. J. Photoenergy 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Sefa, İ.; Demirtas, M.; Çolak, İ. Application of one-axis sun tracking system. Energy Convers. Manag. 2009, 50, 2709–2718. [Google Scholar] [CrossRef]
- Nengroo, S.; Kamran, M.; Ali, M.; Kim, D.-H.; Kim, M.-S.; Hussain, A.; Kim, H.; Nengroo, S.H.; Kamran, M.A.; Ali, M.U.; et al. Dual battery storage system: An optimized strategy for the utilization of renewable photovoltaic energy in the United Kingdom. Electronics 2018, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.A. A realizable renewable energy future. Science 1999, 285, 687–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.; Lu, M.; Sun, P.; Lin, A.; Lu, M.; Sun, P. The Influence of local environmental, economic and social variables on the spatial distribution of photovoltaic applications across China’s urban areas. Energies 2018, 11, 1986. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wu, D.; Yu, H.; Ma, W.; Jin, G. Field measurement and numerical simulation of combined solar heating operation modes for domestic buildings based on the Qinghai–Tibetan plateau case. Energy Build. 2018, 167, 312–321. [Google Scholar] [CrossRef]
- Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B.; Alsafasfeh, Q.; Su, W.; Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B.; Alsafasfeh, Q.; Su, W. Unsupervised fault detection and analysis for large photovoltaic systems using drones and machine vision. Energies 2018, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Roth, W. General concepts of photovoltaic power supply systems. Fraunhofer Inst. Sol. Energy Syst. ISE 2005, G04, 1–24. [Google Scholar]
- Kumar Sahu, B. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew. Sustain. Energy Rev. 2015, 43, 621–634. [Google Scholar] [CrossRef]
- Renewable Energy Policy Network for the 21st Century. Renewables 2020 Global Status Report—REN21; REN21: Paris, France, 2020. [Google Scholar]
- Solargis.com. Solar Resource Maps and GIS Data for 200+ Countries. Available online: https://solargis.com/maps-and-gis-data/overview (accessed on 28 October 2020).
- pv Magazine. Hungary to See Record PV Growth in 2018. Available online: https://www.pv-magazine.com/2018/09/12/hungary-to-see-record-pv-growth-in-2018/ (accessed on 28 October 2020).
- Hungarian Transmission System Operator—MAVIR ZRt. Renewable Support System—Current Information. Available online: https://www.mavir.hu/web/mavir/aktualis-informaciok (accessed on 28 October 2020).
- Fülöp, M. Működik az Első Hazai Közcélú Energiatároló Egység—The First Domestic Public Energy Storage Unit is Operating. Available online: https://www.villanylap.hu/hirek/4904-mukodik-az-elso-hazai-kozcelu-energiatarolo-egyseg (accessed on 28 October 2020).
- Magyar Közlöny. Igazságügyi Minisztérium., 2019, évi 222. szám; Budapest, 30 December 2019. Available online: https://magyarkozlony.hu/dokumentumok/ec06d883a1ffd2f988667454eba2cabfc5f27a36/megtekintes (accessed on 2 December 2020).
- Hungarian Transmission System Operator—MAVIR ZRt. Capacity Analysis—Consultation Input Data 2020–2040. Available online: https://www.mavir.hu/web/mavir/kapacitaselemzes (accessed on 2 December 2020).
- Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report; Fraunhofer Institute for Solar Energy Systems: Freiburg, Germany, 2018. [Google Scholar]
- Hungarian Energy and Public Utility Regulatory Authority. Renewable Energy Operating Aid. Available online: https://www.enhat.mekh.hu/mukodesi-tamogatas (accessed on 25 August 2020).
- Hungarian Energy and Public Utility Regulatory Authority. Report—On Quarterly New Household-Sized Power Plants (Q4 2019); HEA: Budapest, Hungary, 2019.
- Wolters Kluwer Hungary Kft. 84/1993. (XI. 11.) OGY Decision. Available online: https://mkogy.jogtar.hu/jogszabaly?docid=993h0084.OGY (accessed on 17 September 2020).
- Wolters Kluwer Hungary Kft. 290/2014. (XI. 26.) Government Decree. Available online: https://net.jogtar.hu/jogszabaly?docid=a1400290.kor (accessed on 17 September 2020).
- Wolters Kluwer Hungary Kft. 105/2015. (IV. 23.) Government Decree. Available online: https://net.jogtar.hu/jogszabaly?docid=a1500105.kor (accessed on 17 September 2020).
- Kovács, P.; Bodnár, G. Examining the factors of endogenous development in Hungarian rural areas by means of PLS Path Analysis. Reg. Stat. 2017, 7, 90–114. [Google Scholar] [CrossRef]
- Valkó, G.; Fekete-Farkas, M.; Kovács, I. Indicators for the economic dimension of sustainable agriculture in the European Union. Reg. Stat. 2017, 7, 179–196. [Google Scholar] [CrossRef]
- Hungarian Central Statistical Office (KSH). Information Database, Regional Statistics. Available online: http://statinfo.ksh.hu/Statinfo/themeSelector.jsp?lang=hu (accessed on 17 September 2020).
- Land Information System (TEIR). Application Supporting the Planning of LEADER Local Development Strategies. Available online: https://www.teir.hu/leader/ (accessed on 17 September 2020).
- Foster, G.C.; Lane, D.; Scott, D.; Hebl, M.; Guerra, R. An Introduction to Psychological Statistics; University of Missouri: St. Louis, MO, USA, 2018. [Google Scholar]
- Illowsky, B.; Dean, S. Introductory Statistics; 12th Media Services: Suwanee, GA, USA, 2017. [Google Scholar]
- Freedman, D.; Pisani, R.; Purves, R. Statistics, 4th ed.; W. W. Norton & Company: New York, NY, USA, 2017. [Google Scholar]
- Zaid, M.A. Correlation and Regression Analysis—The Statistical, Economic and Social Research and Training Centre for Islamic Countries; SESRIC: Ankara, Turkey, 2015. [Google Scholar]
- Montgomery, C.D.; Peck, A.E.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wolters Kluwer Hungary Kft. 218/2012. (VIII. 13.) Government Decree. Available online: https://net.jogtar.hu/jogszabaly?docid=A1200218.KOR&txtreferer=A1200093.TV (accessed on 22 October 2020).
- Lechner Nonprofit Kft. Map of Utilities. Available online: https://www.e-epites.hu/e-kozmu (accessed on 17 September 2020).
x1 | Mortality rate, per mille (average of the last 5 years) | x8 | Proportion of registered jobseekers in the population, % |
x2 | Number of places available in nurseries per 10,000 permanent residents aged 0–2, pcs | x9 | Proportion of registered long-term job-seekers in the population, % |
x3 | Number of recipients of regular child protection benefits in the population aged 0–29 | x10 | Number of operating enterprises per 1000 population, pcs |
x4 | Number of recipients of employment replacement subsidy per 1000 population | x11 | The proportion of the current yearxs total municipal revenue from local taxes, % |
x5 | Number of recipients of subsidies from active labor market policy instruments per 1000 population (individuals) | x12 | The proportion of homes connected to the public sewer network, % |
x6 | Proportion of the total number of homes at the end of the period built in the last five years, % | x13 | Proportion of public streets/roads maintained by the municipalities that is paved, % |
x7 | Number of cars per 1000 population, pcs |
x14 | Number of registered economic entities per 1000 population (Pcs) |
x15 | Number of registered businesses per 1000 population (pcs) |
x16 | Total budget revenues of local governments per 1000 population (HUF 1000) |
x17 | Total budget expenditures of local governments per 1000 population (HUF 1000) |
x18 | Number of household electricity consumers per 1000 population (pcs) |
x19 | Amount of electric energy provided for households per 1000 population (1000 kWh) |
x20 | Number of electricity consumers per 1000 population (pcs) |
x21 | Amount of total electric energy provided per 1000 population (1000 kWh) |
x22 | Length of low-voltage electricity distribution network per 1000 population (km) |
x23 | Number of operating places of commercial accommodation (hotels, pensions, campsites, rental holiday homes, communal accommodation) units per 1000 population (pcs) |
x24 | Number of catering units per 1000 population (pcs) |
Description | Correlation Coefficient | Partial Correlation Coefficient | ||||
---|---|---|---|---|---|---|
Number HMKEs Per 1000 Population (Pcs) ELMŰ-ÉMÁSZ, EON, NKM | Total Budget Expenditures of Local Governments Per 1000 Population (HUF 1000) | Number of Household Electricity Consumers Per 1000 Population (Pcs) | Amount of Electricity Supplied to Households Per 1000 Population (1000 kWh) | Number of Electricity Consumers Per 1000 Population (Pcs) | Number of Commercial Accommodation Units Per 1000 Population (Pcs) | |
Total budget revenues of local governments per 1000 population (HUF 1000) | 0.190/0.014 | 0.184/0.018 | 0.448/0.000 | 0.390/0.000 | 0.476/0.000 | 0.416/0.000 |
Total budget expenditures of local governments per 1000 population (HUF 1000) | 0.257/0.001 | 0.465/0.000 | 0.406/0.000 | 0.490/0.000 | 0.404/0.000 | |
Number of household electricity consumers per 1000 population (pcs) | 0.468/0.000 | 0.250/0.001 | 0.110/0.157 | 0.276/0.000 | 0.191/0.013 | |
Amount of electricity supplied to households per 1000 population (1000 kWh) | 0.333/0.000 | 0.349/0.000 | 0.363/0.000 | 0.400/0.000 | 0.372/0.000 | |
Number of electricity consumers per 1000 population (pcs) | 0.496/0.000 | 0.240/0.002 | 0.206/0.008 | 0.093/.0.231 | 0.150/0.052 | |
Total amount of electricity supplied per 1000 population (1000 kWh) | 0.068/0.383 | 0.254/0.001 | 0.464/0.000 | 0.332/0.000 | 0.493/0.000 | 0.446/0.000 |
Length of low voltage electricity distribution network per 1000 population (km) | 0.059/0.444 | 0.253/0.001 | 0.505/0.000 | 0.362/0.000 | 0.532/0.000 | 0.445/0.000. |
Number of registered enterprises per 1000 population (pcs) | 0.139/0.073 | 0.246/0.001 | 0.451/0.000 | 0.306/0.000 | 0.481/0.000 | 0.428/0.000 |
Number of registered economic organizations per 1000 population (pcs) | 0.168/0.029 | 0.240/0.002 | 0.443/0.000 | 0.296/0.000 | 0.474/0.000 | 0.421/0.000 |
Number of commercial accommodation units per 1000 population (pcs) | 0.444/0.000 | 0.163/0.035 | 0.250/0.000 | 0.215/0.005 | 0.288/0.000 |
Description | Correlation Coefficient | Partial Correlation Coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of HMKEs Per 1000 Population (Pcs) ELMŰ-ÉMÁSZ, EON | Total Budget Expenditure of Local Governments Per 1000 Population (HUF 1000) | Number of Household Electricity Consumers Per 1000 Population (Pcs) | Amount of Electricity Supplied to Households Per 1000 Population (1000 kWh) | Number of Electricity Consumers Per 1000 Population (Pcs) | Length of Low-Voltage Electricity Distribution Network Per 1000 Population (Km) | Number of Registered Enterprises Per 1000 Population (Pcs) | Number of Registered Economic Organizations Per 1000 Population (Pcs) | Number of Operational Commercial Accommoda-Tion Units Per 1000 (Pcs) | |
Total budget revenues of local governments per 1000 population (HUF 1000) | 0.1770./033 | 0.150/0.210 | 0.527/0.000 | 0.558/0.000 | 0.539/0.000 | 0.363/0.000 | 0.316/0.000 | 0.335/0.000 | 0.378/0.000 |
Total budget expenditure of local governments per 1000 population (HUF 1000) | 0.205/0.013 | 0.537/0.000 | 0.572/0.000 | 0.547/0.000 | 0.366/0.000 | 0.306/0.000 | 0.326/0.000 | 0.375/0.000 | |
Number of household electricity consumers per 1000 population (pcs) | 0.543/0.000 | 0.181/0.029 | 0.269/0.001 | 0.157/0.000 | 0.007/0.938 | 0.215/0.010 | 0.221/0.008 | 0.027/0.0746 | |
Amount of electricity supplied to households per 1000 population (1000 kWh) | 0.496/0.000 | 0.381/0.000 | 0.364/0.000 | 0.379/0.000 | 0.218/0.008 | 0.241/0.004 | 0.266/0.001 | 0.248/0.003 | |
Number of electricity consumers per 1000 population (pcs) | 0.556/0.000 | 0.168/0.043 | 0.071/0.395 | 0.258/0.002 | 0.009/0.910 | 0.208/0.012 | 0.211/0.011 | 0.002/0.980 | |
The amount of total electricity supplied per 1000 population (1000 kWh) | 0.053/0.524 | 0.201/0.015 | 0.542/0.000 | 0.496/0.000 | 0.554/0.000 | 0.397/0.000 | 0.348/0.000 | 0.371/0.000 | 0.407/0.000 |
Length of low-voltage electricity distribution network per 1000 population (km) | 0.386/0.000 | 0.156/0.061 | 0.414/0.000 | 0.395/0.000 | 0.433/0.000 | 0.248/0.003 | 0.268/0.001 | 0.252/0.002 | |
Number of registered enterprises per 1000 population (pcs) | 0.332/0.000 | 0.155/0.063 | 0.494/0.000 | 0.450/0.000 | 0.507/0.000 | 0.321/0.000 | 0.302/0.000 | 0.341/0.000 | |
Number of registered economic organizations per 1000 population (pcs) | 0.355/0.000 | 0.141/0.090 | 0.482/0.000 | 0.446/0.000 | 0.494/0.000 | 0.310/0.000 | 0.272/0.001 | 0.326/0.000 | |
Number of operational commercial accommoda-tion units per 1000 (pcs) | 0.406/0.000 | 0.118/0.159 | 0.396/0.000 | 0.391/0.000 | 0.415/0.000 | 0.214/0.010 | 0.241/0.003 | 0.256/0.002 |
Description | Correlation Coefficient | Partial Correlation Coefficient | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Power of HMKEs Per 1000 Population ELMŰ-ÉMÁSZ, EON | Total Budget Revenues of Local Governments Per 1000 Population HUF 1000) | Total Budget Expenditure of Local Governments Per 1000 Population (HUF 1000) | Number of Household Electricity Consumers Per 1000 Population (pcs) | Total Amount of Electricity Supplied To Households Per 1000 Population (1000 kWh) | Number of Electricity Consumers Per 1000 Population (Pcs) | Length of Low-Voltage Electricity Distribution Network Per 1000 Population (Km) | Number of Registered Enterprises Per 1000 Population (Pcs) | Number of Registered Economic Organizations Per 1000 Population (Pcs) | Number of Operational Commercial Accommoda-Tion Units Per 1000 Population (Pcs) | |
Total budget revenues of local governments per 1000 population (HUF 1000) | 0.281/0.001 | 0.173/0.038 | 0.424/0.000 | 0.410/0.000 | 0.437/0.000 | 0.315/0.000 | 0.409/0.000 | 0.423/0.000 | 0.312/0.000 | |
Total budget expenditure of local governments per 1000 population (HUF 1000) | 0.326/0.000 | 0.004/0.962 | 0.449/0.000 | 0.432/0.000 | 0.459/0.000 | 0.324/0.000 | 0.395/0.000 | 0.410/0.000 | 0.309/0.000 | |
Number of household electricity consumers per 1000 population (pcs) | 0.454/0.000 | 0.220/0.008 | 0.318/0.000 | 0.082/0.326 | 0.167/0.045 | 0.056/0.503 | 0.345/0.000 | 0.354/0.000 | 0.061/0.465 | |
Total amount of electricity supplied to households per 1000 population (1000 kWh) | 0.320/0.000 | 0.382/0.000 | 0.436/0.000 | 0.349/0.000 | 0.368/0.000 | 0.253/0.002 | 0.375/0.000 | 0.398/0.000 | 0.266/0.001 | |
Number of electricity consumers per 1000 population (pcs) | 0.470/0.000 | 0.209/0.012 | 0.309/0.000 | 0.099/0.234 | 0.068/0.420 | 0.038/0.647 | 0.340/0.000 | 0.347/0.000 | 0.033/0.692 | |
Total amount of electricity supplied per 1000 population (1000 kWh) | −0.029/0.730 | 0.284/0.001 | 0.330/0.000 | 0.464/0.000 | 0.321/0.000 | 0.477/0.000 | 0.355/0.000 | 0.429/0.000 | 0.451/0.000 | 0.364/0.000 |
Length of low-voltage electricity distribution network per 1000 population (km) | 0.355/0.000 | 0.225/0.006 | 0.292/0.000 | 0.308/0.000 | 0.197/0.017 | 0.331/0.000 | 0.362/0.000 | 0.380/0.000 | 0.217/0.009 | |
Number of registered enterprises per 1000 population (pcs) | 0.427/0.000 | 0.249/0.002 | 0.279/0.001 | 0.380/0.000 | 0.239/0.004 | 0.396/0.000 | 0.267/0.001 | 0.294/0.000 | 0.274/0.001 | |
Number of registered economic organizations per 1000 population (pcs) | 0.449/0.000 | 0.232/0.005 | 0.264/0.001 | 0.362/0.000 | 0.233/0.005 | 0.376/0.000 | 0.254/0.002 | 0.255/0.002 | 0.255/0.002 | |
Number of operational commercial accommoda-tion units per 1000 population (pcs) | 0.364/0.000 | 0.203/0.014 | 0.262/0.001 | 0.297/0.000 | 0.196/0.018 | 0.320/0.000 | 0.200/0.016 | 0.358/0.000 | 0.373/0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegedűsné Baranyai, N.; Zsiborács, H.; Vincze, A.; Rodek, N.; Makai, M.; Pintér, G. Correlation Analysis of the Spread of Household-Sized Photovoltaic Power Plants and Various District Indicators: A Case Study. Sustainability 2021, 13, 482. https://doi.org/10.3390/su13020482
Hegedűsné Baranyai N, Zsiborács H, Vincze A, Rodek N, Makai M, Pintér G. Correlation Analysis of the Spread of Household-Sized Photovoltaic Power Plants and Various District Indicators: A Case Study. Sustainability. 2021; 13(2):482. https://doi.org/10.3390/su13020482
Chicago/Turabian StyleHegedűsné Baranyai, Nóra, Henrik Zsiborács, András Vincze, Nóra Rodek, Martina Makai, and Gábor Pintér. 2021. "Correlation Analysis of the Spread of Household-Sized Photovoltaic Power Plants and Various District Indicators: A Case Study" Sustainability 13, no. 2: 482. https://doi.org/10.3390/su13020482
APA StyleHegedűsné Baranyai, N., Zsiborács, H., Vincze, A., Rodek, N., Makai, M., & Pintér, G. (2021). Correlation Analysis of the Spread of Household-Sized Photovoltaic Power Plants and Various District Indicators: A Case Study. Sustainability, 13(2), 482. https://doi.org/10.3390/su13020482