HEI Efficiency and Quality of Life: Seeding the Pro-Sustainability Efficiency
Abstract
:1. Introduction
2. Regional Needs and HEIs’ Reaction
3. HEIs’ Efficiency in Their Region of Influence
Definition of the Key Indicators to Measure Efficiency
4. Regional Quality of Life and HEIs
Dimensions for Measuring Regional QoL: Definition
5. Methodological Design
5.1. DEA Analysis
5.2. Multinomial Logit Model Analysis
- ; = vectors of estimated probabilities;
- = dependent variable;
- = vector of logistic regression coefficients;
- = () independent variables;
- = 1,…, n.
- = dependent variable QoL;
- = independent variable SE;
- = independent variable AE;
- = independent variable CE;
- = independent variable SIZE;
- = error (other factors/unobservable characteristics);
- = dependent variable QoL;
- = independent variable PS;
- = independent variable SIZE;
- = error (other factors/unobservable characteristics);
6. Presentation and Discussion of the Results
6.1. First-Stage Results: DEA
6.2. Second-Stage Results: Multinomial Logit and Probit Regression
6.3. Discussion
7. Conclusions, Limitations, Research Agenda and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pike, A.; Rodríguez-Pose, A.; Tomaney, J. Handbook of Local and Regional Development; Routledge: Oxon, UK, 2011. [Google Scholar]
- Hawken, P.; Lovins, A.B.; Lovins, H. Natural Capitalism: The Next Industrial Revolution; Routledge: London, UK, 2013; p. 396. [Google Scholar]
- Cortese, A. The Critical Role of Higher Education in Creating a Sustainable Future. Plan. High. Educ. 2003, 31, 15–22. [Google Scholar]
- Gray, M.; Lobao, L.; Martin, R. Making Space for Well-Being. Camb. J. Reg. Econ. Soc. 2012, 5, 3–13. [Google Scholar] [CrossRef]
- James, A. Work-Life “balance” and Gendered (Im)Mobilities of Knowledge and Learning in High-Tech Regional Economies. J. Econ. Geogr. 2014, 14, 483–510. [Google Scholar] [CrossRef] [Green Version]
- Chatterton, P.; Goddard, J. The Response of Higher Education Institutions to Regional Needs. Eur. J. Educ. 2000, 35, 475–496. [Google Scholar] [CrossRef]
- Pedro, E.D.M.; Leitão, J.; Alves, H. Bridging Intellectual Capital, Sustainable Development and Quality of Life in Higher Education Institutions. Sustainability 2020, 12, 479. [Google Scholar] [CrossRef] [Green Version]
- Radinger-Peer, V. What Influences Universities’ Regional Engagement? A Multi-Stakeholder Perspective Applying a Q-Methodological Approach. Reg. Stud. Reg. Sci. 2019, 6, 170–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goddard, J. The University and the City: New Perspectives on Higher Education and the Grand Challenges of Urban Development. Available online: http://eunivercitiesnetwork.com/wp-content/uploads/2018/12/0-A-Civic-university-and-academic-cities_John-Goddard-2.pdf (accessed on 12 September 2020).
- Alves, A.P.F.; Salles, A.C.; Nascimento, L.F. Gestão Pró-Sustentabilidade: Um Estudo Sobre o Processo de Mudança Em Uma Empresa Brasileira. In Proceedings of the X Congresso Nacional de Excelência em Gestão Gestão e Design de Produtos e Serviços para a Sustentabilidade, Rio de Janeiro, Brazil, 8–9 August 2014; pp. 1–20, ISSN 1984-9354. [Google Scholar]
- Barbieri, J.C. Gestão Ambiental Empresarial: Conceitos, Modelos e Instrumentos, 3rd ed.; Editora Saraiva: São Paulo, Brasil, 2011. [Google Scholar]
- Williams, R.; Cochrane, A. Universities, Regions and Social Disadvantage. In University Engagement with Socially Excluded Communities; Benneworth, P., Ed.; Springer: Amsterdam, The Netherlands, 2013; pp. 67–81. [Google Scholar] [CrossRef]
- Fátima, M.D. Impactos Da Formação Superior e Cooperação Na Região Sul de Angola (Universidade Mandume Ya Ndemufayo). In Proceedings of the 7th Iberian Congress of African Studies, Centro de Estudos Africanos do ISCTE-IUL, Lisboa, Portugal, 9–12 September 2010; pp. 1–11. [Google Scholar]
- DfES. The Future of Higher Education; The Stationery Office Limited: London, UK, 2003. [Google Scholar]
- Boulton, G.; Lucas, C. What Are Universities For? Chin. Sci. Bull. 2011, 56, 2506–2517. [Google Scholar] [CrossRef] [Green Version]
- Wolszczak-Derlacz, J. An Evaluation and Explanation of (in)Efficiency in Higher Education Institutions in Europe and the U.S. with the Application of Two-Stage Semi-Parametric DEA. Res. Policy 2017, 46, 1595–1605. [Google Scholar] [CrossRef]
- Gralka, S.; Wohlrabe, K.; Bornmann, L. How to Measure Research Efficiency in Higher Education? Research Grants vs. Publication Output. J. High. Educ. Policy Manag. 2019, 41, 322–341. [Google Scholar] [CrossRef]
- Salas-Velasco, M. The Technical Efficiency Performance of the Higher Education Systems Based on Data Envelopment Analysis with an Illustration for the Spanish Case. Educ. Res. Policy Pract. 2020, 19, 159–180. [Google Scholar] [CrossRef]
- Carr, R.; Roessner, D. The Economic Impact of Michigan ’s Public Universities; Michigan Economic Development Corporation: Michigan, MI, USA, 2002. [Google Scholar]
- Goldstein, H.A.; Renault, C.S. Contributions of Universities to Regional Economic Development: A Quasi-Experimental Approach. Reg. Stud. 2004, 38, 733–746. [Google Scholar] [CrossRef]
- Goldstein, H.A.; Renault, C.S. Estimating Universities’ Contributions to Regional Economic Development: The Case of the U.S. In Spillovers and Innovations; Springer: New York, NY, USA, 2005; pp. 71–91. [Google Scholar]
- Ma, Y.; Men, J.; Cui, W. Does Environmental Education Matter? Evidence from Provincial Higher Education Institutions in China. Sustainability 2020, 12, 6338. [Google Scholar] [CrossRef]
- Johnes, G.; Tone, K. The Efficiency of Higher Education Institutions in England Revisited: Comparing Alternative Measures. Tert. Educ. Manag. 2017, 23, 191–205. [Google Scholar] [CrossRef]
- Cunha, M.; Rocha, V. On the Efficiency of Public Higher Education Institutions in Portugal: An Exploratory Study; FEP Working Papers: Porto, Portugal, 2012; p. 30. [Google Scholar]
- Selim, S.; Bursalioglu, S.A. Analysis of the Determinants of Universities Efficiency in Turkey: Application of the Data Envelopment Analysis and Panel Tobit Model. Proced. Soc. Behav. Sci. 2013, 89, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Gökşen, Y.; Doğan, O.; Özkarabacak, B. A Data Envelopment Analysis Application for Measuring Efficiency of University Departments. Proced. Econ. Financ. 2015, 19, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-M.; Delmas, M.A.; Lieberman, M.B. The Effect of Firm Compensation Structures on the Mobility and Entrepreneurship of Extreme Performers. Business 2015, 36, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Banker, T.; Natarajan, R. Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis. Oper. Res. 2008, 56, 48–58. Available online: https://www.jstor.org/stable/25147166 (accessed on 2 October 2020). [CrossRef]
- Johnson, A.L.; Kuosmanen, T. One-Stage and Two- Stage DEA Estimation of the Effects of Contextual Variables. Eur. J. Oper. Res. 2012, 220, 559–570. [Google Scholar] [CrossRef]
- Berghaeuser, H.; Hoelscher, M. Reinventing the Third Mission of Higher Education in Germany: Political Frameworks and Universities’ Reactions. Tert. Educ. Manag. 2020, 26, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Secundo, G.; Perez, S.E.; Martinaitis, Ž.; Leitner, K.H. An Intellectual Capital Framework to Measure Universities’ Third Mission Activities. Technol. Forecast. Soc. Chang. 2017, 123, 229–239. [Google Scholar] [CrossRef]
- Harrison, J.; Turok, I. Universities, Knowledge and Regional Development. Reg. Stud. 2017, 51, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Raagmaa, G.; Keerberg, A. Regional Higher Education Institutions in Regional Leadership and Development. Reg. Stud. 2017, 51, 260–272. [Google Scholar] [CrossRef]
- Rodrigues, C.F.; Figueiras, R.; Junqueira, V. Intodução Ao Estudo Da Desigualdade Do Rendimento e Pobreza Em Portugal 2009–2014; Fundação Francisco Manuel dos Santos: Lisbon, Portugal, 2016. [Google Scholar]
- Mauritti, R.; Nunes, N.; Alves, J.E.; Diogo, F. Desigualdades Sociais E Desenvolvimento Em Portugal: Um Olhar À Escala Regional E Aos Territórios De Baixa Densidade. Sociol. Online 2019, 19, 102–126. [Google Scholar] [CrossRef]
- International Council for Science. Regional Environmental Change: Human Action and Adaptation; ICSU: Paris, France, 2010. [Google Scholar]
- Mintzberg, H.; Rose, J. Strategic Management Upside down: Tracking Strategies at McGill University from 1829 to 1980. Can. J. Adm. Sci. Rev. 2003, 20, 270–290. [Google Scholar] [CrossRef]
- Mainardes, E.W.; Ferreira, J.J.; Domingues, M.J. Competitive Advantages in Institutions of Higher Education: A Proposal of Research Model. J. Acad. Bus. Econ. 2009, 9, 70–78. [Google Scholar]
- Lee, J.; Tai, S. Critical Factors Affecting Customer Satisfaction and Higher Education in Kazakhstan. Int. J. Manag. Educ. 2008, 2, 46–59. [Google Scholar] [CrossRef]
- Henke, J.; Pasternack, P.; Schmid, S. Third Mission von Hochschulen. Eine Definition. Das Hochsch. 2016, 64, 16–22. [Google Scholar]
- OECD. Higher Education and Regions Globally Competitive, Locally Engaged; OECD: Paris, France, 2007. [CrossRef]
- González-Zamar, M.D.; Abad-Segura, E.; López-Meneses, E.; Gómez-Galán, J. Managing ICT for Sustainable Education: Research Analysis in the Context of Higher Education. Sustainability 2020, 12, 8254. [Google Scholar] [CrossRef]
- Holdsworth, S.; Thomas, I. Competencies or Capabilities in the Australian Higher Education Landscape and Its Implications for the Development and Delivery of Sustainability Education. High. Educ. Res. Dev. 2020, 1–16. [Google Scholar] [CrossRef]
- Dias, D.; Ramos, F.; Fidalgo, A.; Gonçalves, F. Restyling The Higher Education Landscape: Regional (A)Symmetries Across Portugal. In Proceedings of the INTED2019 Conference, Valencia, Spain, 11–13 March 2019; pp. 8965–8972. [Google Scholar] [CrossRef]
- Storper, M. The Regional World: Territorial Development in a Global Economy; The Guilford Press: New York, NY, USA, 1997. [Google Scholar]
- Cooke, P. Regional Innovation Systems, Clusters, and the Knowledge Economy. Ind. Corp. Chang. 2001, 10, 945–973. [Google Scholar] [CrossRef]
- Dyer, J. Specialized Supplier Networks as a Source of Competitive Advantage: Evidence from the Auto Industry. Strateg. Manag. J. 1996, 17, 271–291. [Google Scholar] [CrossRef]
- Arbo, P.; Benneworth, P. Understanding the Regional Contribution of Higher Education Institutions: A Literature Review; OECD: Paris, France, 2007. [Google Scholar]
- Van Vught, F. Mission Diversity and Reputation in Higher Education. High. Educ. Policy 2008, 21, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Lepori, B.; Huisman, J.; Seeber, M. Convergence and Differentiation Processes in Swiss Higher Education: An Empirical Analysis. Stud. High. Educ. 2014, 39, 197–218. [Google Scholar] [CrossRef]
- Timothy, W.; Mazzarol, T.W.; Soutar, G.N. Strategy Matters: Strategic Positioning and Performance in the Education Services Sector. Int. J. Nonprofit Volunt. Sect. Mark. 2008, 13, 141–151. [Google Scholar] [CrossRef]
- Fumasoli, T.; Huisman, J. Strategic Agency and System Diversity: Conceptualizing Institutional Positioning in Higher Education. Minerva 2013, 51, 155–169. [Google Scholar] [CrossRef]
- Olivares, M.; Wetzely, H. Competing in the Higher Education Market: Empirical Evidence for Economies of Scale and Scope in German Higher Education Institutions. CESifo Econ. Stud. 2014, 60, 653–680. [Google Scholar] [CrossRef] [Green Version]
- Fumasoli, T.; Barbato, G.; Turri, M. The Determinants of University Strategic Positioning: A Reappraisal of the Organisation. High. Educ. 2020, 80, 305–334. [Google Scholar] [CrossRef] [Green Version]
- Oliver, C. Strategic Responses to Processes. Acad. Manag. Rev. 1991, 16, 145–179. [Google Scholar] [CrossRef] [Green Version]
- Wallner, J. Legitimacy and Public Policy: Seeing beyond Effectiveness, Efficiency, and Performance. Policy Stud. J. 2008, 36, 421–443. [Google Scholar] [CrossRef]
- Aubyn, M.S.; Pina, Á.; Garcia, F.; Pais, J. Study on the Efficiency and Effectiveness of Public Spending on Tertiary Education; Directorate General Economic and Financial Affairs (DG ECFIN) European Commission: Brussels, Belgium, 2009; pp. 1–148. [Google Scholar] [CrossRef]
- Kosor, M.M. Efficiency Measurement in Higher Education: Concepts, Methods and Perspective. Proced. Soc. Behav. Sci. 2013, 106, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Dahl, R.A. On Democracy; Yale University Press: London, UK, 1998. [Google Scholar]
- Cerdeira, L.; Patrocinio, T.; Cabrito, B.; Machado-Taylor, M.L. A Evolução Do Ensino Superior Em Portugal: A Expansão e Regionalização Nas Últimas Décadas. In Proceedings of the 20th APDR Congress, Renaissance of the regions of Southern Europe, University of Évora, Évora, Portugal, 10–11 July 2014; pp. 1–17. [Google Scholar]
- ESMU. A University Benchmarking Handbook; Benchmarking in European Higher Education: Brussels, Belgium, 2010. [Google Scholar]
- Shamohammadi, M.; Oh, D.-H. Measuring the Efficiency Changes of Private Universities of Korea: A Two-Stage Network Data Envelopment Analysis. Technol. Forecast. Soc. Change 2019, 148. [Google Scholar] [CrossRef]
- Monaco, L. Measuring Italian University Efficiency: A Non-Parametric Approach; University Library of Munich: Munich, Germany, 2012. [Google Scholar]
- Agasisti, T. Management of Higher Education Institutions and the Evaluation of Their Efficiency and Performance. Tert. Educ. Manag. 2017, 23, 187–190. [Google Scholar] [CrossRef]
- Fernandes, J.M.S.R. O Impacto Económico das Instituições de Ensino Superior No Desenvolvimento Regional: O Caso Do Instituto Politécnico de Bragança; Universidade do Minho: Braga, Portugal, 2009. [Google Scholar]
- Dusek, T. A Felsőoktatás Lokális Termelésre És Jövedelmekre Gyakorolt Hatása. Társadalomtudományi Intézet. In A Széchenyi István Egyetem Hatása a Régió Fejlődésére, Győr: Széchenyi István Egyetem Gazdaság- és; Rechnitzer, J., Hardi, T., Eds.; Széchenyi István Egyetem Gazdaság- és: Győr, Hungary, 2003; pp. 60–71. [Google Scholar]
- Dusek, T.; Lukovics, M. Analysis of the Economic Impact of the Budapest Airport on the Local Economy. In Proceedings of the 58th Annual North American Meetings of the Regional Science Association International (RSAI), Miami, FL, USA, 9–12 November 2011. [Google Scholar]
- Jonkers, K.; Tijssen, R.; Karvounaraki, A.; Goenaga, X. A Regional Innovation Impact Assessment Framework for Universities; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Skyrme, J.; Thompson, J. Measuring the Difference; Viewforth Consulting Ltd: Manchester, UK, 2018. [Google Scholar]
- Drucker, J.; Goldstein, H. Assessing the Regional Economic Development Impacts of Universities: A Review of Current Approaches. Int. Reg. Sci. Rev. 2007, 30, 20–46. [Google Scholar] [CrossRef]
- Kroll, H.; Schubert, T. On Universities’ Long-Term Effects on Regional Value Creation and Unemployment—The Case of Germany. In Arbeitspapiere "Unternehmen und Region"; Fraunhofer: Munich, Germany, 2014. [Google Scholar]
- Cerdeira, L.; Cabrito, B.G.; Patrocínio, T.; Machado, M.D.L.; Brites, R.; Curado, A.P.; Manso, M.; Doutor, C. Custos Dos Estudantes Do Ensino Superior Português—Relatório CESTES 2; Educa: Lisbon, Portugal, 2018. [Google Scholar]
- Spellerberg, A.; Habich, R.; Huschka, D. Regional Quality of Life. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 5421–5424. [Google Scholar]
- Lagas, P.; Van Dongen, F.; Van Rijn, F.; Visser, H. Regional Quality of Living in Europe. Region 2015, 2, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Rolim, C.; Serra, M. Instituições de Ensino Superior e Desenvolvimento Regional: O Caso Da. Rev. Econ. 2009, 35, 87–102. [Google Scholar]
- Berger, M.C.; Black, D.A. The Long Run Economic Impact of Kentucky Public Institutions of Higher Education; University of Kentucky Center for Business and Economic Research: Lexington, KY, USA, 1993. [Google Scholar]
- Nagowski, M. Assessing the Economic Impact of Higher Education Institutions in New England; Federal Reserve Bank of Boston: Boston, MA, USA, 2006. [Google Scholar]
- Baptista, R.; Leitão, J. Entrepreneurship, Human Capital, and Regional Development; Baptista, R., Leitão, J., Eds.; Springer International Publishing: Basel, Switzerland, 2015. [Google Scholar] [CrossRef]
- Felsenstein, D. The University in the Metropolitan Arena: Impacts and Public Policy Implications. Urban Stud. 1996, 33, 1565–1580. [Google Scholar] [CrossRef]
- Shapiro, J.M. Smart Cities: Quality of Life, Productivity, and the Growth Effects of Human Capital. Rev. Econ. Stat. 2006, 88, 324–335. [Google Scholar] [CrossRef]
- Winters, J.V. Human Capital, Higher Education Institutions, and Quality of Life. Reg. Sci. Urban Econ. 2011, 41, 446–454. [Google Scholar] [CrossRef] [Green Version]
- INE. Índice de Bem-Estar; Instituto Nacional de Estatística: Lisboa, Portugal, 2016.
- Silva, J.F.; Ribeiro, J.C. As Assimetrias Regionais Em Portugal: Análise Da Convergência versus Divergência Ao Nível Dos Municípios. DRd—Desenvolv. Reg. Debate 2014, 4, 84–109. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Agasisti, T. Performances and Spending Efficiency in Higher Education: A European Comparison through Non-Parametric Approaches. Educ. Econ. 2011, 19, 199–224. [Google Scholar] [CrossRef]
- Daraio, C.; Simar, L. Advanced Robust and Nonparametric Methods in Efficiency Analysis Methodology and Applications; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Mainardes, E.W. Gestão de Universidades Baseada No Relacionamento Com Os Seus Stakeholders; University of Beira Interior: Covilhã, Portugal, 2010. [Google Scholar]
- Avkiran, N.K. An Application Reference for Data Envelopment Analysis in Branch Banking: Helping the Novice Researcher. Int. J. Bank Mark. 1999, 17, 206–220. [Google Scholar] [CrossRef]
- Härdle, W.; Simar, L. Applied Multivariate Statistical Analysis; Springer: Berlin, Germany, 2003. [Google Scholar]
- Marôco, J. Análise Estatística Com o SPSS Statistics, 5th ed.; ReportNumber: Pero Pinheiro, Portugal, 2011. [Google Scholar]
- Starkweather, J.; Moske, A.K. Multinomial Logistic Regression. Benchmarks Online 2011, 51, 404–410. [Google Scholar] [CrossRef]
- Dow, J.K.; Endersby, J.W. Multinomial Probit and Multinomial Logit: A Comparison of Choice Models for Voting Research. Elect. Stud. 2004, 23, 107–122. [Google Scholar] [CrossRef]
- Hanck, C.; Arnold, M.; Gerber, A.; Schmelzer, M. Introduction to Econometrics with R; Department of Business Administration and Economics University of Duisburg-Essen: Essen, Germany, 2020. [Google Scholar]
- StataCop LP. Estat Ic—Display Information Criteria. Available online: https://www.stata.com/statalist/archive/2009-06/msg00884.html (accessed on 10 October 2020).
- Cherodian, R.; Thirlwall, A.P. Regional Disparities in per Capita Income in India: Convergence or Divergence. J. Post Keynes. Econ. 2015, 37, 384–407. [Google Scholar] [CrossRef] [Green Version]
- Mauritti, R.; Martins, S.C.; Nunes, N.; Romão, A.L.; Costa, A.F. The Social Structure of European Inequality: A Multidimensional Perspective. Sociol. Probl. Práticas 2016, 81, 75–93. [Google Scholar] [CrossRef] [Green Version]
INPUTS/Indicators | OUTPUTS/Indicators |
---|---|
HEI’s Economic Support (income) I1—Ratio: Own income/SB HEI’s Expenditure (expenses) I2—Ratio: Expenditure on staff/SB HEI’s Students I3—Ratio: No. of 1st-cycle students */total students Employment in the HEI and Provision of Qualified Work I4—Ratio: Total no. of lecturers and researchers/total students Volume of Service Provision Activities I5—Ratio: Amount declared in service provision/total own income HEI’s Institutions/R&D Centres I6—Ratio: No. of publications ISI/total no. of publications (ISI + SCOPUS) HEI’s Social and Cultural Environment I7—Rate of scientific, cultural and social, and sporting events I8—Ratio: Student’s annual cost of living (per HEI)/national minimum salary | Social Pro-Sustainability O1A—Ratio: Total no. of social action grants awarded/total grants requested O1B—Access to broadband internet per 100 inhabitants (%) O1C—Proportion of women in higher education graduates O1D—Inequality in the distribution of the declared gross income of tax aggregates Environmental Pro-Sustainability O2A—Wastewater treatment stations (No.) O2B—Municipal expenditure on the environment per capita: by management domains and environmental protection O2C—Environmental invention patents registered by HEIs and research institutions per region (No.) O2D—Investment in protecting municipal biodiversity and landscape Cultural Pro-Sustainability O3A—Municipal expenditure on cultural and creative activities (€) O3B—No. of people in cultural and social, and sporting activities O3C—Cultural premises/facilities (No.) O3D—Municipal expenditure on sporting activities and equipment (€) |
Dimension/ Variable | Indicators (NUTS III) | Codes |
---|---|---|
Material life conditions | - Credit granted to customers by banks, savings banks and mutual agricultural banks | Credit |
- Unemployment registered per 100 inhabitants aged 15 or older | Unemployment | |
- Purchasing power per capita | Purchasing power Housing | |
- Housing loan per inhabitant | ||
Health | - No. state hospital beds universally available and in hospitals in public-private partnership by geographical location | Hospitals Deaths Health activities |
- Deaths of residents in Portugal from certain causes | ||
- Average No. of people working in human health and social support activities | ||
Education | - Gross rate of schooling in higher education | Schooling. Higher Ed. Non-Higher Ed. Estab. Higher Ed. Estab. Computers |
- No. of non-higher education establishments | ||
- No. of higher education establishments | ||
- No. of computers in primary and secondary education | ||
Environment | - Ratio: Municipal expenditure on the environment per capita (environmental management and protection) | Environment Waste NGEO |
- Separated urban waste collected per inhabitant | ||
- Non-governmental environmental organisations (NGEO): number | ||
Leisure | - No. of cultural premises/facilities | Premises Artistic activities Museums |
- No. of people in artistic, performance, sporting and recreational activities | ||
- No. of museums | ||
Safety | - Crime rate (‰) | Criminality Crimes Firefighter Accidents |
- Crimes registered by police | ||
- No. of inhabitants per firefighter | ||
- No. of accidents |
Variable | Mean | Stand. Dev. | Min Value | Max Value |
---|---|---|---|---|
I1 | 0.558 | 0.327 | 1.02 | 1.65 |
I2 | 1.261 | 0.134 | 0.31 | 0.92 |
I3 | 0.676 | 0.211 | 0.03 | 0.12 |
I4 | 0.081 | 0.019 | 0.00 | 0.78 |
I5 | 0.147 | 0.168 | 0.07 | 0.72 |
I6 | 0.481 | 0.140 | 0.00 | 1.73 |
I7 | 0.314 | 0.442 | 2.35 | 3.24 |
I8 | 2.799 | 0.243 | 0.00 | 0.84 |
O1A | 0.735 | 0.164 | 0.02 | 1.21 |
O1B | 0.287 | 0.500 | 0.95 | 1.16 |
O1C | 1.015 | 0.054 | 0.86 | 1.17 |
O1D | 0.999 | 0.103 | 0.00 | 0.18 |
O2A | 0.054 | 0.051 | 0.41 | 1.68 |
O2B | 1.016 | 0.326 | 0.00 | 0.36 |
O2C | 0.186 | 0.136 | 0.00 | 0.14 |
O2D | 0.063 | 0.051 | 0.02 | 0.23 |
O3A | 0.087 | 0.090 | 0.00 | 0.47 |
O3B | 0.129 | 0.188 | 0.02 | 0.15 |
O3C | 0.072 | 0.047 | 0.02 | 0.16 |
O3D | 0.067 | 0.052 | 1.02 | 1.65 |
Variable | I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | O1A | O1B | O1C | O1D | O2A | O2B | O2C | O2D | O3A | O3B | O3C | O3D |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I1 | 1 | |||||||||||||||||||
I2 | 0.461 * | 1 | ||||||||||||||||||
I3 | −0.217 | −0.329 | 1 | |||||||||||||||||
I4 | −0.187 | −0.087 | 0.017 | 1 | ||||||||||||||||
I5 | 0.144 | −0.011 | 0.065 | 0.317 | 1 | |||||||||||||||
I6 | 0.193 | −0.369 | −0.260 | −0.097 | −0.344 | 1 | ||||||||||||||
I7 | 0.181 | 0.219 | −0.613 ** | 0.098 | −0.136 | 0.055 | 1 | |||||||||||||
I8 | 0.108 | 0.267 | −0.053 | −0.193 | 0.123 | −0.376 | −0.058 | 1 | ||||||||||||
O1A | 0.030 | 0.107 | −0.137 | 0.519 * | 0.229 | 0.105 | −0.047 | 0.142 | 1 | |||||||||||
O1B | 0.088 | 0.147 | −0.240 | −0.246 | −0.184 | 0.154 | −0.052 | 0.056 | −0.416 * | 1 | ||||||||||
O1C | −0.307 | −0.353 | 0.194 | 0.159 | 0.342 | −0.022 | −0.170 | −0.401 | 0.175 | −0.388 | 1 | |||||||||
O1D | 0.051 | 0.047 | −0.244 | −0.256 | −0.123 | 0.366 | −0.086 | −0.071 | −0.344 | 0.882 ** | −0.328 | 1 | ||||||||
O2A | −0.211 | −0.196 | 0.138 | 0.054 | −0.114 | 0.091 | −0.115 | −0.461 * | −0.088 | −0.002 | 0.253 | −0.103 | 1 | |||||||
O2B | −0.336 | −0.149 | 0.080 | 0.074 | −0.206 | 0.095 | −0.118 | −0.420 * | −0.189 | 0.297 | 0.297 | 0.283 | 0.094 | 1 | ||||||
O2C | 0.083 | 0.233 | −0.222 | −0.102 | 0.018 | −0.184 | 0.041 | 0.229 | −0.326 | 0.706 ** | −0.332 | 0.594 ** | 0.112 | 0.190 | 1 | |||||
O2D | −0.060 | 0.072 | −0.122 | −0.083 | −0.169 | 0.075 | −0.188 | 0.072 | −0.308 | 0.668 ** | −0.399 | 0.647 ** | −0.174 | 0.566 ** | 0.531 ** | 1 | ||||
O3A | 0.351 | 0.155 | −0.343 | −0.154 | −0.031 | 0.275 | 0.099 | −0.126 | −0.395 | 0.878 ** | −0.387 | 0.858 ** | −0.083 | 0.212 | 0.588 ** | 0.611 ** | 1 | |||
O3B | 0.220 | 0.161 | −0.293 | −0.210 | −0.110 | 0.214 | 0.018 | −0.027 | −0.420 * | 0.870 ** | −0.407 | 0.896 ** | −0.047 | 0.273 | 0.662 ** | 0.670 ** | 0.866 ** | 1 | ||
O3C | 0.159 | 0.024 | −0.330 | −0.180 | −0.135 | 0.399 | −0.048 | −0.126 | −0.326 | 0.841 ** | −0.276 | 0.862 ** | −0.026 | 0.272 | 0.482 * | 0.660 ** | 0.875 ** | 0.873 ** | 1 | |
O3D | 0.560 ** | 0.198 | −0.344 | −0.211 | 0.012 | 0.316 | 0.150 | −0.049 | −0.310 | 0.645 ** | −0.432 * | 0.686 ** | −0.219 | 0.008 | 0.420 * | 0.459 * | 0.898 ** | 0.796 ** | 0.689 ** | 1 |
Kurtosis | 2.005 | 1.271 | −0.449 | −0.59 | 2.755 | −1.223 | 2.115 | 0.03 | −4.431 | 1.468 | 1.086 | 0.705 | 1.527 | 0.008 | 0.01 | 0.106 | 0.948 | 1.276 | 0.482 | 0.607 |
Sweetness | 5.685 | 2.402 | −1.409 | 0.846 | 9.129 | 3.213 | 4.332 | −0.842 | 2.629 | 0.16 | 0.558 | −0.836 | 1.867 | −0.102 | −1.572 | −1.662 | −1.055 | −0.202 | −1.063 | −1.335 |
VIF | 2.402 | 2.929 | 2.667 | 1.339 | 1.912 | 3.327 | 2.031 | 1.359 | 9.910 | 2.700 | 6.768 | 1.618 | 3.653 | 4.783 | 7.981 | 3.154 | 8.399 | 9.486 | 6.274 | 1.271 |
Eigenvalues | % of Variance | Cumulated % |
---|---|---|
6.984 | 0.349 | 0.349 |
2.802 | 0.140 | 0.489 |
1.969 | 0.098 | 0.588 |
1.592 | 0.080 | 0.667 |
1.367 | 0.068 | 0.736 |
1.221 | 0.061 | 0.797 |
0.928 | 0.046 | 0.843 |
0.865 | 0.043 | 0.886 |
0.727 | 0.036 | 0.923 |
0.432 | 0.022 | 0.944 |
0.327 | 0.016 | 0.961 |
0.214 | 0.011 | 0.971 |
0.171 | 0.009 | 0.980 |
0.160 | 0.008 | 0.988 |
0.101 | 0.005 | 0.993 |
0.089 | 0.005 | 0.997 |
0.040 | 0.002 | 0.999 |
0.009 | 0.001 | 1.000 |
0.002 | 0.000 | 1.000 |
0.000 | 0.000 | 1.000 |
Original Variable | First PC | Second PC |
---|---|---|
I1 | 0.103 | −0.363 |
I2 | 0.074 | −0.391 |
I3 | −0.136 | 0.241 |
I4 | −0.109 | 0.043 |
I5 | −0.072 | −0.110 |
I6 | 0.104 | 0.159 |
I7 | 0.023 | −0.242 |
I8 | −0.001 | −0.376 |
O1A | −0.170 | −0.142 |
O1B | 0.352 | 0.065 |
O1C | −0.185 | 0.301 |
O1D | 0.343 | 0.103 |
O2A | −0.041 | 0.295 |
O2B | 0.102 | 0.399 |
O2C | 0.256 | −0.036 |
O2D | 0.277 | 0.125 |
O3A | 0.362 | −0.003 |
O3B | 0.368 | 0.032 |
O3C | 0.338 | 0.104 |
O3D | 0.312 | −0.133 |
Model No. | Input (I) | Outputs (O) | |||
---|---|---|---|---|---|
Social Models (A) | Environmental Models (B) | Cultural Models (C) | Pro-Sustainability Models (D) | ||
1 | I1—Ratio: own income/SB I2—Ratio: expenditure on staff/SB | Social output (SO) | Environmental output (EO) | Cultural output (CO) | Pro-sustainability output (PSO) |
2 | I3—Ratio: no. of 1st-cycle students/total students I4—Ratio: total no. of lecturers and researchers/total students | ||||
3 | I5—Ratio: declared value of service provision/total own income I6—Ratio: no. de publications ISI/total no. of publications (ISI + SCOPUS) | ||||
4 | I7—Rate of scientific, cultural, social and sporting events I8—Ratio: student’s annual cost of living (by HEI)/national minimum salary |
Model | Type | Description | Scales/Measurement |
---|---|---|---|
1 and 2 | Dependent | QoL (life conditions + health + education + environment + leisure + security) | [≥0.370 and >0.637[=0; [≥0.637 and <0.903[=1; [≥0.903 and <1.170[=2 |
1 | Independent | SE: Social efficiency scores obtained from the DEA analysis | [≥−1.436 and >−0.375[=0; [≥−0.375 and <0.686[=1; [≥0.686 and<1.747[=2 |
1 | Independent | EE: Environmental efficiency scores obtained from the DEA analysis | [≥−1.737 and >−0.548[=0; [≥−0.548 and <0.641[=1; [≥0.641 and <1.829[=2 |
1 | Independent | CE: Cultural efficiency scores obtained from the DEA analysis | [≥−0.762 and >0.203[=0; [≥0.203 and <1.167[=1; [≥1.167 and <2.132[=2 |
2 | Independent | PS: Pro-sustainability efficiency scores obtained from the DEA analysis | [≥−1.476 and >−0.425[=0; [≥−0.425 and <0.626[=1; [≥0.626 and <1.676[=2 |
1 and 2 | Independent | SIZE-Size by n° of students in the HEI | = 0 < Average value of the nº of students enrolled = 1 ≥ Average value of the nº of students enrolled |
Higher Education Institutions (HEIs) | Mean Social Efficiency (Model A) | Mean Environmental Efficiency (Model B) | Mean Cultural Efficiency (Model C) | Mean Pro-sustainability Efficiency (Model D) |
---|---|---|---|---|
Universidade de Lisboa (UL) | 84.123 | 69.995 | 86.445 | 83.990 |
Universidade do Porto (UP) | 58.078 | 42.735 | 52.465 | 57.060 |
Universidade de Coimbra (UC) | 53.238 | 48.633 | 8.285 | 53.413 |
Universidade Nova de Lisboa (UNL) | 85.495 | 73.028 | 85.048 | 85.218 |
Instituto Politécnico do Porto (IPP) | 50.113 | 31.250 | 43.983 | 49.008 |
Universidade do Minho UM | 57.108 | 24.535 | 5.873 | 52.658 |
Universidade de Aveiro UA | 51.815 | 50.350 | 9.135 | 52.035 |
Instituto Politécnico de Leiria IPL | 61.230 | 73.140 | 6.123 | 61.388 |
Instituto Universitário de Lisboa ISCTE | 82.640 | 74.200 | 79.633 | 82.738 |
Universidade do Algarve UAL | 58.115 | 79.733 | 19.965 | 63.125 |
Universidade da Beira Interior UBI | 55.608 | 72.963 | 7.758 | 58.693 |
Universidade de Évora UE | 54.408 | 55.340 | 7.195 | 54.890 |
Universidade de Trás-os-Montes e Alto Douro UTAD | 59.273 | 43.340 | 4.923 | 58.505 |
Universidade Aberta UAB | 82.555 | 96.385 | 98.950 | 84.770 |
Instituto Politécnico de Viseu IPV | 76.610 | 89.285 | 9.408 | 78.788 |
Instituto Politécnico do Cávado e Ave IPCA | 64.783 | 25.243 | 5.965 | 58.460 |
Instituto Politécnico de Viana do Castelo IPVC | 69.043 | 45.578 | 25.933 | 67.625 |
Instituto Politécnico de Castelo Branco IPCB | 71.468 | 69.305 | 11.268 | 69.258 |
Instituto Politécnico de Santarém IPS | 66.348 | 60.045 | 17.495 | 67.138 |
Universidade dos Açores UAC | 67.823 | 33.245 | 7.860 | 63.468 |
Universidade da Madeira UMA | 68.913 | 77.718 | 6.670 | 71.020 |
Instituto Politécnico de Portalegre IPPortal | 62.593 | 70.320 | 5.800 | 65.663 |
Escola Superior de Enfermagem de Lisboa ESEL | 78.318 | 62.860 | 76.338 | 78.215 |
Mean By model | 66.074 | 59.532 | 29.675 | 65.962 |
Variance | 123.576 | 405.858 | 1055.814 | 131.997 |
Skewness | 0.414 | −0.202 | 1.128 | 0.432 |
Kurtosis | −1.053 | −0.812 | −0.379 | −1.039 |
Variables Model 1 | 1 | 2 | 3 | 4 | 5 |
QoL | 1 | ||||
Social efficiency | 0.661 ** | 1 | |||
Environmental efficiency | 0.312 | 0.536 ** | 1 | ||
Cultural efficiency | 0.969 ** | 0.698 ** | 0.341 | 1 | |
Size | 0.423 * | −0.087 | −0.338 | 0.374 | 1 |
Mean | 0.629 | 66.074 | 59.532 | 29.675 | 0.348 |
Variance | 0.098 | 123.58 | 405.86 | 1055.8 | 0.237 |
Asymmetry | 1.079 | 0.414 | −0.202 | 1.128 | 0.684 |
Kurtosis | 0.481 | 0.481 | 0.481 | 0.481 | 0.481 |
VIF | (a) | 2.83 | 1.667 | 3.237 | 1.896 |
Variables Model 2 | 1 | 2 | 3 | ||
QoL | 1 | ||||
Pro-sustainability efficiency | 0.661 ** | 1 | |||
Size | 0.423 * | −0.131 | 1 | ||
Mean | 0.629 | 65.962 | 0.348 | ||
Variance | 0.098 | 132.0 | 0.237 | ||
Asymmetry | 1.079 | 0.432 | 0.684 | ||
Kurtosis | 0.481 | 0.481 | 0.481 | ||
VIF | (a) | 1.017 | 1.017 |
Multinomial Logit Models | Probit Models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Logit Model 1a QoL a | Coef. | Std. Err | z | P > |z| | Probit Model 1a QoL | Coef. | Std. Err | z | P > |z| | |
Average variation (Dependent variable = 1) | Social efficiency | −1.740 | 1.049 | −1.66 | 0.097 * | Social efficiency | −1.163 | 0.585 | −1.99 | 0.047 ** |
Environmental efficiency. | 1.267 | 0.953 | 1.33 | 0.184 | Environmental efficiency. | 1.000 | 0.521 | 1.92 | 0.055 * | |
Cultural efficiency | 2.297 | 1.126 | 2.04 | 0.041 ** | Cultural efficiency | 1.563 | 0.602 | 2.60 | 0.009 ** | |
Constant | −0.906 | 1.013 | −0.89 | 0.371 | Constant | −0.634 | 0.557 | −1.11 | 0.265 | |
High variation (Dependent variable = 2) | Social efficiency | −3.351 | 2.416 | −1.39 | 0.165 | |||||
Environmental efficiency. | 3.704 | 1.629 | 2.27 | 0.023 ** | ||||||
Cultural efficiency | 4.519 | 2.534 | 1.78 | 0.074 * | ||||||
Constant | −5.476 | 2.620 | −02.09 | 0.037 | ||||||
Number of obs = 23 LR chi2(6) = 18.51 Log likelihood = −15.150 Prob > chi2 = 0.005 AIC = 46.301 BIC = 55.385 | Number of obs = 23 LR chi2(3) = 8.12 Log likelihood = −9.247 Prob > chi2 = 0.044 AIC = 26.496 BIC = 31.038 | |||||||||
Logit Model 1b QoL a | Coef. | Std. Err | z | P > |z| | Probit Model 1b QoL | Coef. | Std. Err | z | P > |z| | |
Average variation (Dependent variable = 1) | Social efficiency (SE) | −2.013 | 1.181 | −1.70 | 0.088 * | Social efficiency | −1.345 | 0.659 | −2.04 | 0.041 ** |
Environmental efficiency. | 1.171 | 0.976 | 1.20 | 0.230 | Environmental efficiency. | 0.894 | 0.540 | 1.65 | 1.953 | |
Cultural efficiency | 2.753 | 1.450 | 1.90 | 0.058 * | Cultural efficiency | 1.835 | 0.758 | 2.42 | 0.016 ** | |
Size | −0.981 | 1.758 | −0.56 | 0.577 | Size | −0.646 | 0.985 | −0.66 | 0.512 | |
Constant | −0.484 | 1.233 | −0.39 | 0.694 | Constant | −0.299 | 0.740 | −0.40 | 0.686 | |
High variation (Dependent variable = 2) | Social efficiency | −3.817 | 2.705 | −1.41 | 0.158 | |||||
Environmental efficiency. | 3.413 | 1.676 | 2.04 | 0.042 ** | ||||||
Cultural efficiency | 5.313 | 2.987 | 1.78 | 0.075 * | ||||||
Size | −1.903 | 2.529 | −0.75 | 0.452 | ||||||
Constant | −4.660 | 2.783 | −1.67 | 0.094 | ||||||
Number of obs = 23 LR chi2(8) = 19.13 Log likelihood = −14.843 Prob > chi2 = 0.014 AIC = 49.687 BIC = 61.042 | Number of obs = 23 LR chi2(4) = 8.42 Log likelihood = −9.027 Prob > chi2 = 0.077 AIC = 26.037 BIC = 31.713 |
Variables with Significant Value | Coef. | p-Value | ||
---|---|---|---|---|
Without Control Variable “Size” | With Control Variable “Size” | Without Control Varable “Size” | With Control Variable “Size” | |
Social efficiency (average variation) | −1.740 | −2.013 | 0.097 * | 0.088 * |
Environmental efficiency (high variation) | 3.704 | 3.413 | 0.023 ** | 0.042 ** |
Cultural efficiency (average variation) | 2.297 | 2.753 | 0.041 ** | 0.058 * |
Cultural efficiency (high variation) | 4.519 | 5.313 | 0.074 * | 0.075 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedro, E.d.M.; Leitão, J.; Alves, H. HEI Efficiency and Quality of Life: Seeding the Pro-Sustainability Efficiency. Sustainability 2021, 13, 514. https://doi.org/10.3390/su13020514
Pedro EdM, Leitão J, Alves H. HEI Efficiency and Quality of Life: Seeding the Pro-Sustainability Efficiency. Sustainability. 2021; 13(2):514. https://doi.org/10.3390/su13020514
Chicago/Turabian StylePedro, Eugénia de Matos, João Leitão, and Helena Alves. 2021. "HEI Efficiency and Quality of Life: Seeding the Pro-Sustainability Efficiency" Sustainability 13, no. 2: 514. https://doi.org/10.3390/su13020514
APA StylePedro, E. d. M., Leitão, J., & Alves, H. (2021). HEI Efficiency and Quality of Life: Seeding the Pro-Sustainability Efficiency. Sustainability, 13(2), 514. https://doi.org/10.3390/su13020514