Information Technologies for Welfare Monitoring in Pigs and Their Relation to Welfare Quality®
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Literature Search
2.2. Systematic Literature Analysis
3. Results
3.1. Systematic Literature Search
3.2. Systematic Literature Analysis
3.2.1. General Characteristics of the Publications
3.2.2. Sensor Technology
3.2.3. Variables, Biomarkers and Pig Production Stage
3.2.4. Welfare Issues and IT Stage
3.2.5. Relation to the Welfare Quality Assessment Protocol
3.2.6. Missing Publications
4. Discussion
4.1. Robustness of Remote Sensor Technologies and Measurement Indicators
4.2. Current Direction of IT Development
4.3. Relevance to the Welfare Quality® Protocol
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Term | Definition |
---|---|
Information technology (IT) | The use of sensor technology to develop an algorithm providing information to the stakeholder. |
Variable type | |
Target | Directly related to a welfare challenge and thus, the purpose of the PLF system being developed. |
Feature | An alternative variable that represents or can give an early warning of the target variable. |
Variable level | |
Individual | The variable studied is measured at the individual animal level. |
Pen | The variable studied is measured at pen level. |
Batch | The variable studied is measured at room or batch level. |
Laboratory | The variable studied is measured in a laboratory setting outside production conditions. An example is the isolation of group-housed animals to measure the feature variable at an individual level and under very controlled conditions. |
IT stage | |
Development | The study concerns the development of the algorithm for either the feature or the target variable. |
Validation | The study concerns the validation of the developed algorithm on new data, either by assigning specific animals/groups for this validation (not just random data points) or by performing external validation. Does not include cross validation. |
Implementation | The study concerns the implementation of the developed and validated algorithm/PLF system including evaluation of the algorithm/PLF system in a real-time production setting. |
Production stage | |
Piglet | The pig is being housed with a sow. |
Weaner | The pig has been weaned from the sow and weighs below 30 kg. |
Finisher | The pig weighs above 30 kg and is being produced for slaughter. |
Growing pigs | Including both weaners and finishers. |
Sow, insemination | The sow/gilt is in the reproduction stage of being inseminated. |
Sow, gestation | The sow/gilt is pregnant, has not yet farrowed and is housed in a gestation unit. |
Sow, lactation | The sow are housed in a farrowing pen either prior to farrowing or after farrowing with her piglets. |
Sow, group housed | The sow/gilt is group-housed, but it is not specified whether the sow/gilt is in the insemination, gestation or lactation stage. |
Sow, individual | The sow/gilt is housed individually, but it is not specified whether the sow/gilt is in the insemination, gestation or lactation stage. |
Boar | An adult male pigused for breeding. |
Transport | The animal is studied in a transport setting. |
Abattoir | The animal is studied or the variable is captured at the abattoir. |
Biomarker | Variable measured in the study. Can either be an animal or environmental based biomarker, and an animal based biomarker can either be behavioural or physiological. |
Welfare issue | The animal welfare challenge experienced by the farmer and the reason for conducting the study and developing the algorithm/PLF system. If not specified, ‘General’ is noted. |
Evaluation method | |
Real-time | The algorithm/PLF system evaluates the welfare issue in real-time, meaning evaluating the present animal welfare and with the opportunity to also improve in the present. |
Retrospectively | The algorithm/PLF system evaluates the welfare issue respectively, meaning evaluating past animal welfare to use for future improvements. |
References
- OECD/FAO. OECD-FAO Agricultural Outlook 2020–2029; OECD Publishing: Paris, France; FAO: Rome, Italy, 2020. [Google Scholar]
- Harrison, R. Animal Machines: The New Factory Farming Industry; Vincent Stuart Publishers LTD: London, UK, 1964. [Google Scholar]
- Keeling, L.; Tunón, H.; Antillón, G.O.; Berg, C.; Jones, M.; Stuardo, L.; Swanson, J.; Wallenbeck, A.; Winckler, C.; Blokhuis, H. Animal Welfare and the United Nations Sustainable Development Goals. Front. Vet. Sci. 2019, 6, 336. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.; Mench, J.; von Keyserlingk, M. Animal welfare: An integral component of sustainability. In Sustainable Animal Agriculture; Kebreab, E., Ed.; CAB International: Oxfordshire, UK, 2013; pp. 42–52. [Google Scholar]
- Pedersen, L.J. Overview of commercial pig production systems and their main welfare challenges. In Advances in Pig Welfare; Špinka, M., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 3–25. [Google Scholar]
- Welfare Quality®. Welfare Quality® Assessment Protocol for Pigs (Sow and Piglets, Growing and Finishing Pigs); Welfare Quality® Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Blokhuis, H.J.; Veissier, I.; Miele, M.; Jones, B. The Welfare Quality® project and beyond: Safeguarding farm animal well-being. Acta Agric. Scand Sect. A 2010, 60, 129–140. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckmans, D. Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [Green Version]
- Berckmans, D. Basic principles of PLF: Gold standard, labelling and field data. In Proceedings of the Precision Livestock Farming 2013—Papers Presented at the 6th European Conference on Precision Livestock Farming (ECPLF), Leuven, Belgium, 10–12 September 2013; pp. 21–29. [Google Scholar]
- Rios, H.V.; Waquil, P.D.; de Carvalho, P.S.; Norton, T. How are information technologies addressing broiler welfare? A systematic review based on the Welfare Quality® assessment. Sustainability 2020, 12, 1413. [Google Scholar] [CrossRef] [Green Version]
- Jensen, D.B.; Kristensen, A.R. Temperature as a predictor of fouling and diarrhea in slaughter pigs. Livest. Sci. 2016, 183, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Jensen, D.B.; Toft, N.; Kristensen, A.R. A multivariate dynamic linear model for early warnings of diarrhea and pen fouling in slaughter pigs. Comput. Electron. Agric. 2017, 135, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.L.V.; Pedersen, L.J.; Jensen, D.B. Prediction of tail biting events in finisher pigs from automatically recorded sensor data. Animals 2019, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.A.; Losada, E.; Besteiro, R.; Arango, T.; Ginzo-Villamayor, M.J.; Velo, R.; Fernandez, M.D.; Rodriguez, M.R. Validation of an AutoRegressive Integrated Moving Average model for the prediction of animal zone temperature in a weaned piglet building. Biosyst. Eng. 2018, 174, 231–238. [Google Scholar] [CrossRef]
- Sarnighausen, V.C.R. Estimation of thermal comfort indexes for production animals using multiple linear regression models. J. Anim. Behav. Biometeorol. 2019, 7, 73–77. [Google Scholar] [CrossRef]
- Alves Damasceno, F.; Alves Oliveira, C.E.; Pedrozo Abreu, L.H.; Osorio Saraz, J.A.; Ferreira Ponciano Ferraz, P. Fuzzy system to evaluate performance and the physiological responses of piglets raised in the farrowing house with different solar heating systems. Rev. Fac. Nac. Agron. Medellin 2019, 72, 8729–8742. [Google Scholar] [CrossRef]
- Feng, Y.-Z.; Zhao, H.-T.; Jia, G.-F.; Ojukwu, C.; Tan, H.-Q. Establishment of validated models for non-invasive prediction of rectal temperature of sows using infrared thermography and chemometrics. Int. J. Biometeorol. 2019, 63, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Domun, Y.; Pedersen, L.J.; White, D.; Adeyemi, O.; Norton, T. Learning patterns from time-series data to discriminate predictions of tail-biting, fouling and diarrhoea in pigs. Comput. Electron. Agric. 2019, 163, 104878. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Rutley, D.L.; Pitchford, W.S. Validation and fine-tuning of a predictive model for air quality in livestock buildings. Biosyst. Eng. 2010, 105, 395–401. [Google Scholar] [CrossRef]
- Besteiro, R.; Arango, T.; Ortega, J.A.; Rodríguez, M.R.; Fernández, M.D.; Velo, R. Prediction of carbon dioxide concentration in weaned piglet buildings by wavelet neural network models. Comput. Electron. Agric. 2017, 143, 201–207. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Sturm, B.; Edwards, S.; Jeppsson, K.-H.; Olsson, A.-C.; Mueller, S.; Hensel, O. Deep Learning and Machine Vision Approaches for Posture Detection of Individual Pigs. Sensors 2019, 19, 3738. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Xin, H.; Harmon, J.D. Neural network analysis of postural behavior of young swine to determine the IR thermal comfort state. Trans. Am. Soc. Agric. Eng. 1997, 40, 755–760. [Google Scholar] [CrossRef]
- Xin, H. Assessing swine thermal comfort by image analysis of postural behaviors. J. Anim. Sci. 1999, 77, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Xin, H. Image-processing algorithms for behavior analysis of group-housed pigs. Behav. Res. Methods Instruments Comput. 2000, 32, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Shao, B.; Xin, H. A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Comput. Electron. Agric. 2008, 62, 15–21. [Google Scholar] [CrossRef]
- Navarro Jover, J.M.; Alcañiz-Raya, M.; Gómez, V.; Balasch, S.; Moreno, J.R.; Grau Colomer, V.; Torres, A. An automatic colour-based computer vision algorithm for tracking the position of piglets. Span. J. Agric. Res. 2009, 7, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Nasirahmadi, A.; Hensel, O.; Edwards, S.A.; Sturm, B. A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method. Animal 2017, 11, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasirahmadi, A.; Sturm, B.; Olsson, A.-C.; Jeppsson, K.-H.; Mueller, S.; Edwards, S.; Hensel, O. Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine. Comput. Electron. Agric. 2019, 156, 475–481. [Google Scholar] [CrossRef]
- Riekert, M.; Klein, A.; Adrion, F.; Hoffmann, C.; Gallmann, E. Automatically detecting pig position and posture by 2D camera imaging and deep learning. Comput. Electron. Agric. 2020, 174. [Google Scholar] [CrossRef]
- Pluym, L.M.; Maes, D.; Vangeyte, J.; Mertens, K.; Baert, J.; Van Weyenberg, S.; Millet, S.; Van Nuffel, A. Development of a system for automatic measurements of force and visual stance variables for objective lameness detection in sows: SowSIS. Biosyst. Eng. 2013, 116, 64–74. [Google Scholar] [CrossRef]
- Buayai, P.; Piewthongngam, K.; Leung, C.K.; Saikaew, K.R. Semi-automatic pig weight estimation using digital image analysis. Appl. Eng. Agric. 2019, 35, 521–534. [Google Scholar] [CrossRef]
- Marsot, M.; Mei, J.; Shan, X.; Ye, L.; Feng, P.; Yan, X.; Li, C.; Zhao, Y. An adaptive pig face recognition approach using Convolutional Neural Networks. Comput. Electron. Agric. 2020, 173, 105386. [Google Scholar] [CrossRef]
- van Riet, M.M.J.; Vangeyte, J.; Janssens, G.P.J.; Ampe, B.; Nalon, E.; Bos, E.J.; Pluym, L.; Tuyttens, F.A.M.; Maes, D.; Millet, S. On-Farm claw scoring in sows using a novel mobile device. Sensors 2019, 19, 1473. [Google Scholar] [CrossRef] [Green Version]
- Brünger, J.; Dippel, S.; Koch, R.; Veit, C. “Tailception”: Using neural networks for assessing tail lesions on pictures of pig carcasses. Animal 2019, 13, 1030–1036. [Google Scholar] [CrossRef] [Green Version]
- Blömke, L.; Volkmann, N.; Kemper, N. Evaluation of an automated assessment system for ear and tail lesions as animal welfare indicators in pigs at slaughter. Meat Sci. 2020, 159, 107934. [Google Scholar] [CrossRef]
- Leonard, S.M.; Xin, H.; Brown-Brandl, T.M.; Ramirez, B.C. Development and application of an image acquisition system for characterizing sow behaviors in farrowing stalls. Comput. Electron. Agric. 2019, 163, 104866. [Google Scholar] [CrossRef]
- Lao, F.; Brown-Brandl, T.; Stinn, J.P.; Liu, K.; Teng, G.; Xin, H. Automatic recognition of lactating sow behaviors through depth image processing. Comput. Electron. Agric. 2016, 125, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Zhu, X.; Yang, X.; Wang, L.; Tu, S.; Xue, Y. Automatic recognition of lactating sow postures from depth images by deep learning detector. Comput. Electron. Agric. 2018, 147, 51–63. [Google Scholar] [CrossRef]
- Li, Z.; Du, X.; Mao, T.; Teng, G. Pig dimension detection system based on depth image. Trans. Chinese Soc. Agric. Mach. 2016, 47, 311–318. [Google Scholar] [CrossRef]
- Condotta, I.C.F.S.; Brown-Brandl, T.M.; Silva-Miranda, K.O.; Stinn, J.P. Evaluation of a depth sensor for mass estimation of growing and finishing pigs. Biosyst. Eng. 2018, 173, 11–18. [Google Scholar] [CrossRef]
- Shuai, S.; Ling, Y.; Shihao, L.; Haojie, Z.; Xuhong, T.; Caixing, L.; Aidong, S.; Hanxing, L. Research on 3D surface reconstruction and body size measurement of pigs based on multi-view RGB-D cameras. Comput. Electron. Agric. 2020, 175, 105543. [Google Scholar] [CrossRef]
- Okinda, C.; Lu, M.; Nyalala, I.; Li, J.; Shen, M. Asphyxia occurrence detection in sows during the farrowing phase by inter-birth interval evaluation. Comput. Electron. Agric. 2018, 152, 221–232. [Google Scholar] [CrossRef]
- Ott, S.; Moons, C.P.H.; Kashiha, M.A.; Bahr, C.; Tuyttens, F.A.M.; Berckmans, D.; Niewold, T.A. Automated video analysis of pig activity at pen level highly correlates to human observations of behavioural activities. Livest. Sci. 2014, 160, 132–137. [Google Scholar] [CrossRef]
- Kashiha, M.A.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Tuyttens, F.; Berckmans, D. Automatic monitoring of pig locomotion using image analysis. Livest. Sci. 2014, 159, 141–148. [Google Scholar] [CrossRef]
- Gronskyte, R.; Clemmensen, L.H.; Hviid, M.S.; Kulahci, M. Pig herd monitoring and undesirable tripping and stepping prevention. Comput. Electron. Agric. 2015, 119, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Gronskyte, R.; Clemmensen, L.H.; Hviid, M.S.; Kulahci, M. Monitoring pig movement at the slaughterhouse using optical flow and modified angular histograms. Biosyst. Eng. 2016, 141, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Cowton, J.; Kyriazakis, I.; Bacardit, J. Automated Individual Pig Localisation, Tracking and Behaviour Metric Extraction Using Deep Learning. IEEE Access 2019, 7, 108049–108060. [Google Scholar] [CrossRef]
- Zhang, K.; Li, D.; Huang, J.; Chen, Y. Automated video behavior recognition of pigs using two-stream convolutional networks. Sensors 2020, 20, 1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, D.B.; Larsen, M.L.V.; Pedersen, L.J. Predicting pen fouling in fattening pigs from pig position. Livest. Sci. 2020, 231, 103852. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Ma, C.; Guo, Y.; Huang, W.; Ruan, C. Image motion feature extraction for recognition of aggressive behaviors among group-housed pigs. Comput. Electron. Agric. 2017, 142, 380–387. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Wurtz, K.; Han, J.; Norton, T. Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory. Comput. Electron. Agric. 2020, 169, 105166. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Haredasht, S.A.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Odberg, F.O.; Berckmans, D. The automatic monitoring of pigs water use by cameras. Comput. Electron. Agric. 2013, 90, 164–169. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, Y.; Jiao, P.; Ma, C.; Chen, C. Recognition and drinking behaviour analysis of individual pigs based on machine vision. Livest. Sci. 2017, 205, 129–136. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosyst. Eng. 2020, 196, 1–14. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O.; Edwards, S.A.; Sturm, B. Automatic detection of mounting behaviours among pigs using image analysis. Comput. Electron. Agric. 2016, 124, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhu, W.; Oczak, M.; Maschat, K.; Baumgartner, J.; Larsen, M.L.V.; Norton, T. A computer vision approach for recognition of the engagement of pigs with different enrichment objects. Comput. Electron. Agric. 2020, 175, 105580. [Google Scholar] [CrossRef]
- Nilsson, M.; Herlin, A.H.; Ardo, H.; Guzhva, O.; Astrom, K.; Bergsten, C. Development of automatic surveillance of animal behaviour and welfare using image analysis and machine learned segmentation technique. Animal 2015, 9, 1859–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasirahmadi, A.; Richter, U.; Hensel, O.; Edwards, S.; Sturm, B. Using machine vision for investigation of changes in pig group lying patterns. Comput. Electron. Agric. 2015, 119, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Nasirahmadi, A.; Edwards, S.A.; Matheson, S.M.; Sturm, B. Using automated image analysis in pig behavioural research: Assessment of the influence of enrichment substrate provision on lying behaviour. Appl. Anim. Behav. Sci. 2017, 196, 30–35. [Google Scholar] [CrossRef]
- Liu, D.; Oczak, M.; Maschat, K.; Baumgartner, J.; Pletzer, B.; He, D.; Norton, T. A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs. Biosyst. Eng. 2020, 195, 27–41. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Oedberg, F.O.; Berckmans, D. Automatic weight estimation of individual pigs using image analysis. Comput. Electron. Agric. 2014, 107, 38–44. [Google Scholar] [CrossRef]
- Lee, S.; Ahn, H.; Seo, J.; Chung, Y.; Park, D.; Pan, S. Practical Monitoring of Undergrown Pigs for IoT-Based Large-Scale Smart Farm. IEEE Access 2019, 7, 173796–173810. [Google Scholar] [CrossRef]
- Matthews, S.G.; Miller, A.L.; Plotz, T.; Kyriazakis, I. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Sci. Rep. 2017, 7, 17582. [Google Scholar] [CrossRef]
- Lee, J.; Jin, L.; Park, D.; Chung, Y. Automatic Recognition of Aggressive Behavior in Pigs Using a Kinect Depth Sensor. Sensors 2016, 16, 631. [Google Scholar] [CrossRef] [Green Version]
- Statham, P.; Hannuna, S.; Jones, S.; Campbell, N.; Robert Colborne, G.; Browne, W.J.; Paul, E.S.; Mendl, M. Quantifying defence cascade responses as indicators of pig affect and welfare using computer vision methods. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Stavrakakis, S.; Guy, J.H.; Syranidis, I.; Johnson, G.R.; Edwards, S.A. Pre-clinical and clinical walking kinematics in female breeding pigs with lameness: A nested case-control cohort study. Vet. J. 2015, 205, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.; Yang, X.; Zhu, X.; Chen, C.; Wang, L.; Tu, S.; Yang, A.; Xue, Y. Automatic posture change analysis of lactating sows by action localisation and tube optimisation from untrimmed depth videos. Biosyst. Eng. 2020, 194, 227–250. [Google Scholar] [CrossRef]
- D’Eath, R.B.; Jack, M.; Futro, A.; Talbot, D.; Zhu, Q.; Barclay, D.; Baxter, E.M. Automatic early warning of tail biting in pigs: 3D cameras can detect lowered tail posture before an outbreak. PLoS ONE 2018, 13, e0194524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hirtum, A.; Berckmans, D. Fuzzy approach for improved recognition of citric acid induced piglet coughing from continuous registration. J. Sound Vib. 2003, 266, 677–686. [Google Scholar] [CrossRef]
- Silva, M.; Ferrari, S.; Costa, A.; Aerts, J.-M.; Guarino, M.; Berckmans, D. Cough localization for the detection of respiratory diseases in pig houses. Comput. Electron. Agric. 2008, 64, 286–292. [Google Scholar] [CrossRef]
- Exadaktylos, V.; Silva, M.; Aerts, J.-M.; Taylor, C.J.; Berckmans, D. Real-time recognition of sick pig cough sounds. Comput. Electron. Agric. 2008, 63, 207–214. [Google Scholar] [CrossRef]
- Exadaktylos, V.; Silva, M.; Ferrari, S.; Guarino, M.; Taylor, C.J.; Aerts, J.-M.; Berckmans, D. Time-series analysis for online recognition and localization of sick pig (Sus scrofa) cough sounds. J. Acoust. Soc. Am. 2008, 124, 3803–3809. [Google Scholar] [CrossRef]
- Schön, P.-C.; Puppe, B.; Manteuffel, G. Linear prediction coding analysis and self-organizing feature map as tools to classify stress calls of domestic pigs (Sus scrofa). J. Acoust. Soc. Am. 2001, 110, 1425–1431. [Google Scholar] [CrossRef]
- Puppe, B.; Schön, P.C.; Tuchscherer, A.; Manteuffel, G. Castration-induced vocalisation in domestic piglets, Sus scrofa: Complex and specific alterations of the vocal quality. Appl. Anim. Behav. Sci. 2005, 95, 67–78. [Google Scholar] [CrossRef]
- Vandermeulen, J.; Bahr, C.; Tullo, E.; Fontana, I.; Ott, S.; Kashiha, M.; Guarino, M.; Moons, C.P.H.; Tuyttens, F.A.M.; Niewold, T.A.; et al. Discerning Pig Screams in Production Environments. PLoS ONE 2015, 10, e0123111. [Google Scholar] [CrossRef] [Green Version]
- Manteuffel, C.; Hartung, E.; Schmidt, M.; Hoffmann, G.; Schoen, P.C. Online detection and localisation of piglet crushing using vocalisation analysis and context data. Comput. Electron. Agric. 2017, 135, 108–114. [Google Scholar] [CrossRef]
- Friend, T.; O’Connor, L.; Knabe, D.; Dellmeier, G. Preliminary trials of a sound-activated device to reduce piglet crushing of piglets by sows. Appl. Anim. Behav. Sci. 1989, 24, 23–29. [Google Scholar] [CrossRef]
- Schön, P.C.; Puppe, B.; Manteuffel, G. Automated recording of stress vocalisations as a tool to document impaired welfare in pigs. Anim. Welf. 2004, 13, 105–110. [Google Scholar]
- Düpjan, S.; Schön, P.C.; Puppe, B.; Tuchscherer, A.; Manteuffel, G. Differential vocal responses to physical and mental stressors in domestic pigs (Sus scrofa). Appl. Anim. Behav. Sci. 2008, 114, 105–115. [Google Scholar] [CrossRef]
- Moura, D.J.; Silva, W.T.; Naas, I.A.; Tolon, Y.A.; Lima, K.A.O.; Vale, M.M. Real time computer stress monitoring of piglets using vocalization analysis. Comput. Electron. Agric. 2008, 64, 11–18. [Google Scholar] [CrossRef]
- Oliveira, S.R.D.E.M.; Violaro, F.; Almeida, A.C.M.D.E. Efficiency of distinct data mining algorithms for classifying stress level in piglets from their vocalization. Eng. Agric. 2012, 32, 208–216. [Google Scholar]
- da Silva Cordeiro, A.F.; de Alencar Nääs, I.; Oliveira, S.R.M.; Violaro, F.; de Almeida, A.C.M.; Neves, D.P. Understanding vocalization might help to assess stressful conditions in piglets. Animals 2013, 3, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Moi, M.; de A. Nääs, I.; Caldara, F.R.; de L. Almeida Paz, I.C.; Garcia, R.G.; Cordeiro, A.F.S. Vocalization data mining for estimating swine stress conditions. Eng. Agric. 2014, 34, 445–450. [Google Scholar] [CrossRef] [Green Version]
- da S. Cordeiro, A.F.; de A. Nääs, I.; dos S. Baracho, M.; Jacob, F.G.; de Moura, D.J. The use of vocalization signals to estimate the level of pain in piglets. Eng. Agric. 2018, 38, 486–490. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.P.; de Alencar Nääs, I.; Abe, J.M.; da Silva Cordeiro, A.F. Classification of piglet (Sus scrofa) stress conditions using vocalization pattern and applying paraconsistent logic Eτ. Comput. Electron. Agric. 2019, 166, 105020. [Google Scholar] [CrossRef]
- da S. Cordeiro, A.F.; de A. Nääs, I.; da Silva Leitão, F.; de Almeida, A.C.M.; de Moura, D.J. Use of vocalisation to identify sex, age, and distress in pig production. Biosyst. Eng. 2018, 173, 57–63. [Google Scholar] [CrossRef]
- Cornou, C.; Lundbye-Christensen, S. Classifying sows’ activity types from acceleration patterns—An application of the Multi-Process Kalman Filter. Appl. Anim. Behav. Sci. 2008, 111, 262–273. [Google Scholar] [CrossRef]
- Cornou, C.; Lundbye-Christensen, S. Classification of sows’ activity types from acceleration patterns using univariate and multivariate models. Comput. Electron. Agric. 2010, 72, 53–60. [Google Scholar] [CrossRef]
- Liu, L.S.; Ni, J.Q.; Zhao, R.Q.; Shen, M.X.; He, C.L.; Lu, M.Z. Design and test of a low-power acceleration sensor with Bluetooth Low Energy on ear tags for sow behaviour monitoring. Biosyst. Eng. 2018, 176, 162–171. [Google Scholar] [CrossRef]
- Thompson, R.J.; Matthews, S.; Plötz, T.; Kyriazakis, I. Freedom to lie: How farrowing environment affects sow lying behaviour assessment using inertial sensors. Comput. Electron. Agric. 2019, 157, 549–557. [Google Scholar] [CrossRef]
- Oczak, M.; Maschat, K.; Berckmans, D.; Vranken, E.; Baumgartner, J. Classification of nest-building behaviour in non-crated farrowing sows on the basis of accelerometer data. Biosyst. Eng. 2015, 140, 48–58. [Google Scholar] [CrossRef]
- Oczak, M.; Maschat, K.; Berckmans, D.; Vranken, E.; Baumgartner, J. Can an automated labelling method based on accelerometer data replace a human labeller?—Postural profile of farrowing sows. Comput. Electron. Agric. 2016, 127, 168–175. [Google Scholar] [CrossRef]
- Thompson, R.; Matheson, S.M.; Plotz, T.; Edwards, S.A.; Kyriazakis, I. Porcine lie detectors: Automatic quantification of posture state and transitions in sows using inertial sensors. Comput. Electron. Agric. 2016, 127, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Pastell, M.; Flietaoja, J.; Yun, J.; Tiusanen, J.; Valros, A. Predicting farrowing of sows housed in crates and pens using accelerometers and CUSUM charts. Comput. Electron. Agric. 2016, 127, 197–203. [Google Scholar] [CrossRef]
- Oczak, M.; Maschat, K.; Baumgartner, J. Dynamics of sows’ activity housed in farrowing pens with possibility of temporary crating might indicate the time when sows should be confined in a crate before the onset of farrowing. Animals 2020, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Maselyne, J.; Adriaens, I.; Huybrechts, T.; De Ketelaere, B.; Millet, S.; Vangeyte, J.; Van Nuffel, A.; Saeys, W. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal 2016, 10, 1557–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maselyne, J.; Saeys, W.; De Ketelaere, B.; Mertens, K.; Vangeyte, J.; Hessel, E.F.; Millet, S.; Van Nuffel, A. Validation of a High Frequency Radio Frequency Identification (HF RFID) system for registering feeding patterns of growing-finishing pigs. Comput. Electron. Agric. 2014, 102, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Maselyne, J.; Saeys, W.; Briene, P.; Mertens, K.; Vangeyte, J.; De Ketelaere, B.; Hessel, E.F.; Sonck, B.; Van Nuffel, A. Methods to construct feeding visits from RFID registrations of growing-finishing pigs at the feed trough. Comput. Electron. Agric. 2016, 128, 9–19. [Google Scholar] [CrossRef]
- Adrion, F.; Kapun, A.; Eckert, F.; Holland, E.M.; Staiger, M.; Götz, S.; Gallmann, E. Monitoring trough visits of growing-finishing pigs with UHF-RFID. Comput. Electron. Agric. 2018, 144, 144–153. [Google Scholar] [CrossRef]
- Maselyne, J.; Van Nuffel, A.; Briene, P.; Vangeyte, J.; De Ketelaere, B.; Millet, S.; Van den Hof, J.; Maes, D.; Saeys, W. Online warning systems for individual fattening pigs based on their feeding pattern. Biosyst. Eng. 2018, 173, 143–156. [Google Scholar] [CrossRef]
- Meijer, E.; Oosterlinck, M.; van Nes, A.; Back, W.; van der Staay, F.J. Pressure mat analysis of naturally occurring lameness in young pigs after weaning. BMC Vet. Res. 2014, 10, 193. [Google Scholar] [CrossRef] [Green Version]
- Abell, C.E.; Johnson, A.K.; Karriker, L.A.; Rothschild, M.F.; Hoff, S.J.; Sun, G.; Fitzgerald, R.F.; Stalder, K.J. Using classification trees to detect induced sow lameness with a transient model. Animal 2014, 8, 1000–1009. [Google Scholar] [CrossRef] [Green Version]
- Manteuffel, C.; Hartung, E.; Schmidt, M.; Hoffmann, G.; Schoen, P.C. Towards qualitative and quantitative prediction and detection of parturition onset in sows using light barriers. Comput. Electron. Agric. 2015, 116, 201–210. [Google Scholar] [CrossRef]
- Ni, J.Q.; Liu, S.; Radcliffe, J.S.; Vonderohe, C. Evaluation and characterisation of Passive Infrared Detectors to monitor pig activities in an environmental research building. Biosyst. Eng. 2017, 158, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Besteiro, R.; Rodriguez, M.R.; Fernandez, M.D.; Ortega, J.A.; Velo, R. Agreement between passive infrared detector measurements and human observations of animal activity. Livest. Sci. 2018, 214, 219–224. [Google Scholar] [CrossRef]
- Besteiro, R.; Arango, T.; Rodríguez, M.R.; Fernández, M.D.; Velo, R. Estimation of patterns in weaned piglets’ activity using spectral analysis. Biosyst. Eng. 2018, 173, 85–92. [Google Scholar] [CrossRef]
- Von Jasmund, N.; Wellnitz, A.; Krommweh, M.S.; Büscher, W. Using passive infrared detectors to record group activity and activity in certain focus areas in fattening pigs. Animals 2020, 10, 792. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Schmidt, H.; Mörlein, D. Feasibility of boar taint classification using a portable Raman device. Meat Sci. 2016, 116, 133–139. [Google Scholar] [CrossRef]
- Madsen, T.N.; Kristensen, A.R. A model for monitoring the condition of young pigs by their drinking behaviour. Comput. Electron. Agric. 2005, 48, 138–154. [Google Scholar] [CrossRef]
- Dominiak, K.N.; Hindsborg, J.; Pedersen, L.J.; Kristensen, A.R. Spatial modeling of pigs’ drinking patterns as an alarm reducing method II. Application of a multivariate dynamic linear model. Comput. Electron. Agric. 2019, 161, 92–103. [Google Scholar] [CrossRef]
- Dominiak, K.N.; Pedersen, L.J.; Kristensen, A.R. Spatial modeling of pigs’ drinking patterns as an alarm reducing method I. Developing a multivariate dynamic linear model. Comput. Electron. Agric. 2019, 161, 79–91. [Google Scholar] [CrossRef]
- Shi, C.; Teng, G.; Li, Z. An approach of pig weight estimation using binocular stereo system based on LabVIEW. Comput. Electron. Agric. 2016, 129, 37–43. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; González, L.A.; Marinello, F. On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera. Comput. Electron. Agric. 2018, 148, 29–36. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Milani, V.; Zhu, D.; Guo, H.; Guercini, S.; Marinello, F. On-barn pig weight estimation based on body measurements by structure-from-motion (SfM). Sensors 2018, 18, 3603. [Google Scholar] [CrossRef] [Green Version]
- Aparna, U.; Pedersen, J.P.; Jørgensen, E. Hidden phase-type Markov model for the prediction of onset of farrowing for loose-housed sows. Comput. Electron. Agric. 2014, 108, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Guarino, M.; Norton, T.; Berckmans, D.; Vranken, E.; Berckmans, D. A blueprint for developing and applying precision livestock farming tools: A key output of the EU-PLF project. Anim. Front. 2017, 7, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Keeling, L.; Jensen, P. Abnormal Behaviour, Stress and Welfare. In The Ethology of Domesticated Animals, 2nd ed.; An Introduction; CABI: Wallingford, UK, 2009; pp. 85–101. [Google Scholar]
- Vandermeulen, J.; Decré, W.; Berckmans, D.; Exadaktylos, V.; Bahr, C.; Berckmans, D. The Pig Cough Monitor: From research topic to commercial product. In Proceedings of the Joint European Conference on Precision Livestock Farming, Leuven, Belgium, 10–12 September 2013; pp. 717–723. [Google Scholar]
- Muns, R.; Malmkvist, J.; Larsen, M.L.V.; Sørensen, D.; Pedersen, L.J. High environmental temperature around farrowing induced heat stress in crated sows. J. Anim. Sci. 2016, 94, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.L.V.; Bertelsen, M.; Pedersen, L.J. Review: Factors affecting fouling in conventional pens for slaughter pigs. Animal 2018, 12, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rault, J.L. Be kind to others: Prosocial behaviours and their implications for animal welfare. Appl. Anim. Behav. Sci. 2019, 210, 113–123. [Google Scholar] [CrossRef]
- Waiblinger, S.; Boivin, X.; Pedersen, V.; Tosi, M.V.; Janczak, A.M.; Visser, E.K.; Jones, R.B. Assessing the human-animal relationship in farmed species: A critical review. Appl. Anim. Behav. Sci. 2006, 101, 185–242. [Google Scholar] [CrossRef] [Green Version]
- Bench, C.; Schaefer, A.L.; Faucitano, L. The welfare of pigs during transport. In Welfare of Pigs: From Birth to Slaughter; Schaefer, A., Faucitano, L., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 161–195. [Google Scholar]
Animal | Information Technology | Animal Welfare |
---|---|---|
Pig | Technolog * | Welfare |
Pigs | “Precision Livestock Farm *” | Wellbeing |
Swine | Computer * | Well-being |
Piglet | Digital * | “Early warning *” |
Piglets | Remote * | |
Sow | Automat * | |
Sows | Camera * | |
Boar | Microphone * | |
Boars | Sensor * | |
Radio * | ||
Video * | ||
Image * | ||
Sound * | ||
Algorithm * | ||
Prediction * |
Analysis Question | Categories | Mutually Exclusive 1 |
---|---|---|
What IT was investigated? | - | - |
What sensor technology was used? | - | - |
What type of variable was captured? | Feature, Target, Both | Yes |
What was the level of the variable? | Individual, Pen, Batch, Laboratory | No |
What biomarker type was used? | Animal, Environmental | No |
What biomarker name? | - | - |
What biomarker property? | Behavioural, Physiological | No |
What stage of IT development? | Development, Validation, Development and Validation, Implementation | Yes |
What pig production stage? | Piglet, Weaner, Finisher, Gilt, Insemination sow, Gestation sow, Lactating sow, Individual sow, Group-housed sow, Boar, Transport, Abattoir, Artificial | No |
What animal welfare issue was studied? | - | - |
What animal welfare evaluation method was used | Real-Time, Retrospectively, Both | Yes |
Which Welfare Quality principle does the study relate to? | Good feeding, Good housing, Good health, Appropriate behaviour | No |
Which Welfare Quality criteria does the study relate to? | Absence of prolonged hunger, Absence of prolonged thirst, Comfort around resting, Thermal comfort, Ease of movement, Absence of injuries, Absence of diseases, Absence of pain induced by management procedures, Expression of social behaviour, Expression of other behaviour, Human-animal relationship, Positive emotional state | No |
Sensor Technology | Type | Biomarker Type | Biomarker | Citation |
---|---|---|---|---|
Camera (n = 49) | 2D image (n = 14) | Behavioural | Activity | [22] |
Posture, position and lying pattern | [23,24,25,26,27,28,29,30] | |||
Visual stance measures | [31] | |||
Physiological | Contour, area, volume and body size | [32] | ||
Face and eye recognition | [33] | |||
Lesions (claw, tail, ear) | [34,35,36] | |||
3D image (n = 6) | Behavioural | Activity | [37,38] | |
Drinking and feeding behaviour | [37,38] | |||
Posture | [39] | |||
Physiological | Contour, area, volume and body size | [40,41,42] | ||
Inter-birth interval | [43] | |||
2D video (n = 21) | Behavioural | Activity | [44,45,46,47,48,49,50] | |
Aggression | [51,52] | |||
Drinking behaviour | [53,54,55] | |||
Feeding behaviour | [49] | |||
Mounting | [49,56] | |||
Object engagement | [57] | |||
Posture, position and lying pattern | [50,58,59,60] | |||
Tail biting behaviour | [61] | |||
Physiological | Contour, area, volume and body size | [62,63] | ||
3D video (n = 7) | Behavioural | Activity and feeding behaviour | [64] | |
Aggression | [65] | |||
Freeze/startle behaviour | [66] | |||
Gait measures | [67] | |||
Pig posture | [68] | |||
Tail posture | [69] | |||
IR thermography (n = 1) | Physiological | Surface temperature | [18] | |
Microphone (n = 18) | Sound (n = 18) | Behavioural | Cough | [70,71,72,73] |
Scream | [74,75,76,77] | |||
Squeals | [78] | |||
Vocalisation, general | [79,80,81,82,83,84,85,86,87] | |||
Animal attached sensors (n = 15) | Accelerometer (n = 9) | Behavioural | Activity | [88,89,90,91,92,93,94,95,96] |
Feeding behaviour | [88,89,90,91] | |||
Rooting | [88,89] | |||
HF/UHF RFID (n = 6) | Behavioural | Drinking behaviour | [97] | |
Feeding behaviour | [98,99,100,101] | |||
- | Identification | [40] | ||
Other sensors (n = 16) | Force plates/pressure mats (n = 3) | Behavioural | Asymmetry indices | [102] |
Force stance measures | [31] | |||
Gait measures | [103] | |||
Light barriers (n = 1) | Behavioural | Activity | [104] | |
Load platform (n = 1) | Behavioural | Freeze/startle behaviour | [66] | |
Passive IR detectors (n = 4) | Behavioural | Activity | [105,106,107,108] | |
Portable Raman device (n = 1) | Physiological | Androsterone, Skatole | [109] | |
Water-flow meters (n = 6) | Behavioural | Drinking behaviour | [13,14,19,110,111,112] |
Production Stage | No. Publications | Citation |
---|---|---|
Piglets | 15 | [17,20,27,70,74,75,77,78,79,81,82,83,85,86,87] |
Weaner pigs | 40 | [15,20,21,22,23,24,26,29,30,41,45,51,52,53,54,55,62,64,65,66,69,72,73,74,76,79,80,86,87,97,98,99,102,103,105,106,107,110,111,112] |
Finisher pigs | 45 | [12,13,14,19,20,22,28,29,30,32,40,41,42,44,45,50,53,54,56,57,58,59,60,61,62,63,64,66,69,71,72,73,76,79,84,87,97,98,99,100,101,105,108,111,112] |
Sows | 21 | |
Insemination | 0 | - |
Gestation | 1 | [34] |
Lactation | 14 | |
Crated | 6 | [33,37,38,43,94,104] |
Loose-housed | 5 | [39,68,90,91,92] |
Both | 3 | [93,95,96] |
Group-housed | 2 | [88,89] |
Individual-housed | 3 | [18,31,103] |
Full period | 1 | [36] |
Boars | 1 | [43] |
Transport | 1 | [46] |
Abattoir | 5 | [35,36,43,46,109] |
Artificial pigs | 1 | [25] |
Not reported | 3 | [16,48,49] |
Welfare Issue | IT Development Stage (No. Publications) | Total | Citation | |||
---|---|---|---|---|---|---|
Development | Validation | Dev. and Val. | Implementation | |||
General a | 29 | 9 | 38 | [22,27,30,32,33,37,38,39,40,41,42,44,45,48,49,53,54,55,57,60,62,64,68,88,89,90,91,93,97,98,99,100,105,106,107,108,110,112] | ||
Thermal environment | 13 | 1 | 1 | 15 | [15,16,17,18,23,24,25,26,28,29,58,59,83,84,86] | |
Disease | 6 | 5 | 11 | [12,13,18,19,47,70,71,72,73,101,111] | ||
Stress | 9 | 1 | 10 | [51,52,65,75,76,79,80,81,82,87] | ||
Farrowing management | 3 | 3 | 6 | [91,92,94,95,96,104] | ||
Tail biting | 4 | 2 | 6 | [14,19,35,36,61,69] | ||
Pen fouling | 1 | 4 | 5 | [12,13,19,50,111] | ||
Lameness | 5 | 5 | [31,34,67,102,103] | |||
Piglet crushing | 2 | 1 | 1 | 4 | [39,68,77,78] | |
Body injuries | 2 | 1 | 3 | [34,47,101] | ||
Hunger | 3 | 3 | [83,84,85] | |||
Air quality | 2 | 2 | [20,21] | |||
Castration | 2 | 2 | [75,109] | |||
Pain | 2 | 2 | [85,86] | |||
Thirst | 2 | 2 | [84,86] | |||
Undergrown pigs | 1 | 1 | 2 | [63,101] | ||
Asphyxia in sows | 1 | 1 | [43] | |||
Ear biting | 1 | 1 | [36] | |||
Negative affective state | 1 | 1 | [66] | |||
Negative social behaviour | 1 | 1 | [56] | |||
Tripping and stepping | 1 | 1 | [46] | |||
Total b | 78 | 1 | 21 | 1 | ||
Citation | [17,18,20,21,22,23,24,25,26,27,28,29,31,32,34,35,36,37,39,41,42,43,44,45,46,47,48,49,51,52,53,54,56,58,59,60,61,63,64,65,66,67,69,70,71,72,74,75,76,77,80,81,82,83,84,85,86,87,88,89,90,91,93,94,95,97,98,100,102,103,105,106,107,108,109,110,111] | [15] | [12,13,14,16,19,30,33,38,40,50,55,57,62,68,73,79,92,96,99,101,104] | [78] |
WQ Principle | No. Pubs | WQ Criteria | No. Pubs. | WQ Measures | ITs Investigated a | Citation |
---|---|---|---|---|---|---|
Good feeding | 28 | Absence of prolonged hunger | 22 | Body condition, age of weaning | Body dimension (G), weight (G), undergrown pigs (G), feeding behaviour (G, S), hunger vocalisation (G, P) | [32,37,38,40,41,42,49,62,63,64,83,84,86,88,89,90,91,98,99,100,101,108] |
Absence of prolonged thirst | 10 | Water supply (places, function, cleanliness) | Drinking behaviour (G, S), water usage (G), thirst vocalisation (G, P) | [37,38,53,54,55,84,86,97,108,112] | ||
Good housing | 42 | Comfort around resting | 6 | Pressure injuries, manure on the body | Pen fouling prediction (G) | [12,13,19,50,111,112] |
Thermal comfort | 25 | Shivering, panting, huddling | Respiration frequency (P), lying posture and location (G, P), cold/heat vocalisation (G, P), pen/room temperature (G), rectal temperature (P, S), pen fouling prediction (G) | [12,13,15,16,17,18,19,22,23,24,25,26,27,28,29,30,50,58,59,60,83,84,86,111,112] | ||
Ease of movement | 17 | Space allowance, farrowing crates (presence and size) | Body dimension (G), weight (G), movement (G, S), farrowing alarms (S) | [32,38,39,40,41,42,45,49,62,64,68,88,89,90,91,93,96] |
WQ Principle | No. Pubs. | WQ Criteria | No. Pubs. | WQ Measures | ITs Investigated a | Citation |
---|---|---|---|---|---|---|
Good health | 78 | Absence of injuries | 25 | Lameness, vulva lesions, body lesions | Lameness (G, S), tail/ear lesions (A), tail biting (G), crushing (P), aggression/mounting (G), tripping and stepping at unloading (A), pain vocalisation (P) | [14,19,31,34,35,36,39,46,47,51,52,56,61,65,67,68,69,77,78,83,86,91,101,102,103] |
Absence of diseases | 57 | Mortality, multiple diseases | Crushing (P), asphyxia (S), farrowing management (S), posture changes (S), respiratory disease (G), diarrhoea prediction (G), general biomarkers b (G, P, S) | [12,13,18,19,20,21,22,30,32,37,38,39,40,41,42,43,44,45,47,48,49,53,54,55,60,62,63,64,68,70,71,72,73,77,78,88,89,90,91,92,93,94,95,96,97,98,99,100,101,104,105,106,107,108,110,111,112] | ||
Absence of pain induced by management procedures | 4 | Castration, tail docking, teeth clipping | Pain vocalisation during procedures (P), boar taint detection (A) | [75,82,85,109] | ||
Appropriate behaviour | 25 | Expression of social behaviour | 11 | Negative and positive social behaviour | Aggression (G), mounting (G), tail biting (G), lowered tails (G) tail/ear lesions (A) | [14,19,35,36,49,51,52,56,61,65,69] |
Expression of other behaviour | 7 | Stereotypies, explorative behaviour | Rooting behaviour (S), nest building behaviour (S), scratching (G), object manipulation (G), drinker manipulation (G) | [49,55,57,88,89,92,108] | ||
Good human-animal relationship | 0 | Fear of humans | - | - | ||
Positive emotional state | 9 | Qualitative behaviour assessment | Stress vocalisation (G, P), object manipulation (G), defence cascade response (G), pig face recognition (S) | [33,57,66,74,76,79,80,81,87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsen, M.L.V.; Wang, M.; Norton, T. Information Technologies for Welfare Monitoring in Pigs and Their Relation to Welfare Quality®. Sustainability 2021, 13, 692. https://doi.org/10.3390/su13020692
Larsen MLV, Wang M, Norton T. Information Technologies for Welfare Monitoring in Pigs and Their Relation to Welfare Quality®. Sustainability. 2021; 13(2):692. https://doi.org/10.3390/su13020692
Chicago/Turabian StyleLarsen, Mona L. V., Meiqing Wang, and Tomas Norton. 2021. "Information Technologies for Welfare Monitoring in Pigs and Their Relation to Welfare Quality®" Sustainability 13, no. 2: 692. https://doi.org/10.3390/su13020692
APA StyleLarsen, M. L. V., Wang, M., & Norton, T. (2021). Information Technologies for Welfare Monitoring in Pigs and Their Relation to Welfare Quality®. Sustainability, 13(2), 692. https://doi.org/10.3390/su13020692